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1. Introduction

DNA sequence variations are frequent among humans; by some
estimates, any given pair of unrelated human genomes will differ by 1
nucleotide every 300 nucleotides [1,2]. The vast majority of these varia-
tions are likely to have small to no effect on phenotype because the
variations are within introns or are silent mutations that do not change
the translated amino acid sequence. Nevertheless, a large number of
hereditary diseases are known to be caused by sequence variations in
single genes [3,4] and molecular studies of cancer have highlighted
the role of driver mutations in the growth and metastasis of tumors
[5–7]. Within pathogen DNA as well, sequence variations have led to
differences in impact on human health; antibiotics resistance is an
emerging worldwide healthcare problem [8,9].

Many technologies for detection and quantitation of sequence varia-
tions have been developed for genomics and disease research. These
technologies generally can be grouped into three approaches and their
combinations: polymerase chain reaction (PCR), hybridization, and
next-generation sequencing (NGS). Each approach has distinct techni-
cal and operational advantages and disadvantages, the comparison of
which is the main focus of this review (Fig. 1). As of this writing a
large number of PCR and hybridization assays have been cleared or ap-
proved by the United State Food and Drug Administration (FDA) as
in vitro diagnostics (IVDs) [10,11,12]. NGS assays, in contrast, are still
nascent in the realm of clinical diagnostics, as Illumina and Ion Torrent
obtained FDA clearance only in 2014 [13]. Several companies, most no-
tably Genomic Health [12], provide clinical NGS assays as laboratory de-
veloped tests (LDTs) rather than in vitro diagnostics (IVDs), but LDTs
Fig. 1. Overview of technologies used for detection and profiling of nucleic acid sequence
variations. The three broad approaches are PCR, hybridization, and NGS, but there is
significant overlap between the three, and many technologies use a combination.
have also recently come under the scrutiny of the FDA [14,15]. See
Box 1 for an explanation of LDTs and IVDs.

DNA sequence variation detection is valuable at many stages of a
disease, and provides different clinical value at each stage; see Box 2
for a summary of subtypes of diagnostic tests by patient group and
actionability. At a technical level, sequence variation detection must
meet different levels of performance for the different applications. De-
tection of autosomal dominant germ line mutation for risk assessment,
for example, requires only that 50% of the target variant can be reliably
distinguished from 0%. Tumor biopsy samples used for therapy selec-
tion, on the other hand, may contain as little as 5% of the target variant
as compared to wildtype sequence. Finally, for noninvasive screening
and recurrence applications from peripheral blood, the DNA test must
be specific enough to detect mutations at variant allele frequencies of
0.1% or less.

Clinical application of DNA analysis technologies necessarily lags re-
search tool development, because high analytic accuracy is a necessary
but not sufficient precondition of a diagnostic test. The FDA requires
that IVDs meet the more difficult requirements of high clinical sensitiv-
ity and specificity; see Box 3 for an explanation of these metrics.
Additionally, market forces generally demand that the test must inform
meaningful clinical action, otherwise the test is said to have poor
“clinical utility” andwill not be reimbursed by payers such as the Center
for Medicare and Medicaid Services (CMS). Finally, even an IVD that is
FDA cleared/approved and CMS reimbursable face the risk of poor cus-
tomer adoption. For these reasons, many promising technologies fail
to transition to truly impact human health. However, with rising public
awareness, government support, and private investment in DNAmolec-
ular diagnostics, we envision that an increasing number of clinical DNA
detection assays will become available and utilized in the coming years.

In this review, we specifically do not discuss a fourth class of DNA
analysis and diagnostic technology, known as isothermal amplification
[16]. Common isothermal amplification methods use a polymerase to
generate amplicon products templated from an analyte sequence, but
rely on enzymes (rather than high temperature) to separate the two
strands of the double-stranded amplicon. The advantage of isothermal
amplification is that by eschewing precise temperature control equip-
ment, these methods are more suitable in point-of-care and resource-
limited settings. However, isothermal amplification generally struggles
with precise quantitation, multiplexing, and sequence selectivity;
consequently isothermal amplification are rarely used in research and
hospital laboratory settings.

2. Polymerase chain reaction

The polymerase chain reaction (PCR) is a method by which a tem-
plate DNA molecule is amplified using synthetic DNA primers, a DNA
polymerase, and dNTPs. The mixture is cycled between at least 2 tem-
peratures: a high temperature for denaturing double-stranded DNA
into single-stranded molecules (e.g. 95 °C) and a low temperature for
the primer to hybridize to the template and for the polymerase to
extend the primer (e.g. 60 °C). Each temperature cycle, in principle,
doubles the quantity of target sequence, so even a few copies of a target
DNA molecule can be rapidly amplified to nanomolar concentrations,



Box 2
Clinical roles of DNA diagnostics.

To be valuable to society, a DNA diagnostic test must provide
information that can potentially affect a clinical decision. Thus,
DNA diagnostic tests may be classified by the types of patients
the diagnostic appeals to, and the corresponding decisions that it
may affect [151].
1. Risk assessment. A significant fraction of population bear germ
line (inherited) mutations that predispose the individual to a dis-
ease. Analyzing people who do not show overt disease symptoms
to inform future likelihood of developing a disease is known as risk
assessment. For example, the BRCA1/2 test by Myriad Genetics
assesses women for lifetime risk of breast cancer.
2. Screening. Some diseases have conventional diagnostics that
are invasive or inconvenient and not frequently employed without
clear disease indication. Analyzing people who do not show overt
disease symptoms to detect early stages of a disease is known as
screening. For example, the ColoGuard test by Exact Sciences
screens people over 55 years old for colorectal cancer.
3. Diagnosis. Patients may present nonspecific disease indications
(e.g. pain, lowered blood pressure) which may be associated with
multiple diseases. A diagnostic test provides definitive disease
assessment. For example, the SeptiFast test by Roche diagnoses
patients presenting sepsis symptoms for the 25 most common
pathogens causing bloodstream infection.
4. Prognosis. For diseases such as cancer with relatively long time
scales and multiple possible progression trajectories, the prognosis
of disease progression can provide valuable information on treat-
ment options considered. For example, the OncoType Dx test by
Genomic Health estimates risk of breast cancer recurrence based
on the expression levels of RNAwithin breast cancer biopsy tissue,
in order to inform whether a patient should seek chemotherapy.
5. Therapy selection. Multiple treatment options may be available
for a particular disease with varying efficacies, side effects, and
prices depending on the genetics of the patient.Many cancer ther-
apeutics such as tyrosine kinase inhibitors are specifically effec-
tive or ineffective against tumors bearing specific mutations. For
example, the Foundation One panel by Foundation Medicine ana-
lyzes sequence variations in 315 genes of metastatic cancer pa-
tients who have failed first-line treatment.
6. Monitoring. Following treatment, a patient may go into disease
remission, but will be at elevated risk for recurrence. Monitoring
post-operation cancer patient disease status via analysis of DNA
in peripheral blood is a promising newdirection for improving health
outcomes. Although there are not any products widely validated
and adopted at the moment, several companies such as Sysmex
Inostics and Guardant Health have announced intentions of devel-
oping cancer recurrence tests based on low-level mutations.

Box 1
US regulations for clinical use of DNA tests.

In vitro diagnostics (IVDs). The US government defines IVDs as re-
agents, instruments, and systems intended for use in the diagno-
sis of disease or other conditions, including a determination of
the state of health, in order to cure, mitigate, treat, or prevent dis-
ease, and considers them as medical devices [146]. Medical de-
vices are classified by complexity into class I, class II, or class III,
with the last beingmost complex and subject to themost regulato-
ry scrutiny.MostDNA tests are considered class IImedical devices
(e.g. tuberculosis PCR [147] and cystic fibrosis NGS [148]).
The FDA regulates commercial IVDs for reasonable assurance of
safety and effectiveness. To legally commercially sell an IVD re-
quires an FDA pre-market submission, which is one of the follow-
ing: (1) 510(k) clearance, (2) de novo clearance, or (3) pre-market
approval (PMA). FDA 510(k) clearance is the easiest options, but
requires that an IVD to showsubstantial equivalence to a predicate
510(k) cleared device, the latter of which also must have shown
substantial equivalence to an earlier predicate device, in a chain
that follows back to a product legally marketed before 1976 or
to a de novo approved device. De novo clearancemay be obtained
if no suitable predicate device exists, but the FDA deems the IVD
to be low to moderate risk. FDA approval is the highest bar re-
served for novel class III IVDs.
Laboratory developed tests (LDTs). Complicating the regulatory pro-
cess for DNA tests are LDTs,which developed and used at a single
laboratory, certified by the Center for Medicare and Medicaid Ser-
vices (CMS) under the Clinical Laboratory Improvement Amend-
ments (CLIA). There are roughly 250,000 CLIA laboratories in
the US [149], and the vast majority of the LDTs offered are low
complexity (e.g. blood cholesterol testing) and not reviewed by
the FDA.
IVDs are instruments or reagent kits manufactured in one location
and subsequently shipped to hospital siteswhere it produces diag-
nostic results that directly inform clinical decision. Using a LDT, in
contrast, generally consists of a physician or hospital mailing a pa-
tient sample to a CLIA lab facility, and receiving after a few days a
test report that advises the physician. LDTs, unlike IVDs, do not re-
quire clinical validation, though many marketed LDTs have been
significantly clinically validated, such as the standard of care
OncoType Dx assay by Genomic Health for breast cancer recur-
rence likelihood prediction [150].
Regulatory uncertainty on the future of LDTs. In October 2014, the
FDA proposed a framework for it to regulate LDTs, partially in re-
sponse to the expanded number of NGS-based cancer-related
LDTs. The FDA report was received with varying degrees of skep-
ticism by pathologists, CLIA laboratories, and the CMS. Since
then, the College of American Pathologists (CAP) [14] and Associ-
ation for Molecular Pathology (AMP) have provided comments
and/or alternative proposals [15]. As of this writing, the future of
LDT regulation remains unclear, though it is likely that LDTs will
continue to be allowed in somemanner, albeit with more stringent
clinical validation requirements.
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which can be subsequently detected via fluorescence or other means.
PCR is currently the most widely used method for detection of DNA se-
quences [17].

Compared to the two other classes of technologies reviewed, PCR's
main strengths are accurate quantitation, high molecular sensitivity,
and ease of use. Quantitative PCR, for example, is used as a gold standard
for DNA and RNA quantitation that is generally considered to be more
accurate than either microarrays or NGS. PCR's main weakness is its
inability to perform highly multiplexed assays, due to primer dimer for-
mation that result in false positives or false negatives.

2.1. ARMS and related technologies

Detection of sequence variations using PCR typically involves the de-
sign and use oligonucleotide reagents (i.e. primers and blockers) that
amplify the variant of interest more efficiently than the corresponding
wildtype DNA sequence. The amplification-refractory mutation system
(ARMS) is an earlymethod for detectingDNA sequence variants, includ-
ing single nucleotide variants [18]. The operating principle behind
ARMS is that the enzymatic extension activity of DNA polymerases is
highly sensitive to mismatches at or near the 3′ end of the primer-



Box 3
Assay performance metrics.

The terms specificity and sensitivity are used, somewhat confus-
ingly, to describe several different measures of DNA assay perfor-
mance. In the earliest proof-of-concept stages in the research
laboratory, themolecular sensitivity of aDNAsequencevariant de-
tection assay typically refers to the concentration or number of
molecules of the target DNA sequence that can be unambiguously
detected (e.g. 1 fM; 20 copies). Themolecular specificity refers to
the degree in which the desired DNA sequence variant produces a
signal higher than the wildtype or other variants (e.g. quotient of
observed signals for positive and negative control samples). In
NGS, molecular specificity is closely related to the intrinsic error
rate of sequencing.
The evaluation of a test's analytical sensitivity and analytical
specificity assumes a set of positive and negative control samples
bearing and lacking the DNA sequence variant(s) of interest,
respectively. These control samples are often provided by a third
party. Analytical sensitivity is the percentage of positive control
samples that are correctly assayed as positive, and analytical
specificity is the percentage of negative control samples that are
correctly assayed as negative. In general, the analytical sensitivity
and analytical specificity of a test must be optimized to be very
close to 100% before the test is considered for translation into a
diagnostic test.
Clinical sensitivity and clinical specificity consider the effective-
ness of the test in detecting the disease in patients: clinical sensi-
tivity is the percentage of disease-positive patients that are
correctly tested as positive, and clinical specificity is the percent-
age of disease-negative patients that are correctly tested as nega-
tive. Because clinical sensitivity and specificity do not account for
low-level details such asDNA target sequences, thesemetrics can
be broadly compared among tests using very different ap-
proaches. In general, the FDA requires clinical sensitivity and spec-
ificity data for any submission.
Another way to look at the clinical versus analytical metrics is
through consideration of content and platform. Content refers to
the target genes or variations as that are being detected as indica-
tors of a particular disease status, and platform refers to the instru-
ment and reagents that perform the detection process. Analytic
sensitivity and specificity show the performance of the platform,
while clinical sensitivity and specificity show the overall perfor-
mance of both the content and the platform. Depending on the
application, either content or platform may be the bottleneck for
diagnostic test performance.
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template duplex (Fig. 2a). The ARMS primer is designed such that the
3′-most base hybridizes to the target sequence variant, but not the cor-
responding wildtype sequence.

For single nucleotide polymorphism (SNP) genotyping application
where the variant allele is present at 50% or 0% frequency, ARMS
primers typically provide sufficient molecular specificity for reliable
detection [19,20]. However, for somaticmutation detection from biopsy
samples in which the variant may be present at as low as 5% allele fre-
quency, ARMS primers do not consistently provide sufficient sequence
discrimination, because the molecular specificity of ARMS primers
varies for different target and wildtype sequences. Some mismatches
are either more thermodynamically destabilizing or more easily recog-
nized by the DNA polymerase enzyme, and result in low false positive
amplification ofwildtype sequences. This problem is somewhatmitigat-
ed by the fact that DNA is double-stranded, and either strand may
be used as the detection target. Alternatively, mismatches may be
introduced in the ARMS primer near the 3′ nucleotide to improve spec-
ificity, at the cost of reduced PCR yield (Fig. 2b).

Many different companies have developed diagnostics tests based
on ARMS PCR primers. Qiagen therascreen [21] and Roche cobas [22]
have developed FDA approved PCR tests for detecting lung and colon
cancer mutations in the KRAS and EGFR genes; these IVD kits were
validated on genomic DNA extracted from formalin-fixed, paraffin-
embedded (FFPE) tissue. Biomerieux THxID [23] has developed FDA
approved PCR tests for detecting mutations in the BRAF gene for meta-
staticmelanoma, likewise validated on FFPE tissue. AmoyDx is a Chinese
company that has developedARMSprimers for a large number of cancer
genes, and obtained CFDA approval as well as CE-IVD marking.

A significant improvement to the ARMS primer technology is the use
of blocking oligonucleotides in the allele-specific blocker PCR (asbPCR)
[24,25] and competitive allele-specific Taqman PCR (castPCR) [26] as-
says (Fig. 2c). The blocker is an oligonucleotide that hybridizes perfectly
to the wildtype template, and thereby suppressing unintended hybrid-
ization of the ARMS primer to the wildtype. The blocker is typically
functionalized with a chemical moiety (e.g. a minor groove binder,
MGB) at the 3′ end to prevent polymerase extension, and optionally
to improve binding stability. Applied Biosystems (now part of Thermo
Fisher) developed andmarkets castPCRkits for 586mutations in 45 can-
cer genes; the assays are research use only (RUO) and have not been
reviewed by the FDA [27].

An alternative approach to allele-specific PCR is to use two-segment
primers, such as the dual-priming oligonucleotide (DPO) by Seegene
[28,29] and the myT primers by Swift Biosciences [30](Fig. 2d). Both
of these primers include a longer 5′ region that primarily contributes
hybridization stability and a shorter 3′ region that primarily contributes
specificity. The DPO and myT primers are more specific than ARMS
primers because a single nucleotide mismatch has a larger thermody-
namic effect on the binding stability of a short oligonucleotide region
than on a longer region. Seegene recently obtained FDA approval on
its Herpes Simplex Virus test and also developed several CE-marked as-
says for infectious disease diagnostics, such as the Seeplex Diarrhea ACE
detection kit [31].

2.2. Blocker PCR

An alternative set of approaches to PCR detection of sequence vari-
ant relies on suppression of wildtype amplification through the use of
blocker oligonucleotides. In these schemes, the primers are typically
not allele specific, and in the absence of the blocker hybridized to the
wildtype, the primer would amplify both the variants and the wildtype
with roughly equal efficiency. Blocker PCR exhibit two primary benefits
over ARMS: first, it is hypothesis-free over the blocker binding region;
the sequence of the variants do not need to be known a priori. Second,
it offers compounded specificity throughmultiple cycles of PCR, because
the primer does not itself incorporate the polymorphic nucleotide(s). In
contrast, ARMS primers are specific only until the first spurious exten-
sion event generates an amplicon bearing the sequence variant allele,
and thus are more prone to stochastic errors

The first reported use of blocker PCR uses a peptide nucleic acid
(PNA) blocker (Fig. 3a) [32]. The DNA polymerase is unable to displace
or digest the PNA blocker, so primer extension of the wildtype halts
where the blocker binds. The anneal cycle temperature is set such that
the blocker does not bind favorably to sequence variants, due to the
mismatch bubble formed. The same logic can be applied to different
blocker molecule types: DiaCarta's xeno nucleic acids (XNA) are modi-
fied nucleic acids with greater binding affinity than PNA and exhibit
improved variant discrimination [34], and Biocept's Selector assay
using 5′ phosphorothioate-modified DNA blockers as an economical
alternative solution [35] (PNA and XNA are expensive to synthesize).
The PNAClamp assay by PNA Bio has been CE-marked for IVD use in
Europe for guiding cancer treatment based on mutation analysis of the
EGFR, KRAS, BRAF, PI3K, and IDH1 genes [33].
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Fig. 2. Detection of sequence variants using allele-specific PCR primers. (a) ARMS primers designed to detect a particular sequence variant. The 3′ nucleotide hybridizes perfectly to the
target variant template, but is mismatched to the wildtype template. Taq or other DNA polymerases used in PCR extend the primer off the wildtype with significantly lower efficiency
as compared to the target. (b) Intentional introduction of mismatched nucleotide at the penultimate 3′ position. SNV amplification efficiency is reduced, but wildtype amplification is
almost completely inhibited. (c) ARMS primer with wildtype blocker, as used in asbPCR and castPCR. The blocker competes with the primer in hybridizing to the wildtype template,
and thus further suppresses unintended amplification of the wildtype. Due to the relative hybridization thermodynamics, the blocker does not significantly impact primer binding or
extension for the target template. (d) DPO and myT primers are two-segment primers with a longer 5′ binding region and a shorter 3′ binding region. The segments are connected by
a poly-inosine linker for DPO primers, and by an orthogonal double-stranded DNA region for myT primers.
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A variation of the blocker PCR approach is the co-amplification at
lowered denaturation temperature PCR (COLD-PCR) [36,37] and the
related ICE COLD-PCR [38,39] assays. These assays rely onmore complex
temperature cycling protocols to kinetically favor the hybridization
of the blockers to the wildtype templates. The MX-ICP assays by
Transgenomic is based on ICE COLD-PCR and is offered in the United
States as an LDT.

Integrated DNA Technologies developed a conceptually different
type of blocker PCR, known as RNAse H-dependent PCR (rhPCR) [40].
Unlike the other blocker PCR implementations, the blocker is not a
distinct molecule, but rather a 3′ region of the primer including an
RNA nucleotide at the polymorphic site and a 3′moiety that inhibits
polymerase extension (Fig 3b). When the primer/blocker binds to the
desired sequence variant, the RNA nucleotide is paired to its comple-
ment on the template, and is cleaved by a temperature robust RNAse
H2 enzyme. The cleaved primer is subsequently extended by the DNA
polymerase. When the primer/blocker binds to a wildtype sequence,
the RNA nucleotide is mismatched, and is not cut by the RNAse H2
enzyme. One advantage of the rhPCR technology over other blocker
PCR assays is that it suppresses primer dimer formation and nonspecific
genomic amplification, due to the enzymatic action of the RNAse H2
enzyme.

2.3. Multiplex PCR

All PCR technologies described above struggle to variant extents
with multiplexing, the simultaneous analysis of multiple target se-
quence variants. There are three main difficulties in multiplexed PCR:
the depletion of dNTPs by the highest concentration amplicons, the
orthogonal readout of different amplicons, and the formation of primer
dimers during amplification

In a homogeneous PCR reaction, the dNTPs used for primer exten-
sion become depleted as the amplicon accumulates. In multiplex PCR
amplification of several targets, the presence of one high concentration
target can effectively suppress the amplification of other targets.

Real-time PCR (a.k.a. quantitative PCR, qPCR) requires the use of a
fluorophore to indicate amplicon concentration at different cycles;
the cycle at which the amplicon concentration exceeds a threshold is
known as the quantitation cycle (Cq), which is log-linearly related to
the initial target concentration. The number of spectrally distinct
fluorophores limits the number of targets that can be simultaneously
quantitated [41]. The traditional limit is roughly 5 fluorophores [42,43].
Primer dimers refer to the unintended interaction between primers
that result in the formation of short ampliconswith sequence unrelated
to any templates. For single-plex PCRwith 2 primers, careful design and
optimization of primer sequence can result in a good set of primerswith
little primer dimer formation. However, in multiplex PCR for simulta-
neous analysis of N templates, there are 2N primers, which result in at
least 4N2 possible primer dimer interactions. In reality, because there
are complex primer dimermechanisms involving three ormore species,
the complexity scales even worse with the number of primers.

The engineering solution to the multiplex PCR problem is the devel-
opment of instruments and disposable chips that compartmentalize the
PCR reaction, so that there is only one set of primers in each compart-
ment. Biofire Diagnostics (now part of Biomerieux) developed the
FilmArray system to allow simultaneous PCR analysis of 10's of template
sequences [44]. Biofire has multiple FDA cleared diagnostic panels in-
cluding for respiratory and gastrointestinal infectious diseases. Cepheid,
another developer of multiple FDA cleared/approved infectious disease
diagnostics instruments and kits, announced in 2012 the development
of an instrument capable of 1000-plex PCR analysis.

2.4. Digital PCR

Reliable detection and quantitation of low allele frequency variants
by conventional PCR remains challenging. Despite the best molecular
primer and blocker designs, there will inevitably still be some degree
of false amplification of wildtype sequence, due to the stochastic nature
of molecular interactions. For sequence variant detection in particular,
allele frequency quantitation is complicated by the different per-step
amplification yields

In digital PCR, a single-plex PCR reaction is split into thousands to
millions of droplets [45,46,47] (Fig. 4) Typically, the droplets are formed
by mixing the aqueous reaction with oil to form an emulsion (Biorad
ddPCR, Rain Dance RainDrop), although microfluidic approaches are
also available (Thermo Fisher Open Array, Fluidigm BioMark). The ben-
efit of digital PCR is that with so many droplets, in each droplet, there is
expected to be 0 or 1 copies of the target sequence. Because 0 and 1 cop-
ies of the target sequence result in a large difference in signal, positive
amplification droplets can be easily distinguished from droplets lacking
template. Quantitation is also facilitated because the number of positive
amplification droplets can be directly counted.

Currently, digital PCR is used for academic and clinical research pur-
poses, and also used clinically as laboratory developed tests. For example,
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favorably to the wildtype template, but not to any variants. Polymerase extension of the
primer halts when it reaches the blocker on the wildtype template. The identity of the
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internally with an RNA nucleotide that corresponds to the target allele, and at the 3′ with
an nonextensible moiety (typically a 3-carbon spacer). When the primer hybridizes to the
target sequence variant template, a temperature robust RNAse H2 enzyme cleaves the
primer to the 5′ of the RNA base, and the deprotected primer can subsequently be
extended. The RNAse H2 enzyme does not efficiently cleave the RNA nucleotide
when it is mismatched (in the primer-wildtype complex).
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the Trovagene PCM V600E assays analyze BRAF mutations from cell-free
DNA in urine samples using digital PCR.

3. Hybridization

Hybridization is the process by which a synthetic DNA probe or
primer binds (viaWatson–Crick base pairing) to a biological DNA target
sequence. Hybridization forms the basis of all modern DNA analysis and
diagnostic techniques, but in the absence of either DNA amplification or
signal amplification, hybridization does not provide sufficientmolecular
sensitivity for practical use. More commonly, hybridization is used in
conjunction with PCR or with fluorescence microscopy. Recent ad-
vances in sensor technologies may allow hybridization in the absence
of enzymatic DNA amplification to be a viable alternative to PCR and
NGS.

Compared to the two other classes of technologies reviewed,
hybridization's main strengths are its simplicity, multiplexing, and
robustness. Because hybridization is a biophysical phenomenon, it
proceeds in many buffer conditions, unlike enzyme-based assays
with narrow acceptable buffer compositions. Hybridization's main
weakness is that it does not provide sequence amplification, and must
be paired with either signal amplification technology, or a highly sensi-
tive readout instrument.

3.1. Microarrays

Microarrays use spatial arrangement to solve the multiplex readout
problem (Fig. 5). DNA probes of different sequences are functionalized
onto a surface at different positions. A nucleic acid sample containing
targets of interest are 3′ fluorophore-labeled using a terminal transfer-
ase, and then hybridized to the microarray [48,49]. The positions of
the fluorescent spots indicate the identities of the targets detected,
and the fluorescence intensity indicates quantity

Microarrays may be used for the direct (unamplified) detection of
high expression RNA species from large sample volumes [50,51], and
can also be applied to amplicons from a multiplex PCR reaction
[52,53]. The molecular sensitivity of microarrays is limited by the
hybridization efficiency of labeled targets to the microarray, as
well as the sensitivity of the fluorescence microscope used for imag-
ing and the autofluorescence of the microarray chip. More than a
million of different probes can be synthesized on an array with
Affymetrix's Genechip technology with a detection limit of one to
ten copies of mRNA per well.

In principle, microarrays should provide highly quantitative infor-
mation regarding nucleic acid concentration. In practice, however,
there is substantial quantitation bias across different genes and tran-
scripts, across different microarray platforms, and even across different
microarray chips by the same manufacturer [54]. First, hybridization
yield and kinetics are nonlinearly affected by the density of probes on
the surface: probe molecules hybridize nonspecifically to other probe
molecules at high density, to various extents based on sequence. Sec-
ond, the lengths and sequence of the target molecules affect hybridiza-
tion kinetics. Third, the quantum yield of fluorophores are known to be
affected by both neighboring DNA sequence and by proximity of other
fluorophores. Consequently, optimized microarrays are typically con-
sidered to produce repeatable relative quantitation of different nucleic
acid targets [55], rather than absolute concentration.

A number of FDA approved or cleared diagnostics usedmicroarrays:
Agendia's MammaPrint assays [56] for breast cancer recurrence profiles
the expression of 70 genes to inform breast cancer recurrence risk,
Autogenomics INFNITI CYP2C19 assay [57] profiles genetic polymor-
phisms that impact therapeutic response to antidepressants and antiep-
ileptics, and the Affymetrix's CytoScan Dx [58] evaluates developmental
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delay, intellectual disabilities, and congenital anomalies based on chro-
mosomal mutation analysis. Additionally, Agilent is seeking FDA clear-
ance for its SurePrint gene expression microarrays.

3.2. Fluorescent barcodes

Fluorescence barcodes collectively comprise an alternative approach
to highly (100 to 1000) multiplexed readout. Fluorescent barcodes can
generally be divided into two flavors: intensity barcodes, or geometric
barcodes (Fig. 6). Intensity barcodes use the absolute or relative intensi-
ties of several fluorophores to indicate sequence identity. Fig. 6a shows
the Luminex xTag approach to intensity barcoding: each silica particle is
functionalizedwith different number ofmolecules of two spectrally dis-
tinct fluorophores, with the intensities of the two fluorophores indicat-
ing the species identity; a third fluorophore functionalized to an
amplicon indicates the presence of the species [59]. Assuming that
each fluorophore intensity can be distinguished to 30 levels, the
Luminex approach allows up to 900 barcodes. Luminex developed an
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Fig. 6. Fluorescent barcodes for hybridization-based nucleic acid analysis. (a) Luminex xTag inte
a probe oligonucleotide. The intensities of the two bead fluorophores indicate the sequence
amplicon sequence is detected via a third fluorescence channel. (b) Nanostring nCounter ge
biotinylated capture probe, and subsequently deposited on a surface. The target and fluoresc
backbone, resulting in a visible linear chain of fluorescent spots.
FDAapproved respiratory disease diagnostics panel based on itsfluores-
cent barcode technology

Geometric barcodes use the orientation of spectrally distinct
fluorophores to convey sequence identity; Fig. 6b shows the
Nanostring approach of electrophoretically stretching out a nucleic
acid barcode. The barcode allows 6 distinct spots, each with 4 possi-
ble fluorophore colors; even restricting that neighboring spots must
be distinct fluorophores (to ease imaging processing), there are 972
possible barcodes [60,62]. Prosigna is Nanostring's FDA cleared panel
for predicting breast cancer recurrence based on the measured ex-
pression levels of 50 genes.

Another approach to geometric barcodes taken by Firefly Bioworks
(now subsidiary of Abcam) is a physical patterning on a micron-scale
hydrogel particles [61]. Because of the large size of the barcodes and ad-
vances in micro- and nanofabrication, the number of different potential
barcodes is orders of magnitude greater than prior approaches. Abcam
is applying these hydrogel barcodes to microRNA profiling research
applications.
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3.3. In situ hybridization

In situ hybridization (ISH) seeks to provide not only sequence and
concentration information regarding target genes and variants of inter-
est, but also spatial positioning of the targets within its native tissue
[63–65]. This renders ISH particularly suitable for analysis of copy num-
ber variations (CNVs) in heterogeneous cell or tissue samples, because
the relative increase in signal within affected cells is far greater than av-
eraged over the entire sample

In ISH, the nucleic acids to be imaged are firstfixed to the proteinma-
trix of the cells, typically using formaldehyde (a.k.a. formalin) or metha-
nol, to prevent diffusion (Fig. 7). Subsequently, DNA or RNA
oligonucleotide probes are introduced and allowed to hybridize to the
fixed target nucleic acids; unbound probes are washed away. Finally,
an imaging agent is introduced, the exact identity of which depends on
the assay. For fluorescent ISH (FISH), the DNA probes are themselves la-
beled with fluorophores, or are modified with a hapten (e.g.
digoxygenin, DIG) that recruits a fluorescent antibody. For chromogenic
ISH (CISH) or silver-enhanced ISH (SISH) [68], the hapten-labeled DNA
probe recruits an antibody, which recruits a secondary antibody func-
tionalized with an enzyme that generates the desired signal. Compared
to CISH [66,67] and SISH, FISH possesses lower molecular sensitivity,
but allows simultaneous multiplex imaging to 3–5 different species
[69,70]. Additionally, directly labeled FISH probes could bleached or
washed away to allow the same sample to be repeated imaged for differ-
ent genes, further improving multiplexing.

ISH may be applied to both DNA and RNA targets. Thus far, clinical
usage of FISH has focused on DNA copy number variation: Roche
Ventana and Abbott both developed FDA approved ISH assays for de-
tectingHER2 amplification to informherceptin efficacy for breast cancer
patients. However, Advanced Cell Diagnostics has recently announced
intention to pursue HPV diagnostics via its RNAscope FISH assay [71].
3.4. Other readout modalities

Alternative technologies for readout of nucleic acid targets or
amplicons have been developed that show high molecular sensitivity.
These include electrochemical readout (e.g. Xagenic [72,73]), magnetic
resonance (e.g. T2 biosystems [74,75]), nanoparticle aggregation-
induced optical scattering (e.g. nanosphere [76]), and chemilumines-
cence (e.g. Hologic HPA [77]); several of these have obtained FDA clear-
ance or approval as infectious disease IVDs.With these sensors, theneed
formany cycles of PCR amplification to increase amplicon concentration
is mitigated or eliminated. However, these devices generally show
limited molecular specificity, and thus are more appropriate for detect-
ing the presence or absence of pathogen genes, rather than sequence
variations.

4. Next-generation sequencing

Next generation sequencing (NGS) is a family of approaches formas-
sively multiplexed sequence analysis of DNA and RNA. Unlike tradition-
al Sanger sequencing, which requires a homogeneous DNA template as
input, NGS allows analysis of heterogeneous samples, and simulta-
neously provides sequence information for more than 10 million ran-
domly selected nucleic acid molecules in a sample [78,79]. Because of
the large number of reads, NGS is uniquely suitable for nucleic acid anal-
ysis and diagnostic requiring multiplexed analysis of many genes and
their variants.

No chemistry is perfect, and all NGS platforms suffer a finite intrinsic
error rate due to signal ambiguity, enzyme infidelity, imperfect
deprotection, etc. Sequencing errors complicate the calling of variants,
especially low frequency ones. Recent innovations in molecular
barcoding [80,81] have significantly reduced the NGS error rates, at the
cost of increasing sequencing depth. Although there are not currently
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any FDA cleared or approved NGS assays for cancer-related diagnostics,
the Foundation One LDT has garnered interest and usage from the
clinical oncologists.

4.1. Mainstream NGS platforms

4.1.1. Illumina
The Illumina NGS system [82] is based on the idea of sequential

fluorophore-labeled nucleotide base addition combined with fluores-
cence imaging (Fig. 8a). This platform relies on “bridge PCR” on a surface
using tethered primers to generate local “polonies” of amplicons. All
ampliconswithin each polony should have the same sequence, and gen-
erate the same colored fluorescence during each nucleotide incorpora-
tion cycle (Fig. 8a). The color of the fluorescence corresponds to the
identity of the incorporated nucleotide. Bridge PCR [83,84] also uniquely
allows a DNA fragment to be sequenced from both ends (pair-end se-
quencing). Pair-end sequencing improves final read alignment, inser-
tion and deletion calling, rearrangement identification, and FASTQ
quality score [85–87].

Illumina is currently the leader both in sequencing error rate and in
sequencing cost per read. The sizes of the polonies (200 nm diameter)
define the fundamental limit of throughput for a singleflow cell, render-
ing Illumina the highest throughput NGS platform today (1.5 Tb).
Illumina has continued to invest in flow cell technologies to increase
data output and quality, with a recently released patterned flow cell in
which immobilized primers are arranged in a defined surface array
dGTP  dCTP  dTTP  dATP

consequtive introduction 
of natural dNTPs

compromised detection of long homopolymer stretc

1

2

3

A T C G

nanopatterned flow ce

1 2

C

Semiconductor Seq

Reversible Chain Terminator-baa

b

Fig. 8.Mainstream NGS platforms. (a) Illumina sequencing using bridge PCR and repeated fluo
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allowing for a precise control of consecutive cluster generation [88,89].
Currently, 106 Illumina sequencing reads costs roughly $2.

On the other hand, the Illumina platform is also the slowest of
the NGS platforms reviewed here, with each cycle (nucleotide incorpo-
ration and imaging) taking roughly 5 min. This is because both
fluorophore cleavage and the high resolution flow cell imaging steps
are time consuming. For a 300 nt paired end NGS run, the sequencing
takes 2 full days. Improvements in nucleotide chemistry and/or micros-
copy are unlikely to significantly reduce the sequencing run time.

For diagnostic applications, Illumina has developed benchtop se-
quencing platforms (MiSeq and NextSeq) with the lower throughput
(b15 gigabases). The MiSeqDx system is the first NGS platform to
receive FDA clearance for IVD use [90]. Thus far, two FDA cleared NGS
assays have been developed to function on the MiSeqDx platform,
both for cystic fibrosis variant genotyping [91,92]. In addition, many
LDTs (e.g. Foundation Medicine's FoundationOne panel) use Illumina
sequencing to inform cancer therapy.

4.1.2. Ion Torrent
The Ion Torrent sequencing platform uses pH rather than fluores-

cence for nucleotide identity readout [93]. During primer extension, a
proton ion (H+) is released for each nucleotide incorporation event
(Fig. 8b). The released protons cause a localized and transient pH
change that is detected by a miniature pH sensor (ion-sensitive field-
effect transistor, ISFET) on a matrix of CMOS (complementary metal-
oxide-semiconductor) elements. In each sequencing step, only a single
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(b) Oxford Nanopore sequencing. Target DNA molecule is dragged through the
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current is used to infer sequence using a Hidden Markov model. (c) Genia uses a
DNA polymerase tethered to one side of the nanopore, and PEG-modified dNTPs. As
the polymerase copies the target DNA sequence, the PEG tags are released and
forced through the nanopore. The size of the PEG tag corresponds to the identity of
the incorporated nucleotide, and determines the instantaneous current across the
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nucleotide type (e.g. dATP) is introduced into the reaction flow cell;
only the DNA fragments with the corresponding nucleotide as the
next base will show a pH signal. All four nucleotides are cycled in this
fashion to perform the sequencing.

The nucleotides incorporated in the Ion Torrent NGS workflow
are unmodified nucleotide triphosphates, so there are no chemical
deprotection steps. Additionally, the pH sensors react nearly instanta-
neously. Consequently, Ion Torrent sequencing is significantly faster
than Illumina sequencing, taking roughly 3 h for 300 nt reads. Another
advantage of Ion Torrent NGS platforms is that the instruments them-
selves are significantly less expensive than corresponding Illumina in-
struments, due to the relatively lower cost of pH sensors compared to
optical readout systems. Finally, Ion Torrent's NGS platform and its up-
stream Ampliseq protocol allow analysis of biological DNA samples of
down to 10 ng (compared to Illumina's 100 ng).

The major disadvantages of Ion Torrent sequencing are its relatively
higher intrinsic error rate and its higher per read cost as compared to
Illumina. The higher error rate arises both from homopolymer regions
that generate pH signal that is difficult to accurately quantify past 4 nu-
cleotides (e.g. AAAAA), and from increased enzymatic misincorporation
rates when only one nucleotide triphosphate is present. Currently, 106

Ion Torrent sequencing reads costs roughly $10.
Ion Torrent's PGM-Dx instrument has received FDA clearance for

clinical use. In contrast to Illumina, Ion Torrent has not released any of
disease specific assays, but decided to promote its PGM-Dx system as
an open platform allowing clinicians to develop and validate clinical as-
says [94].

4.2. Alternative NGS platforms

4.2.1. Pacific Biosciences
Whereas both Illumina and Ion Torrent NGS platforms have read

lengths limited to roughly 300 nt, Pacific Bioscience's SMRT NGS plat-
form allows average read lengths of 10,000 nt and maximum read
lengths of roughly 50,000 nt. This feature renders PacBio uniquely suit-
able for high quality de novo genome assembly [95,96], isoforms profil-
ing [97], and structural variants resolution [98,99].

SMRT sequencing is based on real-time observation of nucleotide
incorporation on a growing DNA chain (Fig 9a) [100]. Incorporated
nucleotides are fluorescently labeled in the gamma-phosphate position,
so that they are naturally cleaved during the incorporation process.
Thus, unlike Illumina sequencing, SMRT sequencing does not pause
after each nucleotide incorporation for chemical cleavage and fluores-
cence imaging. Another technology, known as the zero-mode wave-
guide, allows SMRT sequencing to continuously sense fluorophores
only near the surface-bound polymerase, reducing background signal
of unincorporated nucleotides.

Despite the ingenuity of the employed technologies, SMRT sequenc-
ing currently exhibits intrinsic error rates far worse than Illumina or Ion
Torrent. One solution that PacBio developed to mitigate the sequencing
error problem is to circularize DNA targets to allow repeated sequenc-
ing. By sequencing each nucleotide multiple times on both the sense
and antisense strands, error rates can be statistically improved.
However, obtaining sufficient single-molecule read depth to eliminate
sequencing error would limit the length of the DNA target, and wipe
out PacBio's primary competitive advantage. SMRT sequencing also is
significantly more expensive (per read) than both Illumina and Ion
Torrent. Currently, 106 PacBio sequencing reads costs roughly $300. In
2013, PacBio and Roche announced a partnership to pursue clinical
IVD development.

4.2.2. Oxford Nanopore
Oxford Nanopores NGS approach differs from other technologies de-

scribed here in that it does not rely on polymerase extension of DNA
primers. Instead, the DNA target molecules are threaded and pulled
through an enzyme nanopore embedded in a synthetic polymer
membrane (Fig. 9b). The instantaneous electric current through the
membrane is affected by the identity of the nucleotides in the pore com-
plex at that moment, and can thus be used to inform sequence [101,102].

The size of the pore complex determines the number of nucleotides
that simultaneously fit inside and affect the electrical current [103,104];
it is easier to determine sequence information from smaller pore com-
plexes with fewer transit nucleotides. Oxford Nanopores current pore
proteins are derived from Mycobacterium smegmatis, and fits 4 nucleo-
tides [105,106]; this means that a 44 = 256 state Hidden Markov
model is needed to deconvolute current to resolve sequence [107].
The large number of states contributes significantly to the sequence
error rate. It is noteworthy that modifying the dsDNA template with a
hairpin-like adaptor allows obtaining bidirectional (2D) sequencing
reads. Like Illuminas paired-end reads, this can quadratically reduce
sequencing error rates. Despite these innovations, the accuracy of
even 2D reads is significantly worse than even PacBio SMRT sequencing



Fig. 10. Hybrid capture target enrichment. Genomic DNA is first sheared physically or enzymatically, and ligated to sequencing adaptors. Biotinylated probes hybridize to desired target
sequences; DNAnot hybridized to probes are not captured bymagnetic beads andwashed away. Subsequently, the enrichedDNA sample is PCR amplified to introduceNGS specific indices
and primers.
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[108–111]. Sequencing cost is also high, at $750 per cell, which gives
only roughly 40,000 reads. Thus, OxfordNanopore has not gained signif-
icant market adoption.

4.2.3. Genia
Genia Technologies (now part of Roche) also developed a nanopore-

based NGS platform. Unlike Oxford Nanopore, Genia sequencing is
based on a DNA polymerase tethered to the pore complex. The dNTPs
used are modified with polyethylene glycol-based nano-tags of distinct
sizes for the 4 different nucleotides (Fig. 9c). As a primer is extended off
the target DNA template, the tag is cleaved and flows through the
nanopore, inducing an electric current change [112]. Thus far, Genia se-
quencing has not yet publicly released any sequence data for biological
samples, but given Roches $350 M investment in acquiring Genia, it
seems likely that a Genia NGS platform will become available within
the next couple years.

4.3. Sequence enrichment

The human genome is more than 3 billion nucleotides, and of this
the exome comprises roughly 30 million nucleotides (1%). Within the
exome, the genes that are related to a particular disease comprise only
a small fraction; for example, the Foundation One panel [113] targets
roughly 1 million nucleotides across 315 genes, and the Guardant
Health 360 panel [114] targets roughly 150 thousand nucleotides across
68 genes. In order to economically obtain sequence information on only
target genes of interest, it is necessary to enrich these targets from bio-
logical nucleic acid samples.

There are two main approaches to target enrichment: hybrid-
capture andmultiplexed amplification. Hybrid-capture uses oligonucle-
otide nucleotide probes onmagnetic beads to selectively capture genes/
regions of interest, washing away irrelevant sequences. Multiplexed
amplification selectively amplifies the genes/regions of interest, in-
creasing their concentration relative to irrelevant sequences. Illumina
sequencing has traditionally focused on hybrid-capture, while
multiplexed PCR amplification (Ampliseq) is a major attraction of
Ion Torrent.
4.3.1. Hybrid capture
The main advantage of hybrid-capture enrichment is its scalability

(up to whole exome) and relative lack of bias, and the main disadvan-
tage is the relatively large input DNA requirement (typically 1 μg) and
relative slow protocol. The hybrid-capture technique was first intro-
duced in 1991 [115,116], but became popularized for NGS use in 2006
through the development of Agilent's SureSelect technology (Fig. 10)
[117].

Hybrid capture target enrichment usually starts with shearing a
genomic DNA sample using ultra-sonication, followed by ligation of se-
quencing adaptors. In contrast, the Illumina Nextera kits [118,119] use
transposon complexes to fragment and ligate DNA adapter sequences
in one step. Subsequently, the genomic regions with ligated adaptors
are PCR amplified both to increase concentration and to introduce indi-
ces used for multiplexing different samples within the same NGS run.

At this point, the amplicons are exposed to the biotinylated
hybrid-capture probes and hybridization is allowed to occur for 16
to 72 h. Amplicons hybridized to the probes are then captured with
streptavidin-coated magnetic beads, while unbound amplicons are
washed away. Bound amplicons are subsequently eluted from the
beads, typically using sodium hydroxide and/or elevated temperature.

In a comprehensive performance comparison of four major exome
enrichment systems [120], Agilent SureSelect showed highest coverage
of the intended targets (99.8%), followed by Illumina Nextera, Illumina
TruSeq, and Nimble SeqCap EZ (98.2%, 96.9%, and 96.5%, respectively).
Agilent SureSelect kit alsowas shown to be thebest for single nucleotide
variation (SNV) detection, though Nextera excelled for GC-rich targets
(N60% GC). However, all four enrichment systems seemed to struggle
with insertion and deletion variations.

Boreal Genomics offers a uniquely different approach to hybrid-
capture enrichment, based on differential electrophoretic separation of
DNA molecules over a probe-functionalized hydrogel, in the presence
of an oscillating electric field at the temperatures close to the melting
temperature of the hybrid capture probes [121,122]. Unlike other
hybrid-capture techniques that seek to capture a particular set of
genes or amplicons, Boreal OnTarget strives to capture specific variants.
Proof-of-concept demonstrations show successful enrichment of 46
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mutations in 4 genes (Kras, BRAF, EGFR and PIC3CA) in circulating
tumor DNA [123]. However, the scalability of this approach appears to
be limited by the fact that all probes must be designed to have nearly
identical melting temperatures, and by the difficulties common to mi-
croarrays (e.g. probe density).

4.3.2. AmpliSeq
Ampliseq is Ion Torrent's flagship enrichment product [124,125]

(Fig. 11a). Its main advantages are low input DNA requirements (1 to
10 ng) and fast protocol (3 h), while its main disadvantage is possible
primer-dimer artifacts that waste sequencing reads. The Ampliseq
workflow can be abstracted as a three-step protocol: target-specific
multiplex PCR amplification, primer digestion, and adapter ligation.
The first step is guided by Ion Torrent's bioinformatics knowledge
base, and the second step is a proprietary enzymatic reaction (Fig.
11a). Ampliseq has achieved remarkable multiplex PCR capability that
is currently unmatched; for example, its Ampliseq Comprehensive Can-
cer panel uses 16,000 primer pairs across 4 tubes, averaging to roughly
4000-plex PCR in each tube [126].

Ion Torrent has developed three translational AmpliSeq-based
NGS panels: the Oncomine Comprehensive Assay, the Oncomine
Focus Assay, and the Oncomine Cancer Research Panel [127]. These
are focused on allowing deep sequencing of cancer related genes to de-
tect rare sequence variants including SNVs, indels, CNVs, and gene
fusions.

4.3.3. Droplet-based enrichment
Whereas Ion Ampliseq takes a bioinformatic approach to primer de-

sign with clean-up of primer-dimers after amplification, droplet-based
enrichment uses the same technology of digital PCR to enable single-
plex PCR amplificationwithin each droplet (Fig. 11b). Different droplets
contain different primers; thus,many different target sequencesmay be
amplified without dealing with the combinatorial explosion of primer
dimer possibilities. Additionally, the primer pair compartmentalization
facilitates panel expansion because new primer pairs can be modularly
added, in principle without disruption to the existing panel.
pool of primer dimers
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of unused primers
and primer dimers

adapter ligation and sequencing
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sing
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Fig. 11.Multiplex PCR target enrichment. (a) Ion Torrent Ampliseq. Ultra-high multiplex PCR p
Unused primers and undesired primer dimer amplicons are enzymatically digested. Finally, in o
oligonucleotide adapters consisting of barcodes and sequencing primers are enzymatically
preparation system emulsifies a sheared DNA sample to produce millions of picoliter-size dr
each template droplet with another droplet containing a single primer pair specific to a given
Two companies have been primarily working on droplet-based PCR
enrichment for NGS: Fluidigm and RainDance. The Fluidigm Access
Array system employs parallel amplification of up to 48 different sam-
ples with 48 primer pairs, resulting in 2304 individual PCR reactions
each 35 nL in volume [152,153]. RainDance Thunderstorm creates
millions of picoliter-size droplets, and in principle affords signifi-
cantly higher multiplexing [154–156]. In practice, both Fluidigm
and RainDance multiplexing capabilities lag significantly behind
Ampliseq: for example, RainDance's Thunderbolt RUO cancer panel
analyzes 230 amplicons [157].

4.3.4. Ligation-based enrichment
Illumina and Agilent developed the ligase-based enrichment

methods to enable NGS analysis of low-volume samples (Fig. 12). In
both cases, the ligation requires correct binding of separate comple-
mentary regions, helping to suppress the impact of nonspecific amplifi-
cation on NGS analysis.

Illumina TruSeq uses a pair of primers but unlike PCR, both
primers bind to the same strand of the template (Fig. 12a) [128]. Ex-
tension of the first primer by a non-strand displacing polymerase
terminates at the beginning of the second primer; subsequent liga-
tion connects the two primers and their attached adaptors. Nonspe-
cific binding and/or extension of either the first primer or the second
primer to other regions of the genome does not result in amplicons
with both adaptor sequences. TruSeq reduces the minimum DNA
sample size to roughly 50 ng, and allows 1400-plex amplification.
The only two FDA cleared NGS assays (for cystic fibrosis) are both
based on TruSeq amplicon library enrichment [91,92]. A number of
other TruSeq panels are available, including for HLA typing, inherited
disease profiling, and autism screening, whichmay be pursued in the
future for clinical IVD use.

Agilent HaloPlex is based on the hybridization of desired genomic
fragments to a partially double-stranded DNA probe with sticky ends
that bind to both ends of the target DNA [129,130]. Subsequent ligation
to the probe results in a circular DNA product that is resistant to
nuclease digestion and also amenable to rolling circle amplification
le DNA 
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rimers are bioinformatically designed, and then the sample is amplified for 8 to 14 cycles.
rder to prepare the obtained amplification products for Ion Torrent sequencing workflow,
ligated. (b) RainDance single molecule emulsion PCR (ePCR). An automated template
oplets, each containing one or a few DNA fragments. A microfluidic system then merges
genetic loci. Thus, each droplet performs a single-plex PCR enrichment.



Fig. 12. Ligation-assisted target enrichment. (a) Illumina Truseq uses two oligonucleotide probes that hybridize to regions flanking a target sequence. Polymerase extension of the first
probe results in an extended oligonucleotide adjoining the second probe, allowing subsequent ligation. Unreacted probes are removed by centrifugation through size exclusion filters,
and successfully ligated products are PCR amplified. (b) Agilent Haloplex hybridizes both ends of a target DNA fragment to a double-stranded probe. Ligation of the target-probe
complex produces a circular amplicon that is subsequently purified and amplified.
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(Fig. 12b). Currently, Haloplex offers RUO custom designed panels [131,
132] as well as for exome, cancer, and cardiomyopathy gene
enrichment.

5. Authors' perspective

Despite the complexity and expense of NGS experiments, NGS is cur-
rently the primary choice formany research applications in profiling se-
quence variation, because it offers unmatched multiplexing throughput
and hypothesis-free sequence analysis. Over the coming years, there
will likely be two prongs of advance in NGS technology: (1) further in-
crease of throughput for population profiling/screening studies and
metagenomics research, and (2) miniaturization of NGS instruments
and simplification of NGSworkflows for rapid experiments and analysis,
both research and clinical. Illumina appears to be the leader (and
arguably the only player) in the pursuit of (1), while most other NGS
platform developers aim for (2).

Thebusiness history of emerging technologies suggests that one to at
most two players will emerge victorious in the battle for rapid NGS
platformdominance. A number of premature announcements (most no-
tably by Oxford Nanopore in 2012) lacking solid follow-up data have
rendered the research community somewhat inured and cynical about
novel NGS instruments. To minimize the odds of being discredited as
yet another party to cry wolf, a number of NGS instrument developer
with functional instruments (e.g. Qiagen GeneReader, BGI Genomics)
are likely diligently collectingdata in advance of a public announcement.

For clinical diagnostic applications (Box 2), the hypothesis-free
nature of NGS is not an advantage, as every reported detection target
in a panel must show clinical utility as a requisite for payer reim-
bursement. Where NGS currently excels is the simultaneous offering
of high multiplexing and high allele-sensitivity (microarrays offer
high multiplexing and digital PCR offers high allele-sensitivity). In
the future, it is likely that additional alternative methodswill emerge
that combine these features, for diagnostic applications requiring
limitedmultiplexing such as cancer recurrencemonitoring. Whether
NGS or new approaches win in the clinical setting will depend on a
variety of factors including turnaround time, technical performance,
cost, pre-analytic sample preparation required, and market penetra-
tion/inertia.

The simplicity, robustness, and familiarity of PCR and its variants
means that it will likely be the default choice for single-plex nucleic acid
analysis for the indefinite future. Digital PCR in particular offers improved
quantitation accuracy over traditional quantitative PCR, andmay become
a staple for clinical diagnostics. Currently, the sensitivity of digital PCR is
limited by DNA polymerase nucleotide misincorporation errors, and the
detergent formulation of the digital PCR reaction means that it is at
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present incompatiblewithmanyof the high-fidelity polymerases used for
PCR (e.g. Q5, Phusion). This limitation will likely be overcome in the near
future through R&D efforts in enzymology or in digital PCR
implementation.

5.1. Implications for synthetic biology research

Synthetic biology, as a field, aims to engineer organisms with
designed DNA sequences to exhibit engineered behaviors [133,134].
To do so, natural genesmust be edited and artificial genesmust be intro-
duced to endow organisms with novel functionalities. Purification and
verification of error-free genes are important to ensure a homogeneous
population of engineered organisms, as even single nucleotide varia-
tions can result in loss of gene function [135,136]. To this end, advances
in DNA sequence analysis technologies will accelerate the progress of
synthetic biology by shortening the design-experiment-analysis cycle,
thereby reducing the false-starts from poorly constructed genes. Long-
read sequencing (e.g. PacBio), in particular, may be of interest to the
synthetic biology community.

RNA sequencing allows highlymultiplexedmRNA expression profil-
ing, providing a readout more highly multiplexed than traditional GFP
readouts for synthetic biology. This allows easy analysis and debugging
of complex engineered circuits and networks as compared to traditional
gel electrophoresis or allele-specific PCR approaches. Furthermore, sam-
ple barcoding prior to NGS allows simultaneous analysis of many RNA
species frommany different samples; this is an advantage overmicroar-
rays, because each microarray essentially can be used only to analyze
one sample. Finally, single-cell sequencing represents the extrapolation
limit for NGS sample barcoding, and allows study of expression variabil-
ity, allowing synthetic biology researchers to observe the stochastic
effects of expression in engineered organisms.

5.2. Synthetic biology as a contributor to DNA diagnostics development

Synthetic biology can also contribute to the development of new
DNA analysis and diagnostics technologies. In the development of new
DNA analysis technologies, well-characterized reference samples are
necessary for proof-of-concept testing and validation. CRISPR, the latest
generation of DNA editing technologies, uses a guide RNA to sequence-
specifically edit a genome at a particular locus [137]. For example,
Horizon Discovery uses CRISPR to create cell lines with specific cancer
mutations, and mixtures of genomic DNA extracted from these cell
lines are popularly used to validate targeted NGS panels.

Synthetic biology has been used to construct bacteria that sense a
variety of small molecule targets [138]. Unlike traditional diagnostic
devices, these biosensors reproduce, maintaining a population of detec-
tors that can, in principle, indefinitely and continuously report the
concentration of target analytes given sufficient nutrients. Given the
challenges of immunogenicity, it is unlikely that living biosensors will
be used within the next decade as “living diagnostics” for in vivo use
in blood. However, synthetic biosensorsmay find use as low-cost detec-
tors of pathogenDNAand RNA for applications other humandiagnostics
(e.g. soil profiling and food safety). Although synthetic biological diag-
nostic devices have thus far focused on small molecule analytes,
proof-of-concept RNA detection has recently been demonstrated [139].

6. The future of DNA diagnostics

In the State of the Union address on January 20, 2015, President
Obama announced the launch of the Precision Medicine Initiative
[140], with the stated goal of bringing “us closer to curing diseases like
cancer and diabetes and to give all of us access to the personalized infor-
mation we need to keep ourselves and our families healthier.” This
statement reflects the growing medical and popular understanding
that different individuals respond differently to disease and treatment,
and that accurate profiling of DNA sequence variations and RNA expres-
sion levels are crucial components of the future healthcare paradigm.

In the near term, the focus of research efforts to bring genomics un-
derstanding to clinical practice will likely be in the field of cancer-
related tests, because cancer is a disease with a plethora of molecular
causes, heterogeneity of disease evenwithin an individual, and constant
disease evolution. In the longer term, we believe that technology ad-
vanceswill also spill over into diagnostics for all types of human disease,
because nearly every disease possess DNA or RNA biomarkers. Infec-
tious diseases diagnostics (including subtyping and antibiotics resis-
tance assays) [141], non-invasive prenatal genetic screening [142,143],
and microbiome profiling [144,145], are fields likely to be other early
adopters of new DNA technologies.

Technology development will likely play a major role in DNA and
RNA diagnostic tests for the foreseeable future. Although NGS through-
put and price have dramatically been reduced over the past 10 years (by
roughly 100-fold), we remain at least 6 orders of magnitude away from
performing comprehensive deep sequencing at a whole genome or
whole transcriptome level. Major areas of optimization and innovation
will be in the price, accuracy, turnaround time, and multiplexing of
tests for DNA sequence variants.
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