A Review of Cellular Therapies for Chronic Lymphocytic Leukemia

Marcie Riches Tomblyn*

Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida

INTRODUCTION

Chronic lymphocytic leukemia (CLL) is the most common leukemia, accounting for 25% to 30% of all leukemia in the Western world. Generally, CLL is considered incurable—although readily controllable—with combination therapies, including purine analogues, monoclonal antibodies, and newer targeted agents, such as ibrutinib [1]. Furthermore, heterogeneous outcomes result from different prognostic features at diagnosis or during evolution of disease. However, long-term disease-free survival (DFS) is increasingly possible with hematopoietic cell transplantation (HCT). This review will synthesize the data demonstrating lack of overall survival benefit for autologous HCT, provide outcomes for allogeneic HCT, and discuss novel cellular approaches in development to further decrease relapse risk.

AUTOLOGOUS HCT

Autologous HCT was initially reported in management of CLL in 1993, and a retrospective analysis published in 2004 documented improved overall survival (OS) for patients with unmutated immunoglobulin variable region heavy chain (IGVH) [2]. Since that time, several analyses, including randomized controlled trials, have demonstrated an improved event-free survival (EFS) with autologous HCT as consolidation for first or second remission; however, no benefit in OS is noted [3-6]. The three randomized trials all used what is now considered to be suboptimal initial therapy, before the development of combination chemotherapy with fludarabine, cyclophosphamide (CY), and rituximab (FCR) as the standard of care [7].

In 2011, the Société Française de Greffe de Moelle et de Thérapie Cellulaire and Groupe Français d’étude de la Lymphocytose Lymphoïde Chronique reported the results of their randomized phase 3 trial for initial therapy [4]. The trial enrolled 241 patients between 2001 and 2007. Patients received initial therapy with mini-CHOP (CY, adriamycin, vincristine, and prednisone) for 3 courses followed by 3 courses of fludarabine. The overall response rate to induction was 88.3% (complete remission [CR], 44.6%; partial remission [PR], 43.7%). Patients in PR received further therapy with 1 or 2 cycles of DHAP (cisdiaminesulfonic, cytarabine, and dexamethasone). Patients were then randomized to receive an unmanipulated autologous stem cell graft after CY and total body irradiation (TBI) versus observation if in CR or versus fludarabine and CY for 3 cycles if only in PR before treatment with DHAP. Of patients randomized to autologous HCT, 27 (27.6%) did not receive assigned therapy (CR, 15 of 52; PR 12 of 46). Outcomes were affected by disease status after induction. Patients in CR and assigned to autologous HCT had 79.8% (95% confidence interval [CI], 69% to 92%) EFS at 3 years, compared with 35.4% (95% CI, 24% to 54%) in the observation arm. Patients in PR had no improvement in EFS after autologous HCT (HCT, 48.9% [95% CI, 35% to 68%]; fludarabine and CY, 44.4% [95% CI, 32% to 62%]). Even though HCT more than a doubled EFS for CR patients, OS was not prolonged (HCT, 95.7% [95% CI, 90% to 100%]; observation, 97.8% [95% CI, 94% to 100%]), suggesting that salvage treatment after relapse is effective.

The European Blood and Marrow Transplant Group (EBMT) reported the results of their randomized trial comparing autologous HCT (n = 112) to observation (n = 111) after first or second line therapy for patients with CLL [3]. In this trial, induction therapy was not specified, but patients were eligible for randomization only if they were in CR, nodular PR, or very good PR. More than 80% of patients enrolled after first-line therapy (HCT, n = 92; observation, n = 92) and 82 (73%) HCT patients and 83 (75%) observation patients received at least 3 cycles of fludarabine before randomization. Notably, only 3 patients, all randomized to observation, received FCR. All patients were mobilized with either CY or Dexa-BEAM (carmustine, etoposide, cytarabine, and melphalan), and cells were cryopreserved for future use in patients randomized to observation. Patients received conditioning with either CY/TBI or BEAM. Similar to the results of the Société Française de Greffe de Moelle et de Thérapie Cellulaire/Groupe Français d’étude de la Lymphocytose Lymphoïde Chronique trial, 5-year EFS was almost doubled after autologous HCT (HCT, 42%; observation, 24%; hazard ratio, 44
concerns regarding the lower efficacy of chemotherapy with CHOP compared to fludarabine. Additionally, only 29 patients (67.4%) received autologous HCT as assigned. Despite these limitations, patients randomized to autologous HCT had a median progression-free survival (PFS) of 53.1 months (95% CI, 40.3 to 65.9) compared with only 22 months (95% CI, 12.6 to 31.3) for the maintenance arm. Once again, OS was not affected with median survival after autologous HCT of 107.4 months (95% CI, 58.2 to 156.6) compared with 104.7 months (95% CI, 99.9 to 109.5) after maintenance therapy.

As previously noted, nearly all patients in these trials received what is now considered less than optimal front-line induction therapy, and it is unclear whether the results of these trials would differ if the current standard of FCR had been used or whether HCT after induction with FCR could improve OS. In an attempt to assess the impact of autologous HCT compared with FCR alone, the German CLL group conducted a retrospective cohort analysis comparing subsets of patients treated on the CLL3 trial and the CLL8 trial [6,7]. Patients enrolled in the phase 2 CLL3 trial received induction therapy with CHOP (n = 93) or fludarabine (n = 14) or fludarabine/CHOP (n = 54) for a median of 3 (range, 1 to 6) courses followed by Dexamethasone (Dexa)-BEAM for mobilization (n = 156), and then autologous HCT (n = 131) with a B-cell–depleted graft after CY/TBI conditioning. For this cohort comparison, patients were included (CLL3, n = 110; CLL8 [FCR], n = 126) if they were untreated, 60 years of age or younger, and had fluorescein in situ hybridization (FISH) and IGHV mutational analyses completed. Once again, PFS was improved with autologous HCT (median, 6.2 years) compared with chemotherapy alone (median, 4.3 years) but without improved OS at 4 years (HCT, 86% [95% CI, 80% to 93%]; FCR, 90% [95% CI, 84% to 95%]).

In summary, autologous HCT in first remission improves DFS but does not yet improve OS. Consequently, autologous HCT should not be considered outside of a clinical trial, ideally investigating novel approaches to prevent relapse.

ALLOGENEIC HCT

Allogeneic HCT harnesses both the anticancer effects of the conditioning regimen as well as the graft-versus-tumor effects of the donor immune system. This potentially results in long-term DFS (ie, cure) for some patients with CLL [8]. However, the toxicity and prolonged sequelae of allogeneic HCT and the generally older age of CLL patients has limited this approach. The EBMT Consensus criteria recommends allogeneic HCT for younger patients with nonresponse or relapse less than 12 months from purine analogue therapy; relapse at less than 24 months from purine analogue combination therapy or autologous HCT; and in patients with 17p abnormalities [9]. Several analyses (Table 1) published recently highlight the improved outcomes and applicability for this approach using reduced-intensity conditioning (RIC) [10-15]. Sorror et al. reported outcomes for 82 patients with fludarabine refractory CLL who received nonmethylolatative conditioning with TBI 200 cGy ± fludarabine followed by related (n = 52) or unrelated (n = 30) allogeneic HCT [12]. At the time of HCT, 78 patients (95%) had measurable disease, and the overall response rate was 70% (CR, 55%; PR, 15%). In this series, the 5-year outcomes for OS, PFS, non-relapse mortality (NRM), and relapse were 50%, 39%, 23%, and 38% respectively. These outcomes are similar to those reported by the MD Anderson Cancer Center group [13]. In this study, 86 patients with relapsed/refractory CLL received RIC conditioning followed by either matched sibling (n = 43) or unrelated (n = 43) HCT. Nearly all patients (90.6%) received conditioning with fludarabine, CY, and high-dose rituximab with tacrolimus and mini-methotrexate for graft-versus-host disease (GVHD) prophylaxis. After HCT, 43 patients had persistent or recurrent disease that was managed with either rituximab, withdrawal of immune suppression, or donor lymphocyte infusion. After these measures, 20 (47%) patients had a CR, indicating a graft-versus-CLL effect. Overall, 5-year PFS and OS were 36% (95% CI, 25% to 46%) and 51% (95% CI, 39% to 62%) respectively. More recently, Kharfan et al. reported results of a novel reduced-toxicity conditioning regimen with pentostatin, i.e. busulfan, and rituximab [16]. Nineteen (45%) of 42 patients had CLL; 17 (89%) with residual disease at time of HCT. After HCT, 10 (53%) of the CLL patients had a CR, including 2 patients with stable or progressive disease at transplantation. An additional 5 (28%) of the CLL patients obtained a PR compared with disease status before HCT. At 2 years, the PFS and OS for the 19 CLL patients were 55% (95% CI, 32% to 78%) and 58% (95% CI, 43% to 86%), respectively. GVHD remains a barrier to successful allogeneic HCT because of its contribution to NRM and its impact on quality of life. In these studies, the risks of acute GVHD grade II to IV ranged from a low of 37% (95% CI, 27% to 47%) to a high of 59% (95% CI, 43% to 75%) [12,13,16]. Chronic GVHD, categorized as extensive or moderate/severe, occurred in 49% to 58% of patients.

Various prognostic factors affect treatment responses in patients with CLL. It appears, however, that allogeneic HCT can overcome certain factors, including overexpression of ZAP-70, 17p deletion, and in some cases, Richter’s transformation [11,17,18]. For example, an analysis of 25 patients with ZAP-70 overexpression and 13 patients without ZAP-70 overexpression at MD Anderson showed no statistically significant association with disease progression after HCT [17]. The EBMT analyzed 44 patients with 17p deletion who received primarily (89%) RIC allogeneic HCT between 1995 and 2006 [11]. Overall survival at 3 years was 44% (95% CI, 28% to 60%) and PFS was 37% (95% CI, 22% to 52%), and no relapses were observed beyond 4 years in this high-risk group of patients. Assessments of both autologous and allogeneic HCT for patients with Richter’s transformation have been recently reported as well [18]. For the 25 patients receiving RIC allogeneic HCT, OS at 3 years was 36% (95% CI, 14% to 57%). Additional prognostic features that portend an
improved response to allogeneic HCT include chemotherapy-sensitive disease, lymphadenopathy measuring less than 5 cm, and HLA-A1+/A2−/B44− [12,13].

Allogeneic HCT clearly is an effective modality that can result in long-term DFS for patients with high-risk features and for those with relapsed or refractory disease. Limited data suggest similar PFS, albeit a marginally inferior OS, for patients receiving umbilical cord blood grafts compared with patients receiving related donor mobilized blood cell grafts [15]. The ultimate question remaining is the comparison of allogeneic HCT versus ongoing chemo-immunotherapy. Because this question is not likely to be assessed in a prospective randomized or biologic assignment study, a Markov decision analysis was used to suggest that the overall life expectancy and quality-adjusted life expectancy were improved by 10 months and 6 months, respectively, in favor of RIC allogeneic HCT [19]. Consequently, it is reasonable to consider RIC allogeneic HCT for most patients with high-risk features or relapsed or refractory disease.

NOVEL CELLULAR THERAPIES
Recent publications demonstrate some efficacy of novel cellular approaches, including the use of chimeric antigen receptor—modified T cells and autologous tumor vaccines administered after RIC allogeneic HCT [20,21]. Proof of principle for chimeric antigen receptor—modified T cells specific for CD19, coupled with CD137 and CD3-zeta, was reported for a patient with multiply relapsed CLL with 17p deletion [20]. The patient received lympho-depleting chemotherapy with pentostatin and CY followed by infusion of 1.42×10^7 transduced cells over 3 infusions. The patient experienced tumor lysis syndrome, and at last report, the disease remained in remission 10 months after the infusion. A group from Dana Farber recently reported 2-year outcomes for 22 patients enrolled in a phase I clinical trial of a vaccine comprising $1/2 \times 10^7$ irradiated autologous tumor cells mixed with $1/2 \times 10^7$ irradiated K562 bystander cells that secrete granulocyte-macrophage colony stimulating factor (GM-CSF) [21]. Patients received vaccination between day 30 and 45 after fludarabine and busulfan RIC conditioning and unmanipulated mobilized blood cell grafts. Eighteen patients received at least 1 vaccination. Clinical and biologic evidence of immune responses were documented, and 2-year OS and PFS were estimated at 88% (95% CI, 59% to 97%) and 82% (95% CI, 54% to 94%), respectively. Both approaches appear promising, and investigations are continuing.

CONCLUSIONS
Management of CLL continues to develop with new agents and new cellular therapies. Furthermore, the heterogeneity of disease behavior and the myriad prognostic factors indicate a need for multiple therapeutic options. Based on the current available data, autologous HCT should ideally only be considered within a clinical trial with the option of incorporating maintenance therapy or could be offered to elderly fit patients for whom an allogeneic HCT cannot be considered. Based upon encouraging results after allogeneic HCT with RIC, all patients younger than 65 years of age should at least be referred to a transplantation center for consideration and discussion of HCT.

ACKNOWLEDGMENTS

Financial disclosure: The authors have nothing to disclose.

Conflict of interest statement: There are no conflicts of interest to report.
REFERENCES