On a Generalized Matching Problem Arising in Estimating the Eigenvalue Variation of Two Matrices

L. Elsner, C. R. Johnson*, J. A. Ross ${ }^{\dagger}$ and J. Schönheim

Abstract

It is shown that if G is a graph having vertices $P_{1}, P_{2}, \ldots, P_{n}, Q_{1}, Q_{2}, \ldots, Q_{n}$ and satisfying some conditions, then there is a permutation σ of $\{1,2, \ldots, n\}$ such that there is a path, for $i=1,2, \ldots, n$ connecting P_{i} with $Q_{\sigma(i)}$ having a length at most $\{n / 2\}$. This is used to prove a theorem having applications in eigenvalue variation estimation.

For complex $n \times n$-matrices A with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and B with eigenvalues μ_{1}, \ldots, μ_{n}, it is possible to give bounds for the "spectral-variation" $S_{A}(B)=$ $\max _{i} \min _{j}\left|\lambda_{j}-\mu_{i}\right|$, depending only on $\|A\|,\|B\|$ and $\|A-B\|$. Here $\|\|$ denotes the spectralnorm (e.g. [1]). These bounds are also bounds on

$$
\delta=\max _{0 \leqslant t \leqslant 1} \max \left(\mathrm{~S}_{A}(t B+(1-t) A), S_{B}(t B+(1-t) A)\right) .
$$

It follows from a continuity argument that each connected component of $\bigcup_{j=1}^{n}\{z: \mid z-$ $\left.\mu_{j} \mid \leqslant \delta\right\}$ and of $\bigcup_{j=1}^{n}\left\{z:\left|z-\lambda_{j}\right| \leqslant \delta\right\}$ contains as many eigenvalues of A as of B. One is in fact interested in the "eigenvalue variation"

$$
\nu(A, B)=\min _{\sigma} \max _{i}\left|\lambda_{i}-\mu_{\sigma(i)}\right|,
$$

where σ runs through all permutations of $\{1,2, \ldots, n\}$. It is easy to see that $\nu(A, B) \leqslant$ $(2 n-1) \delta$. It was suspected that $2 n-1$ can be replaced by n for n odd and $n-1$ for n even. Hence the question arose whether the following statement is true.

Statement 1. Let $\lambda=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ and $\mu=\left\{u_{1}, \mu_{2}, \ldots, \mu_{n}\right\}$ be two sets of not necessarily distinct points in the complex plane. Suppose that for every connected component D of the domain $\bigcup_{i=1}^{n}\left\{z:\left|z-\mu_{i}\right| \leqslant 1\right\}$ or of the domain $\bigcup_{i=1}^{n}\left\{z:\left|z-\lambda_{i}\right| \leqslant 1\right\}$ the number of elements of λ contained in D equals the number of elements of μ contained in D. Then there is a permutation σ of $\{1,2, \ldots, n\}$ such that for $i=1,2, \ldots, n$,

$$
\left|\lambda_{i}-\mu_{\sigma(i)}\right| \leqslant \begin{cases}n & \text { for } n \text { odd } \\ n-1 & \text { for } n \text { even }\end{cases}
$$

Since we shall answer the above question in the affirmative, we will refer to Statement 1 as Theorem 1.

It turns out that a much more general result is true. It will be formulated as Theorem 2 and proved below in graph-theoretical terms.

If A and B are vertices in a connected graph, then we shall use the notation $L(A B)$ for a path with endpoints A, B and $l(A B)$ for its length, i.e. the number of the edges in it or, if the edges are weighted, the sum of the weights of its edges. As usual the distance $d(A B)$ means the length of the shortest path connecting A, B.

Denote by $\{m\}$ the least integer not smaller than m.

[^0]We define now a class Γ_{n} of graphs. A graph G will belong to Γ_{n} if it has the following structure:
(i) The vertex set of G is the union of two disjoint sets V_{p} and V_{q}, each containing exactly n elements.
(ii) Let G_{p} and G_{q} be the induced subgraphs of G on the sets V_{p} and V_{q}. Let $B_{p q}$ be the induced bipartite subgraph with cells V_{p} and V_{q}. Then the following condition holds for each connected component D of G_{p} : the number of vertices in V_{q} joined by an edge to some vertex in D equals the number of vertices in D. A corresponding condition holds for every connected component of G_{q}.
(iii) Edges $B_{p q}$ stemming out from the same vertex of V_{p} have the other endpoint in the same connected component of G_{q}, and vice versa interchanging p with q.
Notice that from (i), (ii), (iii) it follows
(iv) The degree of each vertex in $B_{p q}$ is at least 1.

Actually (i), (ii), (iii) and (i), (ii), (iv) are equivalent.
A path connecting a vertex $P \in V_{p}$ with a vertex $Q \in V_{q}$ will be said to be proper if it contains exactly one edge of $P_{p q}$, this edge has at least one of the vertices P, Q as endpoints, and

$$
\begin{equation*}
l(P Q)<\left\{\frac{n}{2}\right\} \tag{0}
\end{equation*}
$$

Theorem 2. If G is a member of Γ_{n}, and $V_{p}=\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}, V_{q}=\left\{Q_{1}, \ldots, Q_{n}\right\}$, then there is a permutation σ of $\{1,2, \ldots, n\}$ such that for each $i=1,2, \ldots, n$ there is a proper path $L\left(P_{i} Q_{\sigma(i)}\right)$.

Proof. Let A_{i} be the subset of V_{q} such that if $Q \in A_{i}$ then there is a proper path $L\left(P_{i} Q\right)$. The set A_{i} is non-empty for $i=1,2, \ldots, n$ by property (iv). We will prove Theorem 2 by showing that the sets $A_{1}, A_{2}, \ldots, A_{n}$ have a system of distinct representatives. This will be done by verifying Hall's condition [2]. Thus, we shall verify the condition:

$$
\begin{equation*}
\left|\bigcup_{j=1}^{k} A_{i_{j}}\right| \geqslant k, \quad k=1,2, \ldots, n ; \quad\left\{i_{j}\right\}_{j=1}^{k} \subset\{1,2, \ldots ; n\} . \tag{1}
\end{equation*}
$$

Let $s \geqslant 1$ be such that $G_{q}^{1}, G_{q}^{2}, \ldots, G_{q}^{s}$ are the connected components of G_{q} and let $m_{1}, m_{2}, \ldots, m_{s}$ be the cardinalities of the corresponding vertex sets $V_{q}^{1}, V_{q}^{2}, \ldots, V_{q}^{s}$.

Notice that if

$$
\begin{equation*}
m_{j} \leqslant\left\{\frac{n}{2}\right\} \tag{2}
\end{equation*}
$$

and there is an edge from P_{i} to a vertex of G_{q}^{j}, then $\left|A_{i}\right| \geqslant m_{i}$, and notice that (2) holds for all but possibly one value of j. Choose the notation so that $m_{s} \geqslant m_{j}$ for $j=$ $1,2, \ldots, s-1$.

Consider the set R of vertices $P_{i_{1}}, P_{i_{2}}, \ldots, P_{i_{k}}$ and the corresponding sets $A_{i_{1}}$, $A_{i_{2}}, \ldots, A_{i_{k}}$.

Case 1. Either $m_{s} \leqslant\{n / 2\}$ or there is no edge from $P_{i,}, j=1,2, \ldots, k$, to G_{q}^{s}.
We show that in either case (1) holds. Indeed, since each $A_{i_{j}}$ contains at least one of the components of G_{q}^{n}, one can group together equal components and get:

$$
\left|\bigcup_{j=1}^{k} A_{i_{j}}\right| \geqslant\left|\bigcup_{\nu=1}^{h} V_{q}^{r}\right|=\sum_{\nu=1}^{h}\left|V_{q}^{r_{\nu}}\right| \sum_{\nu=1}^{h} m_{r_{\nu}} .
$$

On the other hand k is less than or equal to the total number of vertices P such that there is an edge from P to one of the sets $V_{q}^{r_{i}}$, but this number is smaller or equal, by property (ii) of graphs Γ_{n}, to $\sum_{\nu=1}^{h} m_{r_{\nu}}$.
Case 2. $m_{s} \geqslant\{n / 2\}+1$ and there is an edge from the set R to some vertex of V_{q}^{s}.
In this case clearly (1) holds provided $k \leqslant\{n / 2\}$; indeed, for some $t,\left|A_{i_{t}}\right| \geqslant\{n / 2\}$. We claim that (1) holds even if $k>\{n / 2\}$.

Suppose the contrary

$$
\left|\bigcup_{j=1}^{k} A_{i_{j}}\right|<k .
$$

It follows that there are at least $n-k+1$ elements Q in V_{q} which are not in $\bigcup_{i=1}^{k} A_{i_{i}}$. But $k>\{n / 2\}$ implies $n-k+1 \leqslant\{n / 2\}$.

Define $B_{i}, i=1,2, \ldots, n$, to be the set of elements P of V_{p} for which there is a proper path $L\left(Q_{i} P\right)$. We have shown that (1) holds for $k \leqslant\{n / 2\}$. Hence, by symmetry, $\bigcup_{i=1}^{l} B_{i j} \mid \geqslant$ l for $l \leqslant\{n / 2\}$, in particular when $l=n-k+1$. Therefore, for at least one of the $n-k+1$ considered vertices Q there is a proper path $L(Q P)$ where $P \in R$, a contradiction, since if $L(Q P)$ is proper, then $L(P Q)$ is also proper.

Corollary 1. If G is as in Theorem 2, then there is a permutation σ of $\{1,2, \ldots, n\}$ such that $d\left(P_{i} Q_{\sigma(i)}\right) \leqslant\{n / 2\}$.

Corollary 2. If G is as in Theorem 2 and if weight 1 is assigned to every edge in $B_{p q}$ and weight 2 to every edge in G_{p} and G_{q}, then there is a permutation σ of $\{1,2, \ldots, n\}$ such that

$$
d\left(P_{i} Q_{\sigma(i)}\right) \leqslant \begin{cases}n & \text { for } n \text { odd } \tag{3}\\ n-1 & \text { for } n \text { even } .\end{cases}
$$

We shall omit the proofs.
Proof of Theorem 1. Given the set of points $\lambda=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ and $\mu=$ $\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right\}$, consider the graph G having vertex set $\lambda \cup \mu$. Putting $\lambda=V_{p}, \mu=V_{q}$ two vertices both in V_{p} or both in V_{q} are joined by an edge if the distance between them is at most 2 . Two vertices, one in V_{p} and one in V_{q}, are joined by an edge if the distance between them is at most 1 . The graph G is clearly a member of Γ_{n}. Assigning weights as in Corollary 2, condition (3) follows and this implies Theorem 1.

It seems to be of interest to formulate a particularization of Theorem 2.
Theorem 3. Suppose G is a graph, the vertex set of which consists of the union of two disjoint sets $V_{p}=\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ and $V_{q}=\left\{Q_{1}, Q_{2}, \ldots, Q_{n}\right\}$, and the edge set of which satisfies the following two conditions.
(i) The induced subgraphs on V_{p} and V_{q} are connected.
(ii) Each vertex of the bipartite graph induced on V_{p} and V_{q} as cells has degree at least 1.

Then there is a permutation σ of $\{1,2, \ldots, n\}$ such that there is a proper path $L\left(P_{i} Q_{\sigma(i)}\right)$ for each $i=1,2, \ldots, n$.

Remark. Theorem 2 is sharp, i.e. for every n there are graphs in Γ_{n} for which it is impossible to choose in the definition of proper paths a shorter length than given in (0).

Fig. 1

As an example for odd n consider the graph of Figure 1. This graph is a member of $\Gamma_{2 k+1}$. It even satisfies the assumptions of Theorem 3. But clearly for the $k+1$ vertices on top of V_{p} only k vertices of V_{q} can be closer than required by condition (0).

This situation can occur in the case of Theorem 1 also, when all the points λ and μ are on the real line. If $k=2$, for instance, let the points of λ and of μ be the points having abscissas

$$
\lambda_{1}=\lambda_{2}=\lambda_{3}=0, \quad \lambda_{4}=2, \quad \lambda_{5}=4, \quad \mu_{1}=1, \quad \mu_{2}=3, \quad \mu_{3}=\mu_{4}=\mu_{5}=5 .
$$

This shows that the condition in Theorem 1 is also sharp.

References

1. L. Elsner, On the variation of the spectra of matrices, Linear Algebra and Appl. (to appear).
2. P. Hall, On representation of subsets, J. London Math. Soc. 10 (1934), 26-30.

Received 7 May 1981
L. Elsner

Fakultät für Mathematik, Universität Bielefeld, 4800 Bielefeld, F.R. Germany
C. Johnson

Institute for Physical Science and Technology, University of Maryland,
College Park, Maryland 20742, U.S.A.
J. Ross

Department of Mathematics and Statistics, University of South Carolina, Columbia, South Carolina 29208, U.S.A.
J. SCHÖNHEIM

School of Mathematical Sciences, Tel-Aviv University,
Tel-Aviv, Israel and

[^0]: * Research supported by a grant from the Flight Dynamics Laboratory of the Air Force Wright Aeronautical Laboratories.
 \dagger Research supported in part by a grant from NSF and by a grant from the USC Research and Produtive Scholarship Fund.

