THE NONEXISTENCE OF EXPANSIVE HOMEOMORPHISMS OF PEANO CONTINUA IN THE PLANE

Hisao KATO
Faculty of Integrated Arts and Sciences, Hiroshima University, Higashisenda-machi, Naka-ku, Hiroshima 730, Japan

Received 15 August 1988
Revised 14 November 1988 and 30 December 1988

It is well known that if X is one of an arc, a circle or a disk, X does not admit an expansive homeomorphism. In this paper, we prove that there is no expansive homeomorphism on any (nondegenerate) Peano continuum in the plane.

AMS (MOS) Subj. Class.: Primary 54H20; secondary 54F25

expansive homeomorphism plane continuum θ-curve

1. Introduction

If X is a metric space with metric d and $f: X \to X$ is a homeomorphism of X, then f is said to be expansive provided that there is $c > 0$ such that if $x, y \in X$ and $x \neq y$, then there is an integer $n(x, y) \in \mathbb{Z}$ for which $d(f^n(x), f^n(y)) > c$. All spaces under consideration are assumed to be metric. A continuum is a compact connected nondegenerate space. It is well known that the Cantor set, the 2-adic solenoid and the 2-torus etc., admit expansive homeomorphisms (see [9, 10]). Bryant, Jakobsen and Utz showed that there are no expansive homeomorphisms on an arc, a circle or a disk (see [2, 3]). By using those results, Kawamura showed that if X is a Peano continuum which contains a free arc, then X does not admit an expansive homeomorphism (see [6]). Also, we showed that if X is a Peano continuum which contains a 1-dimensional ANR neighborhood, then X does not admit an expansive homeomorphism, and if X is a dendroid (pathwise connected tree-like continuum), then X does not admit an expansive homeomorphism (see [4, 5]). The following problem is interesting: Is it true that if X is a continuum in the plane, then X does not admit an expansive homeomorphism?

In this paper, we give a partial answer to this problem. More precisely, we prove that if X is a Peano continuum in the plane, then X does not admit an expansive homeomorphism.
We refer readers to [7] for the plane topology.

2. Preliminaries

In this section, we give some definitions and facts which we need. Let \(\delta > 0 \) be any positive number and let \(n \) be any natural number. Let \(A \) be an arc from \(p \) to \(q \) in a metric space \(Y \) with metric \(d \). Then the arc \(A \) is said to be \((n, \delta)\)-folding provided that there are points \(p = a_1 < b_1 < \cdots < a_n < b_n = q \) in \(A \) such that \(d(a_i, b_i) \geq \delta \) for each \(i = 1, \ldots, n \). A continuum \(X \) is called a Peano continuum if \(X \) is locally connected.

Lemma 2.1 [5, 2.21. Let \(f: X \to X \) be an expansive homeomorphism of a compactum \(X \). Then there exists \(\delta > 0 \) such that if \(A \) is a nondegenerate subcontinuum of \(X \), there exists a natural number \(n_0 \) such that one of the following conditions holds:

(a) diam \(f^n(A) \geq \delta \) for \(n \geq n_0 \);

(b) diam \(f^{-n}(A) \geq \delta \) for \(n \leq -n_0 \).

By using Lemma 2.1, we can easily see the following (cf. the proof of [5, 2.31]):

Lemma 2.2. Let \(f: X \to X \) be an expansive homeomorphism of a compactum \(X \). Let \(A \) be an arc from \(p \) to \(q \) in \(X \). Then there is \(\delta > 0 \) such that for any natural number \(n \), there is a natural number \(i(n) \) satisfying one of the following two conditions:

(a) \(f^m(A) \) is \((n, \delta)\)-folding for \(m \geq i(n) \);

(b) \(f^{-m}(A) \) is \((n, \delta)\)-folding for \(-m \leq -i(n) \).

We need the \(\theta \)-curve theorem as follows.

The \(\theta \)-curve theorem 2.3 [7, Theorem 2, p. 511]. If \(C \) is a \(\theta \)-curve in the plane \(E \) consisting of three arcs \(L_0, L_1, L_2 \) having, pairwise, only their end-points in common, then

\[
E - C = D_0 \cup D_1 \cup D_2, \quad Fr(D_j) = L_j \cup L_{j+1}(\text{mod } 3),
\]

where \(D_0, D_1, D_2 \) are the components of \(E - C \).

A locally connected continuum which contains no simple closed curve is called a dendrite. A continuum \(X \) is said to be regular [7] if for any point \(p \) of \(X \) and any \(\varepsilon > 0 \), there is an open set \(G \) such that \(p \in G \), \(\text{diam}(G) < \varepsilon \) and \(Fr(G) \) is a finite set. Clearly, if \(X \) is a regular, then \(\text{dim} X \leq 1 \).

By [7, Theorem 1, p. 283], we have:
Lemma 2.4. If a continuum X is a regular, then X is locally connected.

By [7, Fundamental Theorem 6, p. 531], we have:

Lemma 2.5. If X and X^* are two Janiszewski spaces which contain no separating points and which do not consist of single points, then X is homeomorphic to X^*. In particular, X is homeomorphic to the 2-sphere S^2.

Also, by [7, Theorem 4, p. 512] we have:

Lemma 2.6. Let X be a Janiszewski space containing no separating points. If C is a locally connected continuum in X, for any component R of $X - C$, $\text{Fr}(R)$ is a regular continuum containing no θ-curve.

Consequently, we can conclude that if X is a locally connected continuum in the plane E, then for any component U of $E - X$, $\text{Fr}(U)$ is a locally connected continuum and $\dim \text{Fr}(U) \leq 1$. Note that in the Euclidean 3-dimensional space E^3, one can easily construct a Peano continuum such that the boundary of a complementary domain is not locally connected.

3. Self-homeomorphisms of Peano continua in the plane

In this section we prove the following main result in this paper:

Theorem 3.1. If X is a nondegenerate Peano continuum in the plane E, X does not admit an expansive homeomorphism.

The following is easily proved by induction on k. We omit the proof.

Lemma 3.2. Let X be a set and let X_1, X_2, \ldots, X_k be subsets of X such that $X = \bigcup X_i$. Then there is a sufficiently large natural number $n(k) (> 2k^2)$ such that for any sequence $a_1, b_1, a_2, b_2, \ldots, a_{n(k)}, b_{n(k)}$ of points of X, there are i_1, i_2 and i_3 such that $i_1 < i_2 < i_3$, a_i and a_j are contained in some X_i and b_j is contained in some X_i which contains b_j.

Proof of Theorem 3.1. Suppose, on the contrary, that there exists an expansive homeomorphism f on the Peano continuum X in the plane E. Let U be the component of $E - X$ such that U is unbounded. By Lemmas 2.4-2.6, $\text{Fr}(U)$ is a locally connected continuum with $\dim \text{Fr}(U) = 1$. First, suppose that $\text{Fr}(U)$ does not contain a simple closed curve. Then $\text{Fr}(U)$ is a dendrite. By [1, Corollary 13.5, p. 138], $\text{Fr}(U)$ is an AR. By [1, Theorem 13.1, p. 132], $E - \text{Fr}(U)$ is connected. We shall show that X is a dendrite. Suppose, on the contrary, that X has a simple closed curve S. Let W be the bounded component of $E - S$. Then $(E - \text{Fr}(U)) \cap W \neq \emptyset$ because $\dim \text{Fr}(U) = 1$. Since $E - \text{Fr}(U)$ is pathwise connected, there is an arc
A(=[p,q]) from a point p of U to a point q of W in \(E - \text{Fr}(U) \) such that \(p \not\in W \).

By the Jordan separation theorem, we can choose the point \(r \) of \(A \) such that \(r \in X \) and \([p, r] - \{r\}\) is contained in \(E - X \). Clearly, \([p, r] - \{r\}\) is contained in \(U \). Hence \(r \in \text{Fr}(U) \). This is a contradiction. Thus \(X \) is a dendrite. By [4], there is no expansive homeomorphism on \(X \). Hence we may assume that \(\text{Fr}(U) \) contains a simple closed curve \(S \). Next, suppose that \(\text{Fr}(U) \) contains a simple closed curve \(S \).

Let \(\delta > 0 \) be as in Lemma 2.2. Since \(X \) is a Peano continuum, there are subsets \(X_1, X_2, \ldots, X_k \) of \(X \) such that each \(X_i \) is a Peano continuum, \(\text{diam} \ X_i < \frac{1}{2} \delta \) and \(X = \bigcup X_i \). Choose a natural number \(n(k) \) as in Lemma 3.2. Let \(A \) be an arc from \(p \) to \(q \) in \(S \). By Lemma 2.2, for some integer \(m \in \mathbb{Z} \), \(f^m(A) \) is \((n(k), \delta)\)-folding. By Lemma 3.2, we can conclude that there are points \(f^m(p) \leq a < b < c < d \leq f^m(q) \) in \(f^m(A) \) such that \(d(a, b) \geq \delta \), \(a \) and \(c \) are contained in some \(X_i \), and \(b \) and \(d \) are contained in some \(X_j \). Since \(\text{diam} \ X_i < \frac{1}{2} \delta \), we see that \(X_i \cap X_j = \emptyset \). Since \(X_i \) is pathwise connected, there are an arc (which is homeomorphic to the unit interval) \(A_1 \) from \(a \) to \(c \) in \(X_i \) and an arc \(A_2 \) from \(b \) to \(d \) in \(X_j \) (Fig. 1). Note that \(A_1 \cap A_2 = \emptyset \).

Consider the sets \(S, A, f^{-m}(A_1) \) and \(f^{-m}(A_2) \). Since \(f^{-m}(A_1) \) and \(f^{-m}(A_2) \) are arcs, by the choice of the component \(U \) of \(E - X \), we can see that \(f^{-m}(A_1) \) and \(f^{-m}(A_2) \) are contained in \(\text{Cl} \ D \), where \(D \) is the bounded component of \(E - S \) (see Theorem 2.3). Also, by Theorem 2.3, we see that \(f^{-m}(A_1) \cap f^{-m}(A_2) \neq \emptyset \) (Fig. 2). This is a contradiction. This completes the proof. \(\square \)
The following problems remain open.

Problem 1. Is it true that if X is a nondegenerate plane continuum, then X does not admit an expansive homeomorphism?

Problem 2. Is it true that if X is a nondegenerate 1-dimensional Peano continuum, then X does not admit an expansive homeomorphism?

Problem 3. Is it true that if X is a nondegenerate tree-like continuum, then X does not admit an expansive homeomorphism?

Note added in proof

Problem 1 has a negative answer. Barge informed the author that there exists an indecomposable plane continuum which admits an expansive homeomorphism [11].

References

