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On a Generalized Matching Problem Arising in Estimating 
the Eigenvalue Variation of Two Matrices 

L. ELSNER, C. R. JoHNSON*, J. A. Rosst AND J. ScHONHEIM 

It is shown that if G is a graph having vertices Ph P2 , ••• , P"' Qh 0 2 , •.• , On and satisfying 
some conditions, then there is a permutation a of {1, 2, ... , n} such that there is a path, for 
i = 1, 2, ... , n connecting P; with Orrul having a length at most {n/2}. This is used to prove a 
theorem having applications in eigenvalue variation estimation. 

For complex n x n -matrices A with eigenvalues A 1. ... , An and B with eigenvalues 
/J-1. ... , IJ-m it is possible to give bounds for the "spectral-variation" SA(B) = 
max; miniiAi -IJ-d, depending only on IIAII, liB II and IIA-Bll. Here II II denotes the spectral
norm (e.g. [1]). These bounds are also bounds on 

8= max max(SA(tB+(1-t)A),S8 (tB+(1-t)A)). 
o~t:os.:.:l 

It follows from a continuity argument that each connected component of Ui~ 1 {z: lz
P-il~8} and of Ui~t {z: lz -Ail~8} contains as many eigenvalues of A as of B. One is 
in fact interested in the "eigenvalue variation" 

v (A, B) = minu max; lA; -/J-uu)l, 

where (J' runs through all permutations of {1, 2, ... , n }. It is easy to see that v(A, B)~ 
(2n -1)8. It was suspected that 2n -1 can be replaced by n for n odd and n -1 for n 
even. Hence the question arose whether the following statement is true. 

STATEMENT 1. Let A= {AI. A2, ••• , An} and 1J- = {ub ~J- 2 , •.• , IJ-n} be two sets of not 
necessarily distinct points in the complex plane. Suppose that for every connected component 
D of the domain U~~1 {z: lz -P-;1 ~ 1} or of the domain U7~t {z: lz -A; I~ 1} the number 
of elements of A contained in D equals the number of elements of 1J- contained in D. Then 
there is a permutation (J' of {1, 2, ... , n} such that fori= 1, 2, ... , n, 

n for n odd, 
IA; -/J-u(i)I~ {n - 1 for n even. 

Since we shall answer the above question in the affirmative, we will refer to Statement 
1 as Theorem 1. 

It turns out that a much more general result is true. It will be formulated as Theorem 
2 and proved below in graph-theoretical terms. 

If A and B are vertices in a connected graph, then we shall use the notation L(AB) 
for a path with endpoints A, B and l(AB) for its length, i.e. the number of the edges 
in it or, if the edges are weighted, the sum of the weights of its edges. As usual the 
distance d(AB) means the length of the shortest path connecting A, B. 

Denote by {m} the least integer not smaller than m. 
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We define now a class Fn of graphs. A graph G will belong to Fn if it has the following 
structure: 

(i) The vertex set of G is the union of two disjoint sets VP and Vq, each containing 
exactly n elements. 

(ii) Let Gp and Gq be the induced subgraphs of G on the sets Vp and Vq. Let Bpq be 
the induced bipartite subgraph with cells Vp and Vw Then the following condition 
holds for each connected component D of Gp: the number of vertices in Vq joined 
by an edge to some vertex in D equals the number of vertices in D. A corresponding 
condition holds for every connected component of Gw 

(iii) Edges Bpq stemming out from the same vertex of VP have the other endpoint in 
the same connected component of Gq, and vice versa interchanging p with q. 

Notice that from (i), (ii), (iii) it follows 
(iv) The degree of each vertex in Bpq is at least 1. 
Actually (i), (ii), (iii) and (i), (ii), (iv) are equivalent. 
A path connecting a vertex P E Vp with a vertex Q E Vq will be said to be proper if it 

contains exactly one edge of Ppq• this edge has at least one of the vertices P, Q as 
endpoints, and 

l(PQ) < { ~}· (0) 

THEOREM 2. If G is a member of rn, and Vp ={Pl. P2, . .. 'Pn}, Vq = {Ql. ... 'Qn}, 
then there is a permutation u of {1, 2, ... , n} such that for each i = 1, 2, ... , n there is a 
proper path L(P;Oa-ul). 

PROOF. Let A; be the subset of Vq such that if Q EA; then there is a proper path 
L(P;Q). The set A; is non-empty for i = 1, 2, ... , n by property (iv). We will prove 
Theorem 2 by showing that the sets A1. A 2 , ••• , An have a system of distinct representa
tives. This will be done by verifying Hall's condition [2]. Thus, we shall verify the 
condition: 

I UA;jl~k. k = 1, 2, ... , n; {ii}7=t c {1, 2, ... ; n }. (1) 
j=l 

Lets~ 1 be such that G!, G~, ... , G~ are the connected components of Gq and let 
m1. m 2 , ••• , m, be the cardinalities of the corresponding vertex sets v!, V~, ... , V~. 

Notice that if 

(2) 

and there is an edge from P; to a vertex of G~, then jA;j ~ mh and notice that (2) holds 
for all but possibly one value of j. Choose the notation so that m, ~mi for j = 
1, 2, ... 's -1. 

Consider the set R of vertices P;,, P; • •• , P;k and the corresponding sets A;,, 2 , 

A;2, ... ,A;k. 

Case 1. Either m,.;;: {n/2} or there is no edge from P;1, j = 1, 2, ... , k, to G~. 
We show that in either case (1) holds. Indeed, since each A;. contains at least one of 

the components of G~, one can group together equal compone~ts and get: 
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On the other hand k is less than or equal to the total number of vertices P such that 
there is an edge from P to one of the sets V~", but this number is smaller crr equal, by 
property (ii) of graphs r"' to L~=l m,". 

Case 2. ms ~ {n/2} + 1 and there is an edge from the set R to some vertex of V~. 

In this case clearly (1) holds provided k :s;{n/2}; indeed, for some t, IA;,I ~{n/2}. We 
claim that (1) holds even if k > {n/2}. 

Suppose the contrary 
k 

IUA;jl<k.
j=l 

It follows that there are at least n - k + 1 elements Q in Vq which are not in U~= 1 A;r 
But k > {n/2} implies n - k + 1,;;; {n/2}. 

Define B;, i = 1, 2, ... , n, to be the set of elements P of VP for which there is a proper 
pathL(Q;P). We have shown that (1) holds fork :s;{n/2}. Hence, by symmetry, IU:=t B;jl ~ 
l for l,;;; {n/2}, in particular when l = n- k + 1. Therefore, for at least one of then - k + 1 
considered vertices Q there is a proper path L (QP) where PER, a contradiction, since 
if L(QP) is proper, then L(PQ) is also proper. 

CoROLLARY 1. If G is as in Theorem 2, then there is a permutation u of {1, 2, ... , n} 
such that d (P;O<Tul),;;; {n/2}. 

CoROLLARY 2. If G is as in Theorem 2 and if weight 1 is assigned to every edge in 
Bpq and weight 2 to every edge in Gp and Gq, then there is a permutation u of {1, 2, ... , n} 
such that 

n fornodd,
d(P;QCT(i)) ,;;; (3){n - 1 for n even. 

We shall omit the proofs. 

PROOF OF THEOREM 1. Given the set of points A ={At. A2, ••• , An} and 1L = 
{IL 1. ~J- 2 , ••• , ILn }, consider the graph G having vertex set AU~J-. Putting A = Vp, IL = Vq 
two vertices both in Vp or both in Vq are joined by an edge if the distance between them 
is at most 2. Two vertices, one in Vp and one in Vq, are joined by an edge if the distance 
between them is at most 1. The graph G is clearly a member of Fn. Assigning weights 
as in Corollary 2, condition (3) follows and this implies Theorem 1. 

It seems to be of interest to formulate a particularization of Theorem 2. 

THEOREM 3. Suppose G is a graph, the vertex set of which consists of the union of two 
disjoint sets Vp ={Pt. P2, ••• , Pn} and Vq = {Ot. Q 2, ••• , On}, and the edge set of which 
satisfies the following two conditions. 

(i) The induced subgraphs on Vp and Vq are connected. 
(ii) Each vertex of the bipartite graph induced on VP and Vq as cells has degree at least 

1. 
Then there is a permutation u of {1, 2, ... , n} such that there is a proper path L(P;O<Tul) 
for each i = 1, 2, ... , n. 

REMARK. Theorem 2 is sharp, i.e. for every n there are graphs in rn for which it is 
impossible to choose in the definition of proper paths a shorter length than given in (0). 
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As an example for odd n consider the graph of Figure 1. This graph is a member of 
rzk+l· It even satisfies the assumptions of Theorem 3. But clearly for the k +1 vertices 
on top of Vp only k vertices of Vq can be closer than required by condition (0). 

This situation can occur in the case of Theorem 1 also, when all the points A and f.L 
are on the real line. If k = 2, for instance, let the points of A and of f.L be the points 
having abscissas 

As=4, f.L1=1, f.L2 = 3, f.L3 = f.L4 = f.Ls = 5. 

This shows that the condition in Theorem 1 is also sharp. 
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