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a b s t r a c t

This paper is devoted to the convergence analysis of an iterative method for solving
a nonsymmetric algebraic Riccati equation arising in transport theory. We give the
convergence rate, and show that the iterative method converges linearly in one case and
sublinearly in the other case.
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1. Introduction

The nonsymmetric algebraic Riccati equation arising in transport theory is

XCX − XD − AX + B = 0, (1)

where A, B, C,D ∈ Rn×n are given by

A = ∆ − eqT , B = eeT , C = qqT , D = Γ − qeT .

Here e = [1, 1, . . . , 1]T , q = [q1, q2, . . . , qn]T with qi =
ci
2ωi

,
∆ = diag([δ1, δ2, . . . , δn]) with δi =

1
cωi(1 + α)

,

Γ = diag([γ1, γ2, . . . , γn]) with γi =
1

cωi(1 − α)
,

and 0 < c ≤ 1, 0 ≤ α < 1, 0 < ωn < · · · < ω2 < ω1 < 1,
∑n

i=1 ci = 1, ci > 0, i = 1, 2, . . . , n.
Let P = [Pij] = [qj/(δi + γj)], Q = [Qij] = [qj/(δj + γi)], and T = [ti,j] = [1/(δi + γj)]. It has been shown in [1–3] that

(1) has positive solutions (in the componentwise sense), and the solutions must be of the form

X = T ◦ (uvT ) = (uvT ) ◦ T ,
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where u and v satisfy the vector equation
u = u ◦ (Pv) + e,
v = v ◦ (Qu) + e. (2)

The solution of practical interest of (1) is theminimal positive solution, which can be obtained via computing theminimal
positive solution of the vector equation (2). Several iterative methods have been proposed in literature for computing the
minimal positive solution (u∗, v∗) of (2). Lu [3] developed a simple iterative method to solve (2). A modified simple iterative
method was proposed in [4]. A nonlinear block Jacobi method (NBJ) and a nonlinear block Gauss–Seidel method (NBGS)
were proposed in [5]. Wu and Huang [6] established two-step relaxation Newton method (TSRN). The iteration sequences
generated by these methods mentioned above are all strictly and monotonically increasing, and converge to the minimal
positive solution (u∗, v∗). Guo and Lin [7] analyzed the convergence rates of these iterative methods, and showed that
all of these iterative methods converge linearly when (α, c) ≠ (0, 1), and however sublinearly when (α, c) = (0, 1).
In [8–10], three quadratically convergent iterative methods were designed. As pointed out in [7], these three methods are
more appropriate for the case where (α, c) is relatively close to (0, 1).

Recently, Lin [11] proposed a class of iterative methods for obtaining the minimal positive solution (u∗, v∗) of (2). Let
w = [uT , vT

]
T and

F(w) =

[
u − u ◦ (Pv) − e
v − v ◦ (Qu) − e

]
.

The basic iterative scheme in [11] is

wk+1 = wk − T−1
k F(wk), k = 0, 1, 2, . . . , (3)

where wk = [uT
k , v

T
k ]

T with w0 = 0, and Tk is an approximation to F ′(wk). Here, F ′(wk) denotes the Jacobian of F(w) at wk.
It has been shown that the vector sequence generated by (3) with

Tk =

[
I − diag(Pvk) −diag(uk)P

0 I − diag(Quk)

]
(4)

is all strictly and monotonically increasing, and converges to the minimal positive solution w∗ = [uT
∗
, vT

∗
]
T .

In this paper, we will prove that the iterative method (3) with Tk given by (4) has the same asymptotic convergence rate
as the nonlinear block Gauss–Seidel method in [5], i.e., it converges linearly when (α, c) ≠ (0, 1) and sublinearly when
(α, c) = (0, 1).

Throughout the paper, we use the following notation. For any matrices A = [aij], B = [bij] ∈ Rm×n, we write
A ≥ B (A > B) if ai,j ≥ bij (ai,j > bij) holds for all i, j. The Hadamard product of A and B is defined by A ◦ B = [aij · bij].
I denotes the identity matrix and 0 denotes the zero vector or zeromatrix. The dimensions of these vectors andmatrices are
conformed with dimensions used in the context. The superscript T denotes the transpose of a vector or a matrix. We denote
any consistent norm by ‖ · ‖ for a vector or a matrix.

2. Analysis of the convergence rate

It is easy to verify that the iterative scheme (3) with Tk given by (4) is equivalent to

uk+1 = e − uk ◦ (Pvk) + uk+1 ◦ Pvk + uk ◦ Pvk+1, (5)
vk+1 = vk+1 ◦ Quk + e. (6)

It follows from (6) and the second equations of (2) that

v∗ − vk+1 = v∗ − e − vk+1 ◦ Quk = v∗ ◦ (Qu∗) − vk+1 ◦ Quk. (7)

From (7) and

v∗ ◦ (Qu∗) − vk+1 ◦ Quk − v∗ ◦ vk+1 ◦ Q (u∗ − uk) = (e − vk+1) ◦ v∗ ◦ (Qu∗) + (v∗ − e) ◦ vk+1 ◦ Quk

= (e − vk+1) ◦ (v∗ − e) + (v∗ − e) ◦ (vk+1 − e)
= 0,

we obtain

v∗ − vk+1 = v∗ ◦ vk+1 ◦ Q (u∗ − uk). (8)
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By using (5) and the first equations of (2), we have

u∗ − uk+1 = u∗ − e + uk ◦ (Pvk) − uk+1 ◦ Pvk − uk ◦ Pvk+1

= u∗ ◦ (Pv∗) + uk ◦ (Pvk) − uk+1 ◦ Pvk − uk ◦ Pvk+1

= u∗ ◦ (Pv∗) − u∗ ◦ (Pvk) + u∗ ◦ (Pvk) − uk+1 ◦ Pvk

+ uk ◦ (Pvk) − uk ◦ (Pv∗) + uk ◦ (Pv∗) − uk ◦ Pvk+1

= u∗ ◦ P(v∗ − vk) + (Pvk) ◦ (u∗ − uk+1) − uk ◦ P(v∗ − vk) + uk ◦ P(v∗ − vk+1)

= (u∗ − uk) ◦ P(v∗ − vk) + (Pvk) ◦ (u∗ − uk+1) + uk ◦ P(v∗ ◦ vk+1 ◦ Q (u∗ − uk)),

which shows

(e − Pvk) ◦ (u∗ − uk+1) = P(v∗ − vk) ◦ (u∗ − uk) + uk ◦ P(v∗ ◦ vk+1 ◦ Q (u∗ − uk))

or

u∗ − uk+1 = (diag(e − Pvk))
−1(diag(P(v∗ − vk)) + diag(uk)Pdiag(v∗ ◦ vk+1)Q )(u∗ − uk). (9)

Let

dk =

[
u∗ − uk
v∗ − vk

]
.

From (8) and (9), it follows that

dk+1 = Lkdk, k = 0, 1, 2, . . . ,

where

Lk =

[
(diag(e − Pvk))

−1(diag(P(v∗ − vk)) + diag(uk)Pdiag(v∗ ◦ vk+1)Q ) 0
diag(v∗ ◦ vk+1)Q 0

]
.

By the first equations of (2), we get

(e − Pv∗) ◦ u∗ = e,

i.e.,

(diag(e − Pv∗))
−1

= diag(u∗).

Since limk→∞ uk = u∗ and limk→∞ vk = v∗, we have

lim
k→∞

Lk =

[
(diag(e − Pv∗))

−1diag(u∗)P(diag(v∗ ◦ v∗)Q ) 0
diag(v∗ ◦ v∗)Q 0

]
=

[
diag(u∗ ◦ u∗)P(diag(v∗ ◦ v∗)Q ) 0

diag(v∗ ◦ v∗)Q 0

]
≡ L(w∗).

Define

Lk =

[
(diag(e − Pvk))

−1diag(uk)Pdiag(v∗ ◦ vk+1)Q 0
diag(v∗ ◦ vk+1)Q 0

]
,

where uk and vk are generated by the iterative method (3) with Tk given by (4).
Since 0 = u0 < u1 < u2 < · · · < uk < uk+1 < · · · and 0 = v0 < v1 < v2 < · · · < vk < vk+1 < · · ·, we have

0 ≤L0 ≤L1 ≤L2 ≤ · · · ≤Lk ≤Lk+1 ≤ · · · .

Moreover, we have

lim
k→∞

Lk =

[
(diag(u∗ ◦ u∗)Pdiag(v∗ ◦ v∗)Q ) 0

diag(v∗ ◦ v∗)Q 0

]
= L(w∗).

Define

d̃k+1 =Lkd̃k, d̃0 = d0.

By Theorem 4 in [7], we obtain

lim sup
k→∞

k


‖d̃k‖ = ρ(L(w∗)),

where ‖ · ‖ is any matrix norm and ρ(·) denotes the spectral radius.
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Since

Lk −Lk =

[
(diag(e − Pvk))

−1diag(P(v∗ − vk)) 0
0 0

]
≥ 0,

it is easy to obtain by induction

dk ≥ d̃k ≥ 0 for k ≥ 0.

Thus, we have

ρ(L(w∗)) = lim sup
k→∞

k


‖d̃k‖ ≤ lim sup
k→∞

k


‖dk‖.

From dk = Lk−1Lk−2 · · · L1L0d0, it follows that for any matrix norm ‖ · ‖,

‖dk‖ ≤ ‖Lk−1‖ ‖Lk−2‖ · · · ‖L1‖ ‖L0‖ ‖d0‖.

Hence,

lim sup
k→∞

k


‖dk‖ ≤ lim sup
k→∞

k


‖Lk−1‖ ‖Lk−2‖ · · · ‖L1‖ ‖L0‖ ‖d0‖

= lim sup
k→∞

k


‖Lk−1‖ ‖Lk−2‖ · · · ‖L1‖ ‖L0‖.

Since limk→∞ Lk = L(w∗), we obtain

lim sup
k→∞

k


‖Lk−1‖ ‖Lk−2‖ · · · ‖L1‖ ‖L0‖ = ‖L(w∗)‖.

Therefore, for any matrix norm ‖ · ‖,

lim sup
k→∞

k


‖dk‖ ≤ ‖L(w∗)‖,

which shows that

lim sup
k→∞

k


‖dk‖ ≤ ρ(L(w∗)).

In summary, we obtain the following result on the asymptotic convergence rate of the iterative method (3) with Tk given
by (4).

Theorem 1. For the iterative method (3) with Tk given by (4) and w0 = 0, we have

lim sup
k→∞

k


‖dk‖ = ρ(L(w∗)).

The following theorem shows that the asymptotic convergence rate of the iterativemethod is linearwhen (α, c) ≠ (0, 1)
and sublinear when (α, c) = (0, 1).

Theorem 2. If (α, c) = (0, 1), then ρ(L(w∗)) = 1. If (α, c) ≠ (0, 1), then ρ(L(w∗)) < 1.

Proof. Define

G(w∗) =

[
0 diag(u∗ ◦ u∗)P
0 diag(v∗ ◦ v∗)Qdiag(u∗ ◦ u∗)P

]
.

It has been shown in [7, Theorem 9] that ρ(G(w∗)) = 1 when (α, c) = (0, 1), and ρ(G(w∗)) < 1 when (α, c) ≠ (0, 1).
Then, this theorem follows from

ρ(G(w∗)) = ρ(diag(v∗ ◦ v∗)Qdiag(u∗ ◦ u∗)P)

= ρ(diag(u∗ ◦ u∗)Pdiag(v∗ ◦ v∗)Q ) = ρ(L(w∗)). �

It has been shown in [7] that the NBGS proposed in [5] has the asymptotic convergence rate ρ(G(w∗)). Thus, the iterative
method (3) with Tk given by (4) has the same asymptotic convergence rate as the nonlinear block Gauss–Seidel method.

The iterative method (3) with

Tk =

[
I − diag(Pvk) 0

0 I − diag(Quk)

]
(10)
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is also considered in [11]. It is equivalent to
uk+1 = (I − diag(Pvk))

−1e,
vk+1 = (I − diag(Quk))

−1e,
(11)

and therefore is the same as the NBJ proposed in [5].
The iterative method (3) with

Tk =

[
I − diag(Pvk) 0
diag(vk)Q I − diag(Quk)

]
is also mentioned in [11]. Following similar arguments as above, we can show that this method has the same asymptotic
convergence rate as the iterative method (3) with Tk given by (4), and therefore converges linearly when (α, c) ≠ (0, 1) and
sublinearly when (α, c) = (0, 1).

3. Comparison with NBJ, NBGS and TSRN

In this section, we will compare the method considered in this paper with NBJ, NBGS and TSRN on the computation
complexity and the parallel potential.

The iterative scheme (3) with Tk given by (4) can be formulated as
uk+1 = (I − diag(Pvk))

−1e + (I − diag(Pvk))
−1diag(uk)P


(I − diag(Quk))

−1e − vk

,

vk+1 = (I − diag(Quk+1))
−1e.

(12)

The computational scheme for NBJ is given by (11), while the iterative scheme of NBGS is
uk+1 = (I − diag(Pvk))

−1e,
vk+1 = (I − diag(Quk+1))

−1e.
(13)

Let Φ and Ψ be diagonal matrices, whose diagonal elements are defined by

Φii =


Pii, if i is odd,
0, if i is even,

Ψii =


0, if i is odd,
Qii, if i is even.

The iteration for TSRN was given in an elementwise fashion in [6]. It can be formulated as the following vector form
uk+1/2 = (I − diag(Pvk))

−1e,
vk+1/2 = (I − diag(Quk))

−1e,
uk+1 = (I − diag(Pvk+1/2))

−1(e − (Φuk+1/2) ◦ vk+1/2 + (I − diag(Quk+1/2))
−1(Φuk+1/2)),

vk+1 = (I − diag(Quk+1/2))
−1(e − (Ψ vk+1/2) ◦ uk+1/2 + (I − diag(Pvk+1/2))

−1(Ψ vk+1/2)).

(14)

We refer (14) to two iteration steps of TSRN.
It is clear from these computational schemes thatNBJ, NBGS, and TSRNhave the same computational cost, about 8n2 flops,

for two iteration steps, while the iteration (12) requires 12n2 flops for two steps. Moreover, NBJ, TSRN, and the iteration (12)
are more feasible in parallel than NBGS.

4. Numerical experiments

In this section, we present a numerical example to confirm the convergence results. Let ITER denote the iteration scheme
(12). We compare ITER with NBGS.

Define

ERRk = max


‖uk+1 − uk‖2

‖uk+1‖2
,
‖vk+1 − vk‖2

‖vk+1‖2


,

where ‖ · ‖2 is the 2-norm for a vector.
All the numerical experiments are performed inMatlab on a PC with the usual double precision, where the floating point

relative accuracy is 2.22 · 10−16.
We consider (1)with n = 32. As in [2], the constants ci andωi are given by a numerical quadrature formula on the interval

[0, 1], which is obtained by dividing [0, 1] into n/4 subinterval of equal length and applying a Gauss–Legendre quadrature
with 4 nodes to each subinterval.

We test three values of (α, c) taken to be (0.1, 0.9), (0.01, 0.99), (0, 1).
Figs. 1–3 depict the numerical results for ITER and NBGS. It is easy to see that although NBGS is slightly faster than ITER,

they have almost the same convergence rate. Moreover, the asymptotic convergence rate of these two methods is linear
when (α, c) ≠ (0, 1) and sublinear when (α, c) = (0, 1).
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Fig. 1. (α, c) = (0.1, 0.9).

Fig. 2. (α, c) = (0.01, 0.99).

Fig. 3. (α, c) = (0, 1).
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