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ABSTRACT 

For a linear program in which the constraint coefficients vary linearly with the 
time parameter, we showed in a previous paper that a basic feasible solution can be 
evaluated using O((k + 1)~~s) arithmetic operations, where m is the number of 
constraints and k is the index of the basis matrix pair. Here we show, in the special 
case when k = 1 for all basis matrix pairs, and when one of the matrices in each pair 
has nearly full rank, how the (possibly singular) matrix factorization can be updated 
with only O(m”> operations, using rank-one update techniques. This makes the 
arithmetic complexity of updating the basis in asymptotic linear programming compa- 
rable to that of updating the inverse in ordinary linear programming, in this case. 
Moreover, we show that the result holds, in particular, when computing a Blackwell 
optimal policy for Markov decision chains in the unichain case or when all policies 
have only a small number of recurrent subchains. 

1. INTRODUCTION 

It was shown in [12] that the asymptotic linear programming problem 
could be solved by the simplex method, by storing all tableau entries as 
rational functions of time and performing all arithmetic operations over the 
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field of rational functions (using polynomial arithmetic and comparing the 
high-degree coefficients of the polynomials). When the constraint coefficients 
vary linearlv with the time parameter, this method requires O( m4 log m) real i 
arithmetic operations (on a digital computer these are called floating-point 
operations, or Jlops for short) in order to invert a typical basis matrix, where 
nz is the number of constraints. 

This complexity bound was lowered in [14], where a Neumann expansion 
of the basis matrix inverse was used, based on a matrix factorization of [19], 
giving O((k + 1)m”) fl ops, where k is the index of the basis matrix pair. It is 
always true that 0 < k < m, and there are classes of problems for which k is 
a fixed number independent of 1~2. A similar series expansion was obtained 
independently in Anstreicher’s unpublished dissertation [2], based on the 
shufle algorithm of [16], but in a different context. More recently, yet 
another factorization was presented in [ll] which obtains a similar series 
expansion in O(rrz”) flops, independent of the index k. 

In this paper, we consider the special case when all the basis matrix pairs 
have the same index k = 1 (and hence are singular), and we assume that 
their corresponding rank is close to m. For example, the asymptotic linear 
program used in [6] and [lOI for finding a Blackwell optimal policy [3] in 
Markov decision chains satisfies these conditions in the unichain case, or 
when the number of recurrent subchains is bounded by a fixed constant for 
all stationary policies. Our main result is that the factorization of [I4], which 
takes 0(m3) in this case, can be updated in 0(m2) flops, compared to 
O( m’ log ?n) in [IO] and [I2]. The update algorithm we present uses the 
well-known Sherman-Morrison formula for rank-one modification of nonsin- 
gular matrices, and its generalization to higher rank, the Woodbury formula 
(see, e.g., [9]). B ecause the modified matrices can be singular in our problem, 
our algorithm must first find a suitable (i.e., nonsingular) partition. We show 
that such a partition can always be found. 

The main purpose of this research is to investigate whether the computa- 
tional complexity of an iteration of asymptotic linear programming is compa- 
rable to that of an iteration of ordinary linear programming, especially for 
computing a Blackwell optimal policy in Markov decision chains. For this 
reason, this paper contains no results about the numerical stability of the 
update algorithm. Moreover, the factorization (and its update) is presented 
completely in terms of explicit matrix inverses. This allows for a simpler 
presentation than otherwise. We cannot claim that this update algorithm has 
optimal complexity; however, we observe that it has a lower complexity 
bound than other algorithms available in the literature. 

The paper is organized as follows. The asymptotic linear programming 
problem is briefly defined in Section 2. The factorization of the basis and the 
corresponding series expansions are described in Section 3. The asymptotic 
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linear-programming formulation for Markov decision chains is presented in 
Section 4, as a family of problems with index 1 and nearly full rank. thus 
justifying our restrictions. The algorithm for updating the basis is derived in 
Section 5 in the special case when the submatrix is nonsingular. The method 
is extended in Section 6 to handle singular submatrices. The main results of 
this paper are Lemmas 5.1 and 5.2. and Theorem 6.1. 

2. DEFINITION OF ASYMPTOTIC LINEAR PROGRAMMING 

As defined in [12], the asymptotic linear programming problem is formu- 
lated as follows: 

maximize c(t) X, subject to A(t) x = b(t) and x >, 0, (1) 

where the entries of c(t), A(t), and b(t) are rational functions of the time 
parameter t. It is required to find a basis that is feasible and optimal for nil 
sufficiently large values of t. If we wanted only to find an optimal solution for 
a fixed value of t, this would be an ordinary linear program. Here instead, the 
parameter t is an indeterminate which represents an unknown, arbitrarily 
large real number. We will consider only the special case in which the 
constraint coefficients vary linearly with time, i.e., A(t) = G + tH for some 
fixed matrices G and H. For simplicity, we will also assume that the vectors 
c(t) = c and b(t) = b are independent of time. 

It was shown in [12] that for an arbitrary basic feasible solution, if B(t) is 
the matrix of basic columns of A(t), then the entries of B(t)-’ are rational 
functions of the form p(t)/y(t> h w ere p(t) and y(t) are polynomials of 
degree at most m, the number of constraints. From this, selecting a variable 
to enter the basis and selecting a variable to leave the basis can be performed 
as in the usual simplex method, except that polynomial arithmetic must be 
used and all comparisons are based on the high-degree coefficients of the 
polynomials. That is, if 

p(t) = p,) + plt + --a +p,t”, 

and 

q(t) = q() + qlt + ... +qg’; 

with p, f 0 and q1 f 0, then we say that p(t>/y(t) > 0 if and only if 

pkql > O. 
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3. FACTORIZATION OF THE BASIS 

Let B(t) be th e s ( q uare) matrix of basic columns of A(t) corresponding 
to an arbitrary basic feasible solution of (1). We write B(t) = A + tB (with 
A and B having the basic columns of G and H, respectively), and we assume 
that there is at least one point t = cl (on the real line) for which the real 
matrix B(d) is nonsingular, although both A and B may be singular. This 
implies that there is a time T > 0 such that B(f) is nonsingular for all t > 7’. 

In this sense, the matrix B(t), where the parameter t is indeterminate, is 
defined to be nonsingular. Such a matrix is also known as a regular pencil in 
the literature (see, e.g., [Y]). 

Let C be an arbitrary square matrix with real (or complex) entries. The 
index of C, denoted ind C, is the smallest nonnegative integer k such that 
rank C”+ ’ = rank C” (see, e.g., [4]). Following the approach of [5], we define 
the index of a matrix pair, denoted ind( A, B), as follows. Let d be any value 
of the time parameter for which the matrix A + dB is nonsingular. Then 
ind(A, B) = ind[(A + dB)-‘B]. Th e index is uniquely determined by the 
matrices A and B and is independent of (1. 

We are interested in the special case when i&A, B) = 1. Then rank 
B = r < m and, according to [14], there are two nonsingular m X tn matrices 
U and V such that 

and VBV = (2) 

where A,, and B,r are T X r matrices. A,, is an (m - r> X (m - I^) 
matrix, and A,, and B,, are nonsingular. Consequently, for any fixed, large 
enough t we have 

I’-‘( A + fB)p’Um’ = 

(3) 

where D,, = BG’A,,. 
Equation (3) can be used to express the reduced prices as Laurent series 

in powers of l/t. Let cg be the vector of objective function coefficients for 
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the basic variables. and define 

87 

&O) = C,V &‘) = c,v (4 

and, for i = 2,3,. , 

,(i) = _,(i-1) AllBlll (0 3 
Suppose Gi f tHj is the column vector of constraint coefficients correspond- 
ing to the nonbasic variable xj. Then the reduced price Ej is given by the 
series 

Ej = -+plz/] + [cj - J(J)gj - w(‘k] - 2 t-‘[lc”‘g, + d+‘vli]; 
i=l 

where gj = UGj and hj = UH.. 

Using Equations (4) and (Si, each term of the series (6) can be computed 
with O(m’) flops. To determine whether the nonbasic variable xi is eligible 
to enter the basis, we need to test whether the first nonzero term in (6) is 
positive. In a way similar to Theorem 5.1 of [I4], it is easy to show that if the 
first m + 2 terms of (6) are equal to zero, then Cj = 0. Hence in the worst 
case, it will take O(m3> flops to test whether a nonbasic variable is eligible to 
enter the basis. By comparison, this takes 0(m3 log m) flops when rational 
functions are used as in [IO] and [I2]. However, in the case when only a fixed, 
small number of terms need to be evaluated, testing an entering variable 
takes only O(m”> fl o p s, which is comparable to ordinary linear programming. 
This is the case for Markov decision chains with the sensitive discount 
optimal&y criteria of [18]. 

A similar approach can be used to show that choosing a variable to leave 
the basis can also be performed with O(m”) flops in the worst case, and with 
O(m”) flops when only a fixed number of terms are required. Moreover, in 
the special case of Markov decision chains, the variable that leaves the basis 
can be selected without any computations at all, once the entering variable is 
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chosen. This is because, as noted in the next section, there is exactly one 
basic variable for each state. 

A typical iteration of the simplex method requires one more step: updat- 
ing the factorization of the basis matrix. This takes O(m’> flops in ordinary 
linear programming and O( m3 log m) flops in asymptotic linear programming 
using rational functions. We will show, in Section 5, how the factorization of 
Equation (2) can be updated in O(m”) flops when m - r < K, where K is a 
fixed constant such that K 4 m. A family of such problems is discussed next. 

4. SPECIAL CASE: MARKOV DECISION CHAINS 

In a Markou decision chain, the state i of a system is observed periodi- 
cally and in each period an action a is selected. There is a finite set E of 
states, and for every state i E E there is a finite set A(i) of possible actions. 
When action u is taken in state i, a reward of expected value rir, is received 
instantly. The conditional probability pifLj that state j is observed, given that 
the system was in state i at the previous period and that action n w&s 
selected, is given and invariant with time. 

Future rewards are discounted with a one-period discount factor p = I/ 
(1 t- p), where p > 0 is a (small) interest rate. The objective is to find a 
decision rule y, such that action n = y(i) is selected whenever the system is 
in state i, in order to maximize the present value of all rewards received over 
an infinite planning horizon. A decision rule (or policy) that is optimal for (~11 
sufficiently small values of the interest rate p is said to be Blackwell optimal 

following [3]. 
The problem is formulated as an asymptotic linear program in Equation 

(3.2.2) of [lo], as follows: 

s.t. C C [Cl + P)‘ij - PirrJ]‘io = l, j E E 
isE /IEA(I) 

and Xi<, > 0, (1 GA(i), i EE, 

where sij, as usual, denotes Kronecker’s indicator function. Reparametrizing 
with t = l/p, and resealing the objective coefficients and the right-hand 
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sides, we get an equivalent formulation with t large: 

Each basic feasible solution of (7) has xja > 0 for exactly one a E A(i), for 
every i E E. That is, each basic feasible solution determines precisely one 
decision rule y. 

Let xz be the vector of basic variables and Py the matrix of transition 
probabilities under policy y. Then the basic values are obtained by solving 
the system of linearkquations 

ls(t)xB’ = e, 

where e is a column vector with all entries equal to 1 and 

B(t)’ = Z + t( I - P’), 

with Z the identity matrix and B(t)’ the transpose of B(t). 

(8) 

It is well known (see, e.g, [4]) that ind(Z - Py> = 1, and hence that 
ind(Z, I - Py> = 1 for all policies and hence for all feasible bases of (7). 
Further, under the frequently used unichain assumption that the Markov 
chain associated with each policy has exactly one recurrent subchain, we also 
have that r = rank(Z - P’> = m - 1, so that VI - r = 1 Q m for all feasi- 
ble bases. See [13] and [15] for the factorization and series expansion of (8) 
and related equations. 

Using the algorithm of [lo], ‘t 1 would take O(m’) rational operations to 
update the matrix B(t) ( w h ose elements are rational functions) at each pivot 
step. As implemented in [lo], each rational operation can be performed in 
O(m”> red arithmetic operations, giving 0(m4> flops for the complexity of a 
single pivot step. Using the more sophisticated algorithms of [l] to perform 
the rational arithmetic in O(m log m> real operations, the update still requires 
0(m3 log m> flops. The factorization of the basis from scratch, as discussed in 
[14], would take 0(m3) flops. The algorithm we present in the next sections 
reduces this complexity bound to O(m”> flops. Our method is not restricted 
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to the unichain case. In fact, combining the operations counts for the two 
major steps described in Section 5, we obtain [IS + 2(r?~ - r)]m” + 4(m - 
r)m flops. This is O(m’>, in particular, if rr~ - r < K for some constant K. 
For example, a Markov decision chain for which all policies have no more 
than, say K = IO recurrent classes would satisfy our assumptions. 

A different approach for computing a Blackwell optimal policy is the 
policy iteration method of [17]. Unlike the simplex method, each policy 
iteration step changes the action of several states, causing the matrix B(t) to 
be modified in more than one column. The policy evaluation step then 
requires O(m3) flops to factorize the corresponding matrix I - Py. The 
correspondence between the simplex method and the policy iteration method 
is well known in the case of a fixed interest rate p. The matrix factorizations 
presented in [I41 and [IS] and the efficient basis update presented in this 
paper illustrate a similar connection between asymptotic linear programming 
and the policy iteration methods of [IT] for the Blackwell optimality criterion 
and of [18] for the sensitive discount optimality criteria. 

5. RANK-ONE UPDATE OF THE FACTORIZATION 

In this section, we describe an algorithm for updating the factorization of 
Equation (2) in O(m’) flops. We assume that each of the matrices A and B 
is changed by a rank-one modification. The basis change of linear program- 
ming is then a special case in which precisely one column is modified. As in 
the previous sections, we assume that A and B are m X m matrices such 
that ind( A, B) = 1. Moreover, we assume also that m - T < m, where 
r = rank B. 

Let (Y and p be column vectors and IX a row vector. The modified 
matrices are then 

A=A+au: and B^=B+flw. (9) 

In the context of asymptotic linear programming, w would be the u_nitAvector 
pointing to the variable that leaves the basis. We assume that ind( A,AB) = 1,, 
so that a factorization of the same form as Equation (2) is valid for A and B. 
This is consistent with our earlier assumption that all basis matrix pairs 
(encountered by the simplex method) have index I in the asymptotic linear 

program. Let p = rank I?. Then three possible cases are readily identified: 
? = r - 1, ; = r, and p = r + 1, and hence m - ; Q m holds. 
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As we are concerned only with updating the factorization of Equation (21, 
we assume that the following matrices are available as input to our algorithm: 
the nonsingular m X vn matrices U and V, the (possibly singular) r X r 
matrix A,, , the nonsingular (m - r) X (m - r> matrix A,, , and the r X 
T matrix B,;‘. We are assuming that m - r < K, where K is a small enough 
constant so that the computational effort required to invert A,, is no greater 
than O(m’), i.e., (m - rj3 ,< K” < m2. The output of our algorithm then 

n A A 
consists of the m X m matrices U and ,V, the ; X ; matrices A,, and ii<‘, 
and the !m - ;) X (m - ;) matrix A,,, all of them nonsingular except 
possibly A,, , such that 

n*.. 

UAV = 
n AA 

and UBV = (10) 

The update algor$hm consists of two major steps, step I and-step II. In the 
first, the matrix B,’ is computed. Then the factorization of A is obtained in 
step II. We first describe step I, which consists of four substeps, labeled step 
1 to step 4. 

Step 1 is simply the conversion of the vectors /3 and w. Using the same 
partitions as in Equation (21, let us write 

and wV = 

Then we apply the same transformation to L?, 

(11) 

(12) 

(W1 WZ>. 

getting 

PP2 

i 
P2w2 

Although Equation (12) holds, the matrix Us^V is not computed at this point. 
Hence step 1 takes 2m2 flops to transform the vectors /3 and w. (Here, the 
term jlop is used as in [8] to denote a pair of arithmetic operations: one 
addition and one multiplication.) 

At step 2, we eliminate the bottom and rightmost parts of the matrix 
Us^V, working directly on the subvectors p2 and w2. Let u denote a unit 
vector of appropriate dimension, so that u ’ = (LO, . . , 0). Denote by & 
(wzi) the ith component of the subvector & (w,). Let k = argmax{] Pei]: 
i = I..., m - r} and 1 = argmax{lw,,l: i = 1,. . , m - r}, and define 
p* = & and w* = wZI. Then there are two nonsingular (m - r> x (m - 
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r-1 matrices X(l) and Y(r) such that XC’)& = /3*u and w,Y(‘) = u’w*. For 
example, with m - r = 4 and k = 1 a typical form is given by 

I 

X(1) = 
-&l/a,, 

0 0 0’ 
1 0 0 

-&s/P21 9 1 9 ’ 

\ -P24/& 0 0 1, 

with an obvious permutation when k # 1. The matrix Y(l) could have the 
same structure, transposed. Define 

and ~(1) = (13) 

We now have that 

B,, + P,zL‘, p,zL’* 6 
U(l)U~W(‘) = 

I 

P*W, p*w* 0 ) (14) 
0 0 0 I 

where the matrices of (13) and (14) are not computed explicitly. The matrices 
U”‘U and W(l) can each be computed with 2 m( m - r> flops. 

Step 3 is the heart of the algorithm with the inversion of B,, = B, 1 + 
Plwl, which, for now, is assumed to be nonsingular. To simplify the presenta- 
tion, the singular case will be postponed until Section 6. Let y = w , B,‘P,. 
Then Y # - 1 and the Sherman-Morrison formula (see, e.g., [9]> gives 

g,’ = (B,, + /3,wl) -’ = BTll - (B,‘P,)(w, BL’) 
1+y . (15) 

This takes 3r” flops. 
At step 4 we compute l?,‘. Using the same partitioning as in Equation 

(14), define 

j-J@) = I -p*wJi,l 1 0 

0 1 0 0 0 1 

and ~(2) = 
I -B&W* 0 

0 1 0 
0 0 I 

1 
(16) 
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Step I. 

Step 2. 

Step 3 

Step 4. 

Then 

Transform the vectors /3 and IL; of Equation (9). and partition them as in 
Equation (11). 
Compute the matrices U(‘)U and VV(l) with U(l) and V(l) as in Equation 

(13). 
Let y = wlB,‘/3,. If y = - 1 then see Section 6, else compute (B,, + 
&2~.~)-l as in Equation (15). 
Compute the matrices U(“)U(‘)U and VV”‘V’“’ with U’“’ and V@’ defined 
in Equation (16), and obtain B^,’ and & from Equation (17). 

FIG. 1. Major step I. 

0 0 

fp)fJ(q,$w(1)v(~) = I E,, 
0 6 0, I (17) 
0 0 0 

where 6 = p*w*(l - u~~B,<~/?~). If S = 0 then 2,’ = El;’ and ? = r, else 

It takes 2r” + 2r-m flops to compute the matrices U(“)U(‘)U and W (1)V(n). 
Major step I is now completed, after performing approximately 9m” + 
4m(m - T) flops. It is summarized in Figure 1. 

We now examine the validity of the nonsingularity assumption for B,,. 
There are applications in which B,, is in fact singular. This situation can 
occur, for instance, with Markov decision chains. For example, with 

P= (‘: Of), U= (i y), and V= (_: y), 

we have B,, = (0.5), where B = Z - P’. Changing the first row of P to 
(1, O), we have indeed two vectors p and w such that Z? = B + /3w and 
hence B,, + p,w, = (O), >rJhich . 1s singular. The above transition matrix P 
has a transient state, and P has two recurrent classes. 

In the special case when both transition matrices P and P^ are irreducible, 
we now show how the factorization can be performed so that the submatrix 
B,, + ,Blwl is always nonsingular and the algorithm of Figure 1 is valid. 
Because the matrix A is an identity matrix, we need that V = U- ’ in order 
for Equation (2) to be satisfied. 
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n 

LEMMA 5.1. Suppose P and P are irreducible, stochastic m x m mat+ 
ces, and let B = Z - 

U such that 
P’ and 6 = Z - g’. Then there is a nonsingular matrix 

and UB^t.-’ = 

,. 
where B,, and B,, are nonsingular. 

Proof. By irreducibility, we have r = F = m - 1. Hence we can write 

where p,, and fizz are scalars. Let e’ 
nonsingular matrix X as follows: 

= (1,. , l), and construct a square, 

Then we have 

X’X-’ = (B;l -;;I) and XjX-’ = (t’ -n”l), 

where B,, = Z - P;, + P&e’, Z?,, = Z - P^,‘1 + $i, e I. The nonsingularity of 
B, , and I!, I follows from Lemma 2.1 of [13], because ind B = ind I? = 1 
and r = p = m - 1. Then the result is obtained by taking U = Y-rX, where 

Y= (; By”,). 

At major step II, we are to obtain the matrices iI1 and apz. First we 
compute the vector Ua, and then, using the already computed vector WV, we 
get A= ULV with 

A= + (UcY)(wV). (18) 
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which we compute explicitly. Next we apply the transformations of major step 
I to the matrix A, giving 

(19) 

where xi, is an F X F matrix and &, is an (m - p) X (m - ;> matrix. 
Lemma 5.2 below establishes that &, is nonsingular. Let us define the 

matrices 

u(3) = I -A,2 x.,2 

0 I ) 
and Vc3) = ( _xirxZ, :). (20) 

The factorizatio? of Equation (10) is now completely obtained, with fi = 
~(3Qp~q,7, v = w(1)vq,7(3), 

LI - -- 

1- A,, = A,, - A,, A& A,,, and A,, = A,, (21) 

Major step II is now completed, after performing approximately [6 + 2(m - 

r>]m2 flops, It is summarized in Figure 2. The error message at step 3 
diagnoses that one of the hypotheses of Lemma 5.2 is violated. This situation 
could occur, for instance, if the variable to leave the basis were not selected 
properly. 

LEMMA 5.2. Suppose there exists a ret1 ynber d for which the matrix 
A + dlS is nonsingular, and also that ind( A, B) = 1. Then the matrix X22 of 

Equation (19) is nonsingular. 

Proof. Let 0 = U(‘)U(‘)U and v = W(l)V(‘). Then both u and e are 

nonsingular by construction. By (17) and (19), we have 

-LI- 
and UBV = 

step 1. 

Step 2 

step 3. 

Compute Ucu, x from Equation (18) and U@)U(‘)~V(‘)V@). 

If A,, 
n 

is nonsingular, then compute fi = U(3)U@)U(1)U and V = 
W(1)V(z)V(3) with Uc3) and Vc3) defined in Equation (20), and i,i and 
AX2 as in Equation (211, else 

“Error: the matrix 6 + tB^ is singular for all t or ind( A, g) # 1.” 

FIG. 2. Major step II. 
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where B A1, is nonsingular. Now let Y = [g( i + c&V]-‘. Then 

and hence, using inversion by partitioning, we have that & is nonsingular if 
and only if Y,, is nonsingular. The result will follow after we prove that Y,, 

is nonsingular. Let X = vP1(a -t dB^)-‘B”v. Then ind X = ind(i, 6) = 1, 
by hypothesis. But 

and hence, by Lemma 2.1 of [13], Y, 1 I?,, is nonsingular. 

6. WHEN THE MODIFIED SUBMATRIX IS SINGULAR 

In this section, the algorithm of Section 5 is extended to the case when 
the submatnx B,, + plzul of Equation (12) . IS singular. Only steps 3 and 4 of 

major step I need to be modified. Major step II is unchanged. Let C,, = B,‘, 
Ci. be the ith row of C,,, and C,,j be the jth column of C,,. Because 
B,, + p,wl is singular, we have that 

and hence there is at least one row k such that CI;.pl # 0 and at least one 
column 1 such that w,C.~ f 0. Without loss of generality, let us assume that 
k = r and 1 = r (otherwise, we simply interchange the corresponding rows 
and columns). 

Suppose also that r > 2 (the case r = 1 is trivial). Now let subscript 0 
denote the range 1,. . , r - 1, and partition the matrices B,, and C,, as 
follows: 

and C,, = 
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The original matrix B is now partitioned as follows: 

Let also w0 and ZL‘, (& and 0,) d enote the corresponding subvectors of u;~ 
( PI>. The well-known identities resulting from B, ,C, , = I and C,, B, , = Z 
will be used throughout. 

THEOREM 6.1. Suppose w,C.~ # 0 urzd C,.p, # 0. Then B,, + &~wo is 

nonsingular. 

Proof. There are two cases. Case 1 is when c,, # 0, and case 2 is when 
C = 0. In case 1, c,, # 0 implies that the submatrix B,, is nonsingular and, 
though inversion by partitioning, we have 

Moreover, let E = woZ&‘&. Then it is straightforward to show that 

(“lC.r)(Cr.Pl> 
6=-j- 

C rr 

(23) 

(24) 

where y = - 1 by Equation (22) because the matrix B,r + /3,w, is singular. 
By hypothesis, the second term on the right of Equation (24) is nonzero. 
Hence E # - 1 and the result follows, with 

(B”, + p,w,>-l = B,, _ (B,lMw,Ba 
l_tE (25) 

being obtained by applying the Sherman-Morrison formula. 
We now turn to case 2, in which c,, = 0, and hence the submatrix B,, is 

singular. First, we assume that b,, z 0, so that C,,, is nonsingular. Using this, 
we derive a formula for (B, + /3,,w,,-‘. We will show later that the same 
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formula is also valid when b,,. = 0. Using inversion by partitioning, we write 

so that 

B,, + P,P,, = G,’ + MN> 

where 

(26) 

M= (&B(). &) and N=($)). 

Then M is an ( r - 1) X 2 matrix and N is 2 X (T - 1). The Woodbury 
formula (see, e.g., [Y]) can be used to invert (26) if the capacitance matrix 
I + NC,,, M is nonsingular. Using the identities BrOCOO = -b,,Cro, 

Coo Bo, = - Co,b,,, and C,, &, = 1, we get 

1 + NC,,, M = 

where 

0 

%% 

- Cd, PO 
l+U I 

and u = wOC,,, &. Indeed, the matrix S is nonsingular, because c,, = 0 
implies that wOCOr = w,C., and C,,, PO = C,. p,, both being nonzero by 
hypothesis. Further, its inverse is given by 

-(l + v) -1 

(%Cor)(Cr,, PO) %C,h 
-1 

0 
cdl PO I 
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Then the Woodbury formula gives 

(c,’ + MN)-’ = c,, - (C,M)(Z + NC,,A4)-i(NC,,) 

= c, - (-C”, c,,p,)s-’ ;;O i I 0 00 

where 

zoo = coo + (1 + VFOrCr” cor(wocoo) (CO” PoFro 
(~ocor)(cro PO> - woco, - ci-OPO (27) 

By (26), we have that Z, is the inverse of B,, + PowO, provided b,, f 0. 
Observe now that the formula (27) does not use the quantity b,,. In fact, it 
uses only the given, well-defined submatrices of C,,. Moreover, all its 
denominators are nonzero, independent of b,,. Let us now verify that (27) 
gives the inverse of B, + &l~O. Using the identities Z&CO, = 0 and 

B,,oCo, + Bo,C,o = I, we have indeed 

(B,, + ~owo)Zoo = BooCoo - Bol~Coo~ + s 
ro 0 i-0 0 

[ 

(1 + “Wro 
+ BooCor (%Cor)(C,o PO> 

wocoo -- 
WOCOr 

PoCro 
= Z - B,,C,, - - cro PO 

+ Bo,Cro + pot,, = z 
. cro PO 

The verification was carried out entirely without using the value of b,,. 
Hence the result follows, n 

Step 3 of major step I can now be described as follows. Find a row k of 
C,, such that C,./3, # 0, and interchange columns k and r of V, A,,, and 
wi. Find a column 1 of C,, such that WC., f 0, and interchange rows 1 and 

r of u, A,,, and &. The conditions of Theorem 6.1 are now satisfied. If 
c,, # 0 then compute (Boo + Powo>-l using (23) and (25), else use Equation 
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(27). III either case, only the entries of C,,, wl, and PI are used. The 
submatrix B,, itself is never used. 

At the beginning of step 4, we have 

‘B, + Pow,, B,, + Pow, Pow* 0 ’ 

#U&j,$7(‘) = %I + P& b,, + Prwr &JJ* 0 

P *WC, P*% p*w* 0 ’ (28) 

\ 0 0 0 o/ 

which replaces Equation (14). We need to eliminate the rows r and r + 1 
and columns T and r + 1 of (28). To do this, we compute the vectors 

XC2’ = - ( 6, + Prwo) ( B,,,, + L&w,,) - ’ 7 

X(3) = - P*wo( B,,, + P,,wo) -’ > 

yC2) = - ( B,,, + P,,wo) - ‘( % + &PC) > 

Y(3) = -(B,,, + p,+,u”)-‘p~~w*, 

and define the matrices 

u(2) = 

Then 

1 1 0 0 0 y(V y(3) 0’ 

x (2) 1 0 0 1 
xC3) 0 1 0 0 

y i, 

\ 0 0 0 1 0 0 0 1/ 

f 4” + Pow0 0 0 0' 

p~(1)ujwq,7@) = 0 0 P r, r+ I 
0 8 ) (29) 

Pr+l,r P.,+l,r+l 
\ 0 0 0 0 

where 

&.,+1 = p,w* + x(2)&w*> 
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Pr+l.r+l = p*w - p*w()( B”, + poWJ1pow*. 

Now let 

0 
E= f-G. r+ 1, 

/J r+l,r Pr+l,r+l 

Then F = r - 1 + rank E, and hence we can have ; = r - 1, ; = r, and 
r^ = r + 1. The matrix B^r<r can be constructed by modifying (29) after the 
matrix E is reduced, if rank E < 2. 

It is worth mentioning here that the vectors X(‘) and Y@) can be 
computed without using any of the entries of B,,. This is because both 
formulas (23) and (27) are entirely written in terms of C,, CO,., and C,,. 
After simplification, we get 

1 

(%z&)(%C,J C,, -- 

(B, + Po”o)-%r = 
(1 + e)c,, 

if err # 0, 
c,, 

(1 + v)C,, COOP0 e,~e. -- 

(%C,,)(Crcl P0> C,, PO L 

A similar formula holds for B,,( B,, + j30wO>-1. 

The author would like to thank the anonymous referees for their helpful 

comments on earlier versions of the manuscript. 
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