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Abstract

Classifications of symmetries and conservation laws are presented for a variety of physically and ana-
lytically interesting wave equations with power nonlinearities in n spatial dimensions: a radial hyperbolic
equation, a radial Schrödinger equation and its derivative variant, and two proposed radial generalizations
of modified Korteweg–de Vries equations, as well as Hamiltonian variants. The mains results classify all
admitted local point symmetries and all admitted local conserved densities depending on up to first order
spatial derivatives, including any that exist only for special powers or dimensions. All such cases for which
these wave equations admit, in particular, dilational energies or conformal energies and inversion symme-
tries are determined. In addition, potential systems arising from the classified conservation laws are used to
determine nonlocal symmetries and nonlocal conserved quantities admitted by these equations. As illustra-
tive applications, a discussion is given of energy norms, conserved Hs norms, critical powers for blow-up
solutions, and one-dimensional optimal symmetry groups for invariant solutions.
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1. Introduction

Over past few decades there has been a lot of work on global analysis of nonlinear wave
equations in n � 1 spatial dimensions [24],

utt = �u + f (x,u,∇u), u(t, x) ∈ R, (WEa)

iut = �u + f
(
x, |u|, |∇u|)u, u(t, x) ∈ C, (WEb)

with one main focus being the study of blow-up phenomenon for the case of power nonlinearities
f = ±|u|p , ±|∇u|p . Some key tools with a number of uses in this study are conservation laws
and symmetries.

Conservation laws such as energy provide basic conserved quantities used in obtaining esti-
mates on |u| or |∇u| for smooth solutions, and also in defining suitable norms for weak solutions.
Of considerable interest are extra conservation laws such as conformal energies that can appear
for special powers p depending on the dimension n. Symmetries, in contrast, lead to exact group-
invariant solutions and play a role in defining invariant Sobolev norms. Scaling symmetries are
of special relevance, as the critical nonlinearity power for blow-up is typically singled out by
scaling-invariance of a positive energy norm. Moreover, scaling transformation arguments give
the means of relating the behavior of solutions in different regimes, for instance, solutions at
short times with large initial data can be scaled to long times with small initial data when the
nonlinearity power is subcritical.

In this paper we present classifications of conservation laws and symmetries admitted by a
variety of physically and analytically interesting semilinear radial wave equations. The equations
will be organized according to their variational structure as follows.

First, we consider the standard nonlinear wave equation

utt = �u ± up (NLW)

as well as the nonlinear Schrödinger equation

iut = �u ± |u|pu (NLS)

and its radial derivative variant

iut = �u ± i|u|p
(

ur + m

p + 2
r−1u

)
, (dNLS)

where � = r−m∂rr
m∂r = ∂2

r + mr−1∂r is the radial Laplacian in n = m + 1 � 1 (spatial) di-
mensions. These PDEs each arise as the stationary points δL/δu = 0 of a Lagrangian functional
L= ∫ +∞

−∞
∫ ∞

0 L[u]rm dr dt , given by

LNLW[u] = 1

2

(−u2
t + u2

r

) ∓ 1

p + 1
up+1,

LNLS[u] = iūut + |ur |2 ∓ 1

p + 2
|u|p+2,

LdNLS[u] = iūut + |ur |2 ∓ i

p + 2
|u|p(ūur − uūr ).

As is well known, the NLS equation also possesses a Hamiltonian formulation ut = iδH/δū

with H = ∫ ∞
0 H [u]rm dr given by

HNLS[u] = −|ur |2 ± 2 |u|p+2,

p + 2
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where multiplication by i defines a Hamiltonian operator with respect to the L2 Hermitian inner
product on the radial line 0 � r < ∞. Next, while the derivative version (dNLS) of the NLS
equation is not Hamiltonian, it does have a Hamiltonian variant

iut = �u + m(m − 2)

4
r−2u ± i

((|u|pu
)
r
+ m

2
|u|pr−1u

)
(dNLS-H)

which reduces to the standard derivative NLS equation in the case m = 0. This radial generaliza-
tion arises from the Hamiltonian formulation

ut = r−m/2∂r

(
r−m/2δH/δū

)
, H =

∞∫
0

H [u]rm dr (1)

with

HdNLS[u] = i

2
(uūr − ūur ) ± 2

p + 2
|u|p+2.

Here r−m/2∂rr
−m/2 is easily verified to be a Hamiltonian operator with respect to the radial L2

Hermitian inner product. In particular, such an operator D with no dependence on u or ū or their
derivatives is Hamiltonian [20] iff it is skew-adjoint in this inner product so consequently the
Poisson bracket associated to it by {P,Q}D = ∫ ∞

0 (δP/δū)D(δQ/δu)dr will be skew-Hermitian
and obey the Jacobi identity for all real functionals P = ∫ ∞

0 P [u]rm dr , Q = ∫ ∞
0 Q[u]rm dr .

Note that, as a consequence of the skew-adjoint property, the Hamiltonian H = ∫ ∞
0 H [u]rm dr

will formally be a conserved quantity, d
dt
H = 0 (to within boundary terms at spatial infinity), for

all formal solutions u.
Last, based on the factorization of the Laplacian � = (∂r + mr−1)∂r , we propose two radial

generalizations of the modified Korteweg–de Vries equation,

ut = (
�u ± up+1)

r
(mKdV-1)

and

ut = (
�u ± up+1)

r
+ m

r

(
�u ± up+1) (mKdV-2)

both of which have neither a Lagrangian nor Hamiltonian formulation except in the case m = 0.
We also introduce a Hamiltonian variant given by

ut = (
�u ± up+1)

r
+ m

2r

(
�u ± up+1) (mKdV-H)

with

HmKdV[u] = −1

2
u2

r ± 1

p + 2
up+2

using the previous Hamiltonian operator (1), specialized in the obvious way to real functions
u = ū. These radial mKdV equations are examples of third order evolutionary wave equations

ut = �∇xu + f (x,u,∇u,�u), u(t, x) ∈ R, (WEc)

with power nonlinearities f = up∇xu, up+1, where ∇x = |x|−1x · ∇ is the radial gradient. Well-
posedness of such wave equations is an interesting problem which has received some recent
attention.
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We emphasize Eqs. (dNLS), (dNLS-H), (mKdV-1), (mKdV-2), (mKdV-H) for m �= 0 are new,
being radial generalizations of the familiar (n = 1 dimensional) derivative Schrödinger equation
and modified Korteweg–de Vries equation.

To begin we recall the definitions of symmetries and conservation laws from an analytical
perspective (see also [5,20]). A point symmetry of a radial wave equation (WE) is a group of
transformations given by an infinitesimal generator

δt = τ(t, r, u), δr = ξ(t, r, u), δu = η(t, r, u)

on the variables t , r , u in the real-valued case, or

δt = τ(t, r, u, ū), δr = ξ(t, r, u, ū), δu = η(t, r, u, ū), δū = η̄(t, r, u, ū)

on the variables t , r , u and ū in the complex-valued case, such that Eq. (WE) is preserved. On
solutions, such a transformation in both cases is infinitesimally equivalent to

δt = δr = 0, δu = η − τut − ξur (2)

called the characteristic form of the point symmetry. The expressions η, τ , ξ are determined by
the Fréchet derivative of the wave equation (WE) applied to δu holding for all formal solutions u.
(More precisely, one works in a jet space setting, using the coordinate space defined by t , r , u

and all derivatives of u modulo Eq. (WE) and its differential consequences. In jet space, a point
symmetry is the prolongation of the operator X = τ∂t + ξ∂r + η∂u. When u is complex-valued,
jet space is enlarged in the obvious way by ū and its derivatives.) The set of all infinitesimal
point symmetries admitted by a given wave equation (WE) has the structure of a Lie algebra
(for the operators X under commutation). For a given point symmetry, invariant solutions are
characterized by the form δu = η(t, r, u) − τ(t, r, u)ut − ξ(t, r, u)ur = 0 when u(t, r) ∈ R, or
δu = η(t, r, u, ū)− τ(t, r, u, ū)ut − ξ(t, r, u, ū)ur = 0 together with its complex conjugate when
u(t, r) ∈ C.

A conservation law of a radial wave equation (WE) is given by a space–time divergence
Dt(r

mΨ t ) + Dr(r
mΨ r) that is equal to a linear combination of the equation and its differential

consequences, so that

DtΨ
t + DrΨ

r + mr−1Ψ r = 0 (3)

holds for all formal solutions u. The radial integral of the conserved density Ψ t formally satisfies

d

dt

∞∫
0

Ψ trm dr = −rmΨ r
∣∣∞
0 = 0

which vanishes when the flux Ψ r at spatial infinity is zero or decays faster than r−m. Hence
C = ∫ ∞

0 Ψ trm dr formally yields a conserved quantity for Eq. (WE). Conversely, any such con-
served quantity arises from a conservation law (3). Two conservation laws are equivalent if their
conserved densities Ψ t differ by a radial divergence r−mDr(r

mΘ) on all formal solutions u,
giving the same conserved quantity C up to boundary terms. The set of all conservation laws (up
to equivalence) admitted by a given wave equation (WE) forms a vector space, on which there is
a natural action [9] by the Lie group of all admitted point symmetries of Eq. (WE).

Each conservation law (3) of a radial wave equation (WE) has an equivalent characteristic
form where Dt(r

mΨ t ) + Dr(r
mΨ r) is just proportional to the equation (WE) multiplied by

an expression Q that depends on the jet variables (up to some finite differential order). Such
expressions Q for which the product of Eq. (WE) and Q yields a total space–time divergence
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(and hence a conservation law on solutions of Eq. (WE)) are called multipliers. There is a specific
relation between multipliers Q and conserved densities Ψ t : in the case of a hyperbolic wave
equation (WEa), conserved densities Ψ t(t, r, u,ur , ut ) modulo radial divergences correspond to
multipliers

Q(t, r, u,ur , ut ) = δ
(
Ψ trm

)
/δut , (4)

while in the case of evolutionary wave equations (WEb) and (WEc), conserved densities
Ψ t(t, r, u,ur ) or Ψ t(t, r, u, ū, ur , ūr ) modulo radial divergences correspond to multipliers

Q(t, r, u,ur , urr ) = δ
(
Ψ trm

)
/δu, (5)

Q(t, r, u, ū, ur , ūr , urr , ūrr ) = −iδ
(
Ψ trm

)
/δu, (6)

respectively. In all cases the multiplier Q is determined by [2,3] the adjoint of the Fréchet deriv-
ative of Eq. (WE) applied to Q, augmented by additional equations formed from the Fréchet
derivative of Q itself, holding for all formal solutions u. (More precisely, one works in the same
jet space as for the computation of symmetries.) Thus the determination of conservation laws via
multipliers is a kind of adjoint problem [1] of the determination of symmetries.

If a wave equation (WE) possesses a Lagrangian formulation, then its multipliers Q define
variational symmetries δt = δr = 0, δu = Q in the real-valued case or δt = δr = 0, δu = Q̄ in
the complex-valued case, such that the determining equations on Q reduce to conditions equiva-
lent to those given by Noether’s theorem [2,3,20] for the Lagrangian to be formally invariant (to
within boundary terms at spatial infinity). Variational symmetries corresponding to multipliers
(4)–(6) for conserved densities containing derivatives of u or ū will be a point symmetry δu = Q

in the real-valued case only if the derivatives of u in Q at most are first order and appear linearly,
or in the complex-valued case δu = Q̄ will be a point symmetry only if the same is true for
derivatives of ū in Q and there are no derivatives of u in Q.

For each of the wave equations (NLW), (NLS), (dNLS) and (dNLS-H), (mKdV-1), (mKdV-2),
(mKdV-H), we now classify all admitted conserved quantities containing up to first order spatial
derivatives, along with all admitted point symmetries. In these classifications, the nonlinear-
ity power will be restricted to p �= 0,1 for (NLW), and p �= 0 for (NLS), (dNLS), (dNLS-H),
(mKdV-1), (mKdV-2), (mKdV-H), so that all cases of linear wave equations are excluded. No
restrictions will be placed on m (even allowing non-integer values). All computations have been
carried out using the computer algebra programs LIEPDE and CONLAW [25,26] utilizing an
enhanced version of the program CRACK [27] for solving overdetermined systems of equations
containing parameters.

Throughout we use the notation F(u,q) = { 1
q
uq , q �=0

lnu, q=0
. Also, a “±” sign will refer to the sign

of the nonlinear term in the wave equations, usually called the focusing/defocusing cases, respec-
tively.

2. Point symmetries

All of the wave equations (NLW), (NLS), (dNLS), (dNLS-H), (mKdV-1), (mKdV-2),
(mKdV-H) obviously admit time translations τ = 1, ξ = η = 0, and, for m = 0, space trans-
lations ξ = 1, τ = η = 0. In addition the Schrödinger equations (NLS), (dNLS), (dNLS-H) admit
phase rotations τ = ξ = 0, η = iu.

The following tables list, firstly, the scaling symmetries admitted by these equations (see
Table 1), and secondly, any extra admitted point symmetries. (Note these classifications exclude
all linear cases i.e. p = 0; plus p = 1 for (NLW).)
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Table 1
Scaling symmetries

τ ξ η Equation

t r − 2
p−1 u (NLW)

2t r − 2
p u (NLS)

2t r − 1
p u (dNLS), (dNLS-H)

3t r − 2
p u (mKdV-1), (mKdV-2), (mKdV-H)

Table 2
Extra point symmetries for (NLW)

τ ξ η Remarks

r t 0 Lorentz boost, m = 0

t2 + r2 2tr − 4
p−1 tu Inversion, m = 4

p−1

Table 3
Extra point symmetries for (NLS)

τ ξ η Remarks

0 2t iru Galilean boost, m = 0

t2 tr ( i
4 r2 − 2

p t)u Inversion, m = −1 + 4
p

The inversion and boost symmetries of Eqs. (NLW) and (NLS) are well known [24], so our
classification in Tables 2 and 3 mainly provides a completeness result that these two equations
do not possess any additional symmetries for special nonlinearity powers.

Surprisingly, no extra symmetries are found to be admitted by Eqs. (dNLS) and (dNLS-H).
Like the (NLS) equation, the mKdV equations (mKdV-2), (mKdV-H) possess boosts and in-

versions as extra symmetries for special nonlinearity powers, while no extra symmetries are
found to be admitted by Eq. (mKdV-1). Our results in Tables 4–6 for these radial mKdV equa-
tions with m > 0 are new.

Note the powers for which the inversions exist are called a conformal power (see Table 7).
As a summary of the main results, we list the point symmetry algebras found for m > 0, with

their generators denoted by Xtrans, Xscal, Xinver, Xphase. These algebras fall into four classes (with
a suitable normalization of Xscal in each case): For Eq. (mKdV-1) as well as the non-conformal
case of Eqs. (NLW) and (mKdV-2), (mKdV-H), the admitted algebra is generated by the time-
translation and scaling symmetries

[Xtrans,Xscal] = Xtrans.

In the conformal case of Eqs. (NLW), (mKdV-2), (mKdV-H) this algebra is enlarged by an in-
version symmetry

[Xtrans,Xinver] = 2Xscal, [Xscal,Xinver] = Xinver.

For the conformal (NLS) equation, its admitted algebra is a central extension of the algebra for
the conformal (NLW) equation, as generated by the phase rotation symmetry

[Xphase,Xtrans] = [Xphase,Xscal] = [Xphase,Xinver] = 0,
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while the admitted algebra for the non-conformal (NLS) equation as well as for the (dNLS) and
(dNLS-H) equations is a similar central extension of the algebra for the non-conformal (NLW)
equation (see Table 8).

Table 4
Extra point symmetries for (mKdV-1)

τ ξ η Remarks

0 2t ∓1 Galilean boost, m = 0, p = 1

Table 5
Extra point symmetries for (mKdV-2)

τ ξ η Remarks

0 2t ∓1 Galilean boost, m = 0, p = 1

t2 2
3 tr − 1

3 (4tu ± r) Inversion, m = 1, p = 1

Table 6
Extra point symmetries for (mKdV-H)

τ ξ η Remarks

0 2t ∓1 Galilean boost, m = 0, p = 1

t2 2
3 tr − 1

3 (4tu ± r) Inversion, m = 2, p = 1

Table 7
Conformal powers

p Equation

1 + 4
m (NLW), m �= 0

4
m+1 (NLS), m �= −1

1 (mKdV-2), m = 1; (mKdV-H), m = 2

Table 8
Point symmetry groups

Generators X Group G Equation

Xtrans, Xscal U(1) � U(1) solvable (mKdV-1), Non-conformal (NLW),
Non-conformal (mKdV-2),
(mKdV-H)

Xtrans, Xscal, Xinver SL(2,R) semisimple Conformal (NLW),
Conformal (mKdV-2), (mKdV-H)

Xtrans, Xscal, Xphase (U(1) � U(1)) × U(1)

solvable
Non-conformal (NLS),
(dNLS), (dNLS-H)

Xtrans, Xscal, Xinver, Xphase SL(2,R) × U(1) centrally
extended semisimple

Conformal (NLS)
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3. Optimal symmetry groups for invariant solutions

All one-dimensional point symmetry subgroups G(1) determine corresponding group-invariant
solutions u(t, r) when the above wave equations are augmented by the invariant surface condition
Xu = 0 where X is the symmetry generator of G(1) in characteristic form. In particular, the
invariant surface condition reduces a wave equation (WE) to an ODE [5,20]. Any two conjugate
subgroups will give rise to reduced ODEs that are related by a conjugacy transformation in
the full point symmetry group G acting on the invariant solutions u(t, r) determined by each
subgroup. Hence, up to the action of G, all invariant solutions for a given wave equation can
be obtained by selecting a one-dimensional subgroup in each conjugacy class of all admitted
one-dimensional point symmetry subgroups G(1). Such a selection is called an optimal set of
subgroups [21].

Optimal subalgebras have been classified in the work presented in [22] for all three- and
four-dimensional Lie algebras. Applying this classification to the point symmetry algebras of
the wave equations under consideration, we have the following list of optimal one-dimensional
subalgebras (see Table 9) for finding all invariant solutions of Eqs. (NLW), (NLS), (dNLS),
(dNLS-H), (mKdV-1), (mKdV-2), (mKdV-H) for m > 0.

Invariant solutions for Eqs. (NLW), (NLS) and (dNLS) with m � 0 (i.e. in all dimen-
sions n � 1) have been derived in [4,10–12,16,17,23]. We will present invariant solutions of
Eqs. (dNLS-H), (mKdV-1), (mKdV-2), (mKdV-H) for m > 0 (i.e. in dimensions n > 1) else-
where. (The m = 0 case of Eqs. (mKdV-1), (mKdV-2), (mKdV-H) is treated in [14,18,20,23].)

Table 9
Optimal one-dimensional subalgebras (a, b, c are arbitrary constants)

Generators Equation

Xtrans, Xscal (mKdV-1), non-conformal (NLW),
non-conformal (mKdV-2), (mKdV-H)

Xtrans, Xscal, Xinver + Xtrans Conformal (NLW), conformal (mKdV-2), (mKdV-H)

Xphase, Xscal + aXphase, Xtrans + bXscal + cXphase Non-conformal (NLS), (dNLS), (dNLS-H)

Xphase, Xtrans, Xtrans ± Xscal, Conformal (NLS)
Xscal + aXphase, Xtrans + Xinver + bXphase

4. Local conservation laws

As the wave equations (NLW), (NLS) and (dNLS) each have a Lagrangian formulation, all
their admitted variational point symmetries yield corresponding conserved quantities which are
well known [24] for Eqs. (NLW) and (NLS). In particular, time translation symmetry yields
energy, space translation and boost symmetries yield momenta, and inversion symmetry yields
conformal energy, while phase rotation symmetry yields charge. In addition, there is a special
nonlinearity power for which the scaling symmetry becomes variational and yields a dilational
energy. Our classification in Tables 10–12 provides a completeness result that no additional con-
served quantities up to first order are admitted by Eqs. (NLW), (NLS) and (dNLS) for special
nonlinearity powers (excluding all linear cases i.e. p = 0; plus p = 1 for (NLW)).

The remaining wave equations (dNLS-H) and (mKdV-1), (mKdV-2), (mKdV-H) do not have
a Lagrangian formulation, so consequently their admitted conservation laws come from mul-
tipliers given by adjoint-symmetries [3] rather than symmetries. For the Hamiltonian equa-
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Table 10
Local conservation laws for (NLW)

Ψ t Ψ r Remarks
1
2 (u2

t + u2
r ) ∓ F(u,p + 1) −utur Energy

utur − 1
2 (u2

t + u2
r ) ∓ F(u,p + 1) Momentum, m = 0

1
2 r(u2

t + u2
r ) + tut ur ∓ rF (u,p + 1) − 1

2 t (u2
t + u2

r ) − rut ur

∓ tF (u,p + 1)

Boost momentum,
m = 0

1
2 t (u2

t + u2
r ) + rut ur

+ 2
p−1 uut ∓ tF (u,p + 1)

− 1
2 r(u2

t + u2
r ) − tut ur

− 2
p−1 uur ∓ rF (u,p + 1)

Dilational energy,
m = 4

p−1

1
2 (t2 +r2)(u2

t +u2
r )+2trut ur − 2

p−1 u2

+ 4
p−1 tuut ∓ (t2 + r2)F (u,p + 1)

−tr(u2
t + u2

r ) − (t2 + r2)ut ur

− 4
p−1 tuur ∓ 2trF (u,p + 1)

Conformal energy,
m = 4

p−1

Table 11
Local conservation laws for (NLS)

Ψ t Ψ r Remarks

|u|2 i(ur ū − uūr ) Charge

1
2 |ur |2 ∓ F(|u|,p + 2) − 1

2 (ur ūt − ut ūr ) Energy

it (ur ū − uūr ) − r|u|2 it (uūt − ut ū) + ir(uūr − ur ū)

+ 2t |ur |2 ± 4tF (|u|,p + 2)

Boost momentum, m = 0

i
2 (ur ū − uūr )

i
2 (uūt − ut ū)

+ |ur |2 ± 2F(|u|,p + 2)

Momentum, m = 0

1
2 t |ur |2 + i

8 r(ur ū − uūr )

∓ tF (|u|,p + 2)

− 1
2 t (ut ūr + ur ūt ) − 1

4 r|ur |2
+ i

8 r(ut ū − uūt ) − 1
2p

(uūr + ur ū)

∓ 1
2 rF (|u|,p + 2)

Dilational energy, m = 4
p − 1

1
2 t2|ur |2 − 1

8 r2|u|2
+ i

4 tr(ur ū − uūr )

∓ t2F(|u|,p + 2)

− 1
2 t2(ut ūr + ur ūt ) − 1

2 t |ur |2
+ i

8 r2(ur ū−uūr )+ i
4 tr(ut ū−uūt )

− 1
2p

t (ur ū + uūr ) ∓ trF (|u|,p + 2)

Conformal energy, m = 4
p − 1

Table 12
Local conservation laws for (dNLS)

Ψ t Ψ r Remarks

|u|2 iur ū − iuūr ∓ 2F(|u|,p + 2) Charge

|ur |2 ∓ i(ur ū − uūr )|u|−2F(|u|,p + 2) −(ur ūt + ut ūr )

∓ i(ut ū − uūt )|u|−2F(|u|,p + 2)

Energy

i
2 (ur ū − uūr )

i
2 (uūt − ut ū) + |ur |2 m = 0

i
2 (ur ū − uūr ) + 2t |ur |2

∓ 2it (ur ū − uūr )|u|−2F(|u|,p + 2)

i
2 (ut ū − uūt ) − 2t (ur ūt + ut ūr )

± 2it (ut ū − uūt )|u|−2F(|u|,p + 2)

− 1
p (ur ū + uūr ) − r|ur |2

Dilational energy,
m = 2

p − 1



872 S.C. Anco, N.M. Ivanova / J. Math. Anal. Appl. 332 (2007) 863–876
Table 13
Local conservation laws for (dNLS-H)

Ψ t Ψ r Remarks

r−m/2(u + ū) r−m/2(i(ūr − ur ) ∓ |u|p(u + ū)

+ mi
2 r−1(ū − u))

r−m/2i(ū − u) r−m/2(ur + ūr ± i|u|p(u− ū)+ m
2 r−1(u+ ū))

i
2 (uūr − ur ū)

± 2F(|u|,p + 2)

i
2 (ut ū − uūt ) − |ur |2 − m2

4 r−2|u|2
− |u|p+2 ∓ i|u|p(uūr − ur ū)

Hamiltonian

|u|2 i(uūr − ur ū) ∓ 2(p + 1)F (|u|,p + 2) Charge, m = 0

i
2 t (uūr − ur ū)

± 2tF (|u|,p + 2) + r
2 |u|2

i
2 t (ut ū − uūt ) − t (|ur |2 + m2

4 r−2|u|2)

− t (|u|p+2 ± i|u|p(uūr − ur ū))

+ i
2 r(ur ū − uūr ) ∓ (p + 1)rF (|u|,p + 2)

m = 2
p − 2

Table 14
Local conservation laws for (mKdV-H), m �= 0

Ψ t Ψ r Remarks

r−m/2u −r−m/2(urr + mr−1ur ± up+1) Mass

1
2 u2

r ∓ F(u,p + 2) −utur + 1
2 u2

rr + mr−1ururr

± up+1urr + m2

2 r−2u2
r ± mr−1up+1ur + 1

2 u2p+2

Hamiltonian

3
2 tu2

r − 1
2 ru2 ∓ 3F(u,p + 2) −3tut ur + 3

2 tu2
rr + 3

2 tu2p+2 ± 3tup+1urr + ruurr

− 6 p−2
p tr−1ururr + 6 (p−2)2

p2 tr−2u2
r − 1

2 ru2
r

− 2 p+1
p uur ± (p + 1)rF (u,p + 2)

m = 4
p − 2

9
2 t2u2

r ∓ 3t2u3 − 3tru2

∓ 6tr−1u ∓ r2u

−9t2r−1urut + 9
2 t2r−1u2

rr + 18t2r−2ururr ± 3r−1u

± 9t2r−1u2urr + 6tuurr ± 6tr−2urr + 6tr−2u2

+ 18t2r−3u2
r − 3tu2

r ± 18t2r−2u2ur + r2u2

± 12tr−2ur ∓ ur + 9
2 t2r−1u4 ± 4tu3 ± rurr

m = 2, p = 1

Table 15
Local conservation laws for (mKdV-1), m �= 0

Ψ t Ψ r Remarks

r−mu −r−m(urr + mr−1ur ± up+1) Mass

Table 16
Local conservation laws for (mKdV-2), m �= 0

Ψ t Ψ r Remarks

r−mu −r−m(urr + mr−1ur ± up+1) Mass

1
2 r1/2u2 −r1/2uurr + 1

2 r1/2u2
r − r−1/2uur ∓ 3

4 r1/2u4 ± 1
8 r−3/2u2 Dilational momentum,

m = 3/2, p = 2

1
2 ru2 −ruurr + 1

2 ru2
r − 2uur ∓ 3

4 ru4 Dilational momentum,
m = 3, p = 2
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tions (dNLS-H) and (mKdV-H), note the Hamiltonian itself provides one conservation law. Our
results in Tables 13–16 for all these radial equations with m > 0 are new.

For completeness we mention that in the m = 0 case the well-known mKdV conservation laws
are listed in [2,18–20].

5. Norms and critical powers

The wave equations (NLW), (NLS), (dNLS), (dNLS-H), (mKdV-H) possess both a scaling
symmetry (which is uniform in m) and a conserved energy or Hamiltonian, so they each have
an associated critical power with respect to the energy norm, E[u] = ∫ ∞

0 e[u]rm dr , as shown in
Table 17.

All these wave equations also possess dilational energies or dilational Hamiltonians for special
nonlinearity powers p depending on m, in addition to the well-known conformal energies admit-
ted for the (NLW) and (NLS) equations in the case of conformal powers p (cf. Table 7). Interest-
ingly, the Hamiltonian mKdV equation (mKdV-H) admits a conformal energy in this case too.

An interesting pattern in Tables 18, 19 is that when m is expressed in terms of p then the
difference mcrit. −mdil. (for any fixed p) is equal to ord(∂r )− ord(∂t )+ 1 > 0 where “ord” refers
to the highest order of a specified derivative appearing in the wave equation. Accordingly, the
dilation and conformal powers are subcritical in all cases.

Two other norms of analytical interest are the radial L2 norm and the radial Hs norm given
by ‖u‖L2 = (

∫ ∞
0 |u|2rm dr)1/2 and ‖u‖Hs = (

∫ ∞
0 |∂s

r u|2rm dr)1/2 for any positive integer s.
The latter norm has a natural extension to all s � 0 defined in terms of the Fourier transform
û = ∫

Rm+1 u(t, |x|) exp(−k · x)dm+1x such that u is in Hs iff (1 + |k|s)û is in L2(Rm+1). Ta-
bles 20, 21 list the critical powers p for which these norms are scaling-invariant. Note in the
case of the Schrödinger equations (NLS), (dNLS), (dNLS-H), the L2 norm coincides with the
conserved charge.

Table 17
Energy norms

E[u] Critical power p Remarks∫ ∞
0 ( 1

2 (|ur |2 + |ut |2) ∓ F(u,p + 1))rm dr 1 + 4
m−1 (NLW), m �= 1∫ ∞

0 ( 1
2 |ur |2 ∓ F(|u|,p + 1))rm dr 4

m−1 (NLS), m �= 1∫ ∞
0 ( 1

2 |ur |2 ∓ i(uūr − ūur )|u|−2F(|u|,p + 2))rm dr 2
m−1 (dNLS), m �= 1∫ ∞

0 ( i
2 (uūr − ūur ) ± 2F(|u|,p + 2))rm dr 2

m (dNLS-H), m �= 0∫ ∞
0 ( 1

2 |ur |2 ± F(u,p + 2))rm dr 4
m−1 (mKdV-H), m �= 1

Table 18
Dilational energies and dilation powers

Dilational energy Dilation power p Remarks∫ ∞
0 (te[u] + (rur + m

2 u)ut )r
m dr 1 + 4

m (NLW), m �= 0∫ ∞
0 (te[u] + i

4 r(ūur − ūr u))rm dr 4
m+1 (NLS), m �= −1∫ ∞

0 (te[u] + i
4 r(ūur − ūr u))rm dr 2

m+1 (dNLS), m �= −1∫ ∞
0 (te[u] + 1

4 r|u|2)rm dr 2
m+2 (dNLS-H), m �= −2∫ ∞

0 (te[u] − 1
6 ru2)rm dr 4

m+2 (mKdV-H), m �= −2
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Table 19
Conformal energies and conformal powers

Conformal energy Conformal power p Remarks∫ ∞
0 ((t2 + r2)e[u] + 2t (rur + m

2 u)ut )r
m dr 1 + 4

m (NLW), m �= 0
∫ ∞

0 (t2e[u] + i
2 tr(ūur − ūr u) − 1

4 r2|u|2)rm dr 4
m+1 (NLS), m �= −1

∫ ∞
0 (t2e[u] − 1

3 (tru2 + 1
2 tr−1u + 1

3 r2u))r2 dr 1 (mKdV-H), m = 2

Table 20
L2 critical powers

Critical power p Remarks

1 + 4
m+1 (NLW)

4
m+1 (NLS), (mKdV-1), (mKdV-2), (mKdV-H)

2
m+1 (dNLS), (dNLS-H)

Table 21
Hs critical powers

Critical power p Critical s Remarks

1 + 4
m+1−2s

m+1
2 − 2

p−1 (NLW)

4
m+1−2s

m+1
2 − 2

p (NLS), (mKdV-1), (mKdV-2), (mKdV-H)

2
m+1−2s

m+1
2 − 1

p (dNLS), (dNLS-H)

6. Concluding remarks

The utility of symmetries and conservation laws can be extended by means of potential sys-
tems [6–8]. A potential system for a radial wave equation (WE) arises from any conservation law
such that vanishing set of its multiplier, Q = 0, is contained in the set of all formal solutions u

of the given equation. Potentiating such a conservation law yields the system

vt = rmΨ r, vr = −rmΨ t

whose solutions v up to shifts (v → v + c for an arbitrary constant c) are in one-to-one cor-
respondence with the set of solutions u. For a given potential system, any admitted symmetry
or conservation law that has an essential dependence on the potential v represents a nonlocal
symmetry or nonlocal conservation law, respectively, of the wave equation (WE). Of course, the
superposition of a local symmetry or a local conservation law with a nonlocal one yields further
nonlocal ones, and so for the purpose of classifications we will mod out the admitted sets of local
symmetries and conservation laws.

All potential systems arising from the conservation laws for the wave equations in Ta-
bles 10–16 are given by potentiating: the mKdV equations themselves (mKdV-1), (mKdV-2),
(mKdV-H) and the Hamiltonian variant of the derivative Schrödinger equation itself (dNLS-H);
the charge conservation law for the Schrödinger equations (NLS), (dNLS), and (dNLS-H) in the
case m = 0; and the dilational momentum conservation laws for the mKdV equation (mKdV-2)
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Table 22
Nonlocal conservation laws for (mKdV-1) ε = √∓1 = i,1 respectively in the defocusing/focusing cases

Potential system Ψ t Ψ r Remarks

vr = u, eε
√

2v 1
3 eε

√
2v(u2 − √

2ur ) m = 0, p = 2
vt = urr − ε2u3

vr = u, reε
√

2v 1
3 eε

√
2v(ru2 −

√
2

2 (2rur + u)) m = 3/2, p = 2
vt = urr + 3

2 r−1ur − ε2u3

vr = u, r2eε
√

2v 1
3 eε

√
2v(r2u2 − √

2(r2ur + ru) + 1) m = 3/2, p = 2
vt = urr + 3r−1ur − ε2u3

in the cases m = 3, 3
2 . We find that only the first of these potential systems—potentiation of

the (mKdV-1) equation itself (including the case m = 0)—yields nonlocal conservation laws and
none yield any nonlocal symmetries (see Table 22).

Each of these nonlocal conservation laws gives rise to a further potential system. Of the three,
none yield any additional nonlocal conservation laws, and only the one case m = 0 yields a non-
local symmetry (previously found in [13,15]).

Nevertheless, these potential systems may be very useful for finding new exact solutions [4]
of the wave equations (NLS), (dNLS), (dNLS-H), (mKdV-1), (mKdV-2), (mKdV-H), which we
will pursue elsewhere.
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