Invited review article

Common food allergens and their IgE-binding epitopes

Hiroaki Matsuoa,*, Tomoharu Yokoojib, Takanori Taogoshia

a Department of Pharmaceutical Services, Hiroshima University Hospital, Hiroshima, Japan
b Department of Pathophysiology and Therapeutics, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan

A R T I C L E I N F O

Article history:
Received 6 May 2015
Received in revised form 18 June 2015
Accepted 23 June 2015
Available online 29 July 2015

Keywords:
Allergen
Diagnosis
Epitope
Food allergy
Immunoglobulin E

A B S T R A C T

Food allergy is an adverse immune response to certain kinds of food. Although any food can cause allergic reactions, chicken egg, cow’s milk, wheat, shellfish, fruit, and buckwheat account for 75% of food allergies in Japan. Allergen-specific immunoglobulin E (IgE) antibodies play a pivotal role in the development of food allergy. Recent advances in molecular biological techniques have enabled the efficient analysis of food allergens. As a result, many food allergens have been identified, and their molecular structure and IgE-binding epitopes have also been identified. Studies of allergens have demonstrated that IgE antibodies specific to allergen components and/or the peptide epitopes are good indicators for the identification of patients with food allergy, prediction of clinical severity and development of tolerance. In this review, we summarize our current knowledge regarding the allergens and IgE epitopes in the well-researched allergies to chicken egg, cow’s milk, wheat, shrimp, and peanut. Copyright © 2015, Japanese Society of Allergology. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The prevalence of food allergy in Japan is estimated to be 5%–10% among infants (aged 0–6 years) and 1.5%–3% among school-aged children (aged >6 years), and the prevalence among adults is thought to be similar to that of schoolchildren.1,2 The prevalence of food allergy among pediatric patients in the U.S. and Europe is reported to be 8% and 6.9%, respectively, which is similar to that in Japan. The most common foods that induce immediate-type food allergy in Japan are chicken egg (38.2% of food allergy patients), cow’s milk (15.9%), wheat (8%), shellfish (6%), fruit (6%), buckwheat (5%), fish (4%), peanut (3%), and fish roe (3%).3 The frequency of causative foods in the U.S. is different: peanut (25.2%), cow’s milk (21.1%), shellfish (17.2%), tree nut (13.1%), chicken egg (9.8%), fin fish (6.2%), strawberry (5.3%), and wheat (5.0%).3 In European patients, the most common causative foods in order of decreasing frequency are cow’s milk, wheat, chicken egg, fish, soy, tree nut, shellfish, and peanut.4 Despite these differences, there is a global trend toward an increased prevalence of food allergy.3,5

To understand the pathogenesis of food allergy and establish effective approaches for diagnosis, treatment, and prevention, detailed information on the allergen molecule is essential. Recently, a number of allergen molecules have been identified, and their three-dimensional (3-D) structures have been determined by advanced biological and analytical methods. The immunoglobulin E (IgE) recognition sites (IgE-binding epitopes) in allergens contribute to allergenicity. Therefore, it is important to identify the epitope structure for the development of new strategies for accurate diagnosis and allergen-specific immunotherapy of food allergy as well as the production of hypoallergenic foods. The benefit of component-resolved diagnosis of food allergy using epitope peptides7–14 and effective immunotherapy for peanut allergy with IgE-binding epitope modified recombinant allergen15 have been reported. Here, we provide an overview of the most common food allergen molecules from chicken egg, cow’s milk, wheat, shrimp, and peanut, for which IgE-binding epitopes have been well characterized.

* Corresponding author. Department of Pharmaceutical Services, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
E-mail address: hmatsu@hiroshima-u.ac.jp (H. Matsuo).
Peer review under responsibility of Japanese Society of Allergology.
Food allergens

Food allergy is an allergen-specific IgE-mediated type I response. Its pathogenesis is divided into two phases: 1) the sensitization phase in which the allergen enters the body through the gastrointestinal tract, skin, or mucosa, where it encounters a naive immune system under Th2-dominant conditions, resulting in IgE production; and 2) the induction phase, which occurs following the oral intake of the same allergen as in the sensitization phase, and which elicits allergic symptoms such as urticaria, itching, wheezing, dyspnea, and abdominal pain. These responses are caused by the release of chemical mediators such as histamine and leukotrienes from activated mast cells and basophils. Cross-linking of IgE receptors with an allergen is required for the activation of these cells; therefore, more than two IgE antibodies are required to bind to one allergen molecule.

Food allergens include proteins or glycoproteins that have a molecular weight of 5–100 kDa and the ability to cross-link IgE receptors. Although many potential allergens are enzymatically digested and denatured by the acidic environment of the stomach, some are resistant to these conditions.40 Intact food allergens have been detected in the serum after oral food administration in animals and humans.20–22 In addition, anti-ulcer agents that inhibit gastric digestion of the allergen have an effect on the sensitization and induction phases.23

A number of different forms of plant food allergens have been reported, including pollen-food allergy syndrome and latex-fruit syndromes, in which allergic symptoms are induced mainly in the mucous membranes after ingestion of the causative food.24 Side reactions of CD4+ T-cells, especially helper T-cells and regulatory T-cells, contribute to the sensitization, desensitization, and tolerance induction of food allergy.48 T-cell epitopes that bind to major histocompatibility class II molecules are at least 13 AAs long.49 The mapping of T-cell epitopes and IgE-binding epitopes provides useful information for the design of peptide and/or recombinant protein-based immunotherapy for food allergy. T-cell epitopes can be identified using peptides of 10–20 residues that overlap the entire AA sequence of the candidate allergen and allergen-specific T-cell lines derived from peripheral blood mononuclear cells. Then, peptides that induce T-cell proliferation contain T-cell epitopes. T-cell epitope sequences can be also predicted by computer-based in silico analysis.50 However, numerous synthetic peptides need to be assayed with T-cells from patients to confirm the biological reactivity of the predicted epitopes. Although studies to identify T-cell epitopes are behind those of IgE-binding epitopes, T-cell epitopes of milk (Bos d 5), egg (Gal d 1 and 2), peach (Pru p 3), and peanut (Ara h 1 and 2), among others, have been reported.51–57

IgE-binding epitopes and T-cell epitopes in food allergens

IgE-binding epitopes can be divided into two types, linear (sequential) and conformational (discontinuous). Linear epitopes comprise continuous amino acid (AA) sequences, while conformational epitopes are formed by spatially adjacent AAs that are distantly located in the AA primary sequence of the proteins. Several methods of IgE-binding epitope mapping have been reported.32 Arrays of overlapping peptides synthesized on a nitrocellulose membrane (SPOT membrane)33 are frequently used to determine sequential epitopes.10,34,35 Peptide microarrays, formed from hundreds of synthetic peptides printed on a glass slide, have been used to determine IgE-binding linear epitopes.11,13,36–40 The determination of conformational IgE epitopes, however, requires sophisticated techniques, such as X-ray crystallography of allergens and immunocomplexes, nuclear magnetic resonance, mutant generation, and in silico analysis.1,42 In such cases, IgE epitopes are predicted based on the 3-D structures of food allergens, which have been determined for lysozyme (Gal d 4), β-lactoglobulin (Bos d 5), latex (Hev b 6), birch pollen (Bet v 1), and peach (Pru p 3).29,33,44 Recently, conformational epitopes recognized by monoclonal antibodies specific for almond (Pru du 6) and cashew (Ana o 2) allergens were mapped by hydrogen/deuterium exchange footprint analysis.45–47 Although this new technique is not directly applicable to the identification of conformational epitopes recognized by human polyclonal IgE antibodies, the information obtained for the epitopes of monoclonal antibodies is useful to predict the conformational epitopes of human IgE antibodies.

Antigen-specific responses of CD4+ T-cells, especially helper T-cells and regulatory T-cells, contribute to the sensitization, desensitization, and tolerance induction of food allergy.48 T-cell epitopes that bind to major histocompatibility class II molecules are at least 13 AAs long.49 The mapping of T-cell epitopes and IgE-binding epitopes provides useful information for the design of peptide and/or recombinant protein-based immunotherapy for food allergy. T-cell epitopes can be identified using peptides of 10–20 residues that overlap the entire AA sequence of the candidate allergen and allergen-specific T-cell lines derived from peripheral blood mononuclear cells. Then, peptides that induce T-cell proliferation contain T-cell epitopes. T-cell epitope sequences can be also predicted by computer-based in silico analysis.50 However, numerous synthetic peptides need to be assayed with T-cells from patients to confirm the biological reactivity of the predicted epitopes. Although studies to identify T-cell epitopes are behind those of IgE-binding epitopes, T-cell epitopes of milk (Bos d 5), egg (Gal d 1 and 2), peach (Pru p 3), and peanut (Ara h 1 and 2), among others, have been reported.51–57

Chicken egg

Chicken (Gallus domesticus) eggs consist of white and yolk. Ovomucoid (OM, Gal d 1), ovalbumin (OVA, Gal d 2), ovotransferrin (Gal d 3), and lysozyme (Gal d 4) have been identified as egg white allergens58 (Table 1), whereas serum albumin (α-livetin, Gal d 5) and a fragment of the vitellogenin-1 precursor (YGP42, Gal d 6) have been reported as egg yolk allergens.65,66 In studies of

<table>
<thead>
<tr>
<th>Protein name</th>
<th>IUBS name</th>
<th>MW (kDa)</th>
<th>AA length</th>
<th>Accession no.</th>
<th>IgE-binding epitopes (amino acid number)</th>
<th>Year</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovomucoid</td>
<td>Gal d 1</td>
<td>28</td>
<td>186</td>
<td>P01005 (Gal d 1.0101)</td>
<td>4–20, 46–59, 91–104</td>
<td>2013</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1–10, 11–20, 47–56, 113–122</td>
<td>2007</td>
<td>8</td>
</tr>
<tr>
<td>Ovotransferrin</td>
<td>Gal d 3</td>
<td>77</td>
<td>705</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Serum albumin</td>
<td>Gal d 5</td>
<td>69</td>
<td>615</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Fragment of vitellogenin-1 precursor (YGP42)</td>
<td>Gal d 6</td>
<td>35</td>
<td>285</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
OM accounts for 11% of egg white protein and has three structurally independent tandem domains (DI, DII, and DIII), which exert trypsin-inhibitory activity. OM is highly heat-stable and protease digestion-resistant, and is the immunodominant allergen in chicken egg. Significant OM-specific IgE antibody levels indicate a risk of clinical reactions to both raw and cooked eggs and OM-specific IgE also has some prognostic value in predicting which patients will outgrow egg allergy. The IgE-binding epitopes have been identified by enzyme-linked immunosorbent assay and microarray techniques (Table 1). The number of epitopes and their locations differed among the studies, possibly because of the population studied, the overlapping peptide length, and the techniques used. Järvinen et al. reported that patients with persistent egg allergy, but not patients who outgrew egg allergy, had IgE antibodies that recognized the AA 1–10, AA11–20, AA47–56, and AA113–122 in OM. These observations indicated that the presence of sequential epitope-specific IgE antibody levels represents the basis of a screening method for persistent egg allergy. In a recent study using microarray techniques, two major B-cell epitopes (AA4–20 and AA46–59) that coincided with the epitopes described previously were identified, indicating that AA4–20 and AA46–59 are clinically relevant epitopes. Although AA4–20 and AA46–59 were recognized by 24% and 32% of patients who tested positive for OM-specific IgE, one third of the patients did not recognize any linear epitopes of OM. The 3-D conformation of OM, including carbohydrate modifications, is preferentially recognized by IgE in egg allergy patients. Thus, the detection of conformational epitopes is also of importance for the diagnosis and prognosis of OM allergy.

OVA (Gal d 2)

OVA is the most abundant heat-labile phosphoglycoprotein in egg white (approximately 54%) and is a dominant allergen in egg allergy. Measurement of OVA-specific IgE is helpful for the diagnosis of egg allergy, especially in children with anaphylaxis. The five IgE-binding epitopes of OVA, AA38–49, AA95–102, AA191–200, AA243–248, and AA251–260, have been mapped by Mine et al. using SPOT membranes. A recent study using digested OVA with human and simulated gastroduodenal fluids showed that seven IgE-binding peptides, AA125–134, AA141–154, AA159–172, AA164–176, AA188–198, AA326–336, and AA370–385, remained after digestion. In addition, the importance of AA370–385 was indicated by the observation that this peptide is bound by 80% of sera from egg allergy patients.

Ovotransferrin (Gal d 3)

Ovotransferrin, an iron-binding protein, is a heat-labile and digestible allergen accounting for 12% of egg white proteins. Thirty-seven percent of egg-allergic patients were reportedly sensitized to this component. Although the 3-D structure has been elucidated, both linear and conformational IgE-binding epitopes remain to be identified.

Lysozyme (Gal d 4)

Lysozyme is well characterized physicochemically because of its use as an antimicrobial agent in clinical situations and as a food preservative. Jiménez-Saiz et al. reported three possible IgE-binding peptides, AA11–27, AA57–83, and AA108–122, in immuno-reactive fragments of lysozyme digested with simulated gastric and duodenal fluids. The lysozyme (AA24–129) fragment, which is linked by disulfide bonds to two immunoreactive peptides, AA57–83 and AA108–122, is resistant to digestive enzymes, and induces basophil activation. Thus, lysozyme contains linear IgE-binding epitopes that are involved in the clinical manifestation of chicken egg allergy.

Chicken serum albumin (Gal d 5)

Chicken serum albumin (α-livetin) was identified as the causative allergen of bird-egg syndrome, which causes respiratory symptoms following exposure to birds, with secondary symptoms of allergy after egg ingestion. The prevalence of chicken serum albumin-specific IgE is relatively low in chicken egg allergy patients.

YGP42 (Gal d 6)

A 35-kDa fragment of the vitellogenin-1 precursor, known as the YGP42 protein (Gal d 6), was also identified as an egg yolk allergen. This protein is heat- and reduction-stable; however, IgE-binding of this protein is reduced by treatment with gastric fluid. To date, no B-cell epitopes have been identified.

Cow's milk

The physicochemical properties of allergens from cow's (Bos domesticus) milk are well characterized (Table 2). Fractionation of milk yields two fractions, caseins and whey. Caseins (Bos d 8) include αs1- (Bos d 9), αs2- (Bos d 10), β- (Bos d 11), κ- (Bos d 12), and γ-caseins. Whey also called milk serum consists of α-lactalbumin (Bos d 4), β-lactoglobulin (Bos d 5), bovine serum albumin (Bos d 6), immunoglobulin (Bos d 7), and lactoferrin. The prevalence of IgE reactivity to Bos d 8 (46.5%), Bos d 4 (27.6%), Bos d 7 (10.3%), and lactoferrin (10.3%) was demonstrated in patients with suspected cow's milk allergy. These components, as well as cow's milk protein-specific IgE, are good prognostic markers of the persistence of cow's milk allergy. α-Lactalbumin (Bos d 4)

α-Lactalbumin, a calcium-binding milk protein, has as a key role in lactose biosynthesis. Its high thermal stability was revealed by analysis of recombinant α-lactalbumin. The prevalence of α-lactalbumin-specific IgE in milk allergy patients varies from 27.6% to 62.8% depending on the study population. The IgE-binding epitopes of α-lactalbumin, AA1–16, AA13–26, AA47–58, and AA93–102, have been identified. Hochwallner et al. identified six IgE-reactive peptides using a panel of 19– or 20-mer overlapping peptides spanning the entire protein. Three of these peptides, AA1–15, AA15–34, and AA105–123, are located on the surface of the protein.

β-Lactoglobulin (Bos d 5)

β-Lactoglobulin is the most abundant protein in milk whey. The major IgE-binding epitopes of β-lactoglobulin, AA1–16, AA31–60, AA67–86, and AA127–152, have been identified. Cerecedo et al.
also used a panel of overlapping peptides in a microarray-based immunoassay to analyze the IgE-binding epitopes of β-lactoglobulin. The identified IgE epitopes, AA58–77, AA76–95, and AA121–140, are recognized by more than 75% of milk allergy patients. AA58–77 is significantly associated with milk protein-reactive patients. Recent studies identified AA1–16, AA56–70, and AA76–90 as epitopes in Chinese patients. These sequences are roughly in accordance with the epitopes detected in European patients described previously.

Bovine serum albumin (Bos d 6)

Bovine serum albumin is an important allergen in milk, meat, and epithelia allergy. There is cross-reactivity between serum albumin from cow, sheep, deer, pig, dog, and cat (meat and/or epithelia); therefore, albumins are implicated as panallergens in mammals. Although bovine serum albumin is the major allergen in beef allergy, bovine serum albumin–specific IgE is found in only 3.8% of patients with cow’s milk allergy. Structural modification by heat treatment and chemical denaturation does not affect the allergenicity of bovine serum albumin, and several IgE-binding epitope sequences have been reported in beef allergy.

Bovine gamma globulin (Bos d 7)

Bovine gamma globulin is also an allergen in cow’s milk and beef allergy. Approximately 10% of patients with cow’s milk allergy are bovine gamma globulin-specific IgE positive.

Caseins (Bos d 8–12)

Casein (Bos d 8) constitutes approximately 80% of the proteins present in cow’s milk. These phosphorylated proteins are heat-stable but are susceptible to digestive enzymes. Casein is composed of four major proteins, αs1-casein (Bos d 9), αs2-casein (Bos d 10), β-casein (Bos d 11), and κ-casein (Bos d 12), most of which exist in a colloidal particle known as the casein micelle. The molecular weight and AA length of caseins are listed in Table 2. The proportions of casein in milk protein are 37% for αs1-casein, 37% for αs2-casein, 13% for β-casein, and 13% for κ-casein.

αs1-Casein (Bos d 9)

Approximately 50% of serum samples from patients with cow’s milk allergy react with αs1-casein, which has an unordered molecular structure. Nakajima-Adachi et al. identified AA181–199 in the C-terminal region as the immunodominant IgE-binding region. Three regions of αs1-casein, corresponding to AA19–30, AA93–98, and AA141–150, were also identified as IgE-binding peptides. In recent studies, several IgE-binding epitopes were identified by overlapping peptide mapping.

αs2-Casein (Bos d 10)

Busse et al. identified 10 sequential IgE-binding epitopes of αs2-casein, four of which AA83–100, AA143–158, AA157–172, and AA165–188, were detected in 77% of patients. Cerecedo et al. mapped seven IgE-binding epitopes and showed that four, AA1–20, AA13–32, AA67–86, and AA181–207, were significantly associated with the reactive group of patients.

β-Casein (Bos d 11)

Six major and three minor IgE-binding epitopes of β-casein were identified by Chatchatee et al. Cerecedo et al. also identified four B-cell epitopes, three of which, AA25–50, AA52–74, and AA154–73, were found to be associated with allergic symptoms. Several IgE-binding epitopes remain as fragments of β-casein after gastrointestinal digestion.

κ-Casein (Bos d 11)

Using overlapping peptide mapping, eight major IgE-binding peptides of κ-casein were identified, three of which, AA9–26, AA21–44, and AA47–68, were recognized by 93% of patients with cow’s milk allergy.
identified as IgE-binding dominant epitopes. Thus, the N-terminal region (AA9–68) of \(\kappa \)-casein may play an important role in the allergenicity of this protein. The critical AAs for IgE-binding to linear epitopes of \(\kappa \)-casein were identified by Han et al.

Time-related differences in the binding of IgE and IgG4 to epitopes of \(\beta \)-lactoglobulin, \(\alpha \)-lactalbumin, and caseins between patients with early recovery or persistent cow’s milk allergy have been investigated. Furthermore, IgE and IgG4 epitope binding was also analyzed to predict the outcome of oral immunotherapy in cow’s milk allergy using peptide arrays. The results of this study showed that monitoring the binding of IgE and IgG4 to epitope peptides of caseins has predictive value for the development of tolerance to cow’s milk or the outcome of oral immunotherapy.

Wheat

Wheat (*Triticum aestivum*) is an important allergen source that elicits various clinical types of food allergy, such as immediate wheat allergy, baker’s asthma, wheat contact dermatitis, and wheat-dependent exercise-induced anaphylaxis (WDEIA). The total protein content of wheat flour ranges from 8% to 12%, and can be classified as water/salt-soluble proteins (albumin and globulin) and the insoluble protein, gluten. Wheat profilin (Tri a 12), non-specific LTP (Tri a 14), \(\alpha \)-amylase inhibitors (AAI, Tri a 15, Tri a 28–30), wheat germ agglutinin (Tri a 18), thioredoxin (Tri a 25), thiol reductase homolog (Tri a 27), triosephosphate isomerase (Tri a 31), 1-cys-peroxiredoxin (Tri a 32), serpin (Tri a 33), glyceraldehyde-3-phosphate dehydrogenase (Tri a 34), dehydrin (Tri a 35), \(\alpha \)-pur-

Table 3

<table>
<thead>
<tr>
<th>Protein name</th>
<th>IUIS name</th>
<th>MW (kDa)</th>
<th>AA length</th>
<th>Accession no.</th>
<th>IgE-binding epitopes (AA sequence or number)</th>
<th>Year</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water/salt-soluble protein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profilin</td>
<td>Tri a 12</td>
<td>14</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Non-specific lipid transfer protein</td>
<td>Tri a 14</td>
<td>9</td>
<td>90</td>
<td>P24296</td>
<td>24–33, 37–46, 81–90</td>
<td>2011</td>
<td>104</td>
</tr>
<tr>
<td>(\alpha)-Amylase inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monomeric</td>
<td>Tri a 15</td>
<td>12</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Dimeric</td>
<td>Tri a 28</td>
<td>13</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Tertameric</td>
<td>CM1/CM2</td>
<td>13</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CM3</td>
<td>Tri a 30</td>
<td>16</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CM16/CM17</td>
<td>–</td>
<td>17</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Agglutinin</td>
<td>Tri a 18</td>
<td>17</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Thioredoxin</td>
<td>Tri a 25</td>
<td>13</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Thiol reductase homologue</td>
<td>Tri a 27</td>
<td>27</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Triosephosphate isomerase</td>
<td>Tri a 31</td>
<td>26</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1-Cys-peroxiredoxin</td>
<td>Tri a 32</td>
<td>24</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Glyceraldehyde-3-phosphate-dehydrogenase</td>
<td>Tri a 34</td>
<td>40–42</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Dehydrin</td>
<td>Tri a 35</td>
<td>12</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>(\alpha)-Purothionin</td>
<td>Tri a 37</td>
<td>12</td>
<td>111</td>
<td>AFQ60540</td>
<td>2–31, 42–71, 62–91</td>
<td>2014</td>
<td>106</td>
</tr>
<tr>
<td>Serine protease inhibitor-like protein</td>
<td>Tri a 39</td>
<td>9</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Glutathione transferase</td>
<td>–</td>
<td>25</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Thaumatin like protein</td>
<td>–</td>
<td>18</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Peroxidase</td>
<td>–</td>
<td>36</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Water/salt-insoluble protein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\gamma)-Gliadin</td>
<td>Tri a 21</td>
<td>28–35</td>
<td>299</td>
<td>P04725</td>
<td>VRRVVPQIQQP, QEQPVLPVQQQ, VQQQQFPCQ, QQPQFPQQQQQ, YLQGQQPPQF, QLQIPQQQ, QVFQQQQQQ, SQQQQPPQQY, LALQTPAMC, YIPPHCSSSTI</td>
<td>2011</td>
<td>104,107</td>
</tr>
<tr>
<td>(\omega)-1,2-Gliadin</td>
<td>Tri a 30</td>
<td>28–35</td>
<td>280</td>
<td>BAN29066 (Tri a 20.0101)</td>
<td>P08453</td>
<td>P04725</td>
<td>VRRVVPQIQQP, QEQPVLPVQQQ, VQQQQFPCQ, QQPQFPQQQQQ, YLQGQQPPQF, QLQIPQQQ, QVFQQQQQQ, SQQQQPPQQY, LALQTPAMC, YIPPHCSSSTI</td>
</tr>
<tr>
<td>(\omega)-5-Gliadin</td>
<td>Tri a 31</td>
<td>40–42</td>
<td>308</td>
<td>Q9FUW7</td>
<td>QQXKQPQ, QQXKQPOQ (X1 = L, S, Q; X4 = L, V, F)</td>
<td>2012</td>
<td>104,107</td>
</tr>
<tr>
<td>High molecular weight glutenin subunits</td>
<td>Tri a 26</td>
<td>88–90</td>
<td>827</td>
<td>Q9QNY0</td>
<td>QQQQGC, QQQQCGCQ, QQSGGCQ, HQQHPQHQQPQ, HQQHPQHQQPQ, QQQPPQQPPHC, PVFPQSPC, QQSPVAMPQ, QPQPPQQY, QSPYAEIARAI, QQPP</td>
<td>2005</td>
<td>10</td>
</tr>
<tr>
<td>Low molecular weight glutenin subunits</td>
<td>Tri a 36</td>
<td>32–40</td>
<td>369</td>
<td>Q9ZNY0</td>
<td>QQQQGC, QQQQCGCQ, QQSGGCQ, HQQHPQHQQPQ, HQQHPQHQQPQ, QQQPPQQPPHC, PVFPQSPC, QQSPVAMPQ, QPQPPQQY, QSPYAEIARAI, QQPP</td>
<td>2011</td>
<td>104</td>
</tr>
</tbody>
</table>
that cause WDEIA.113,116,117 Gliadins and glutelins are allergens that also cause baker’s asthma and common immediate wheat allergy in some cases.118,119 In addition, LTP in the water/salt-soluble fraction was reported to cause WDEIA.112,113 These findings demonstrate the comparative specificity of the causative allergens to each clinical type of wheat allergy, although some allergens contribute to the development of two or more clinical types of this allergy. It should be noted that the biological activity of some wheat allergens reported in this review have not been determined using techniques such as the skin prick test or the basophil histamine release test.

Water/salt-soluble wheat allergens

Tri a 12 is recognized by specific IgE antibodies in patients with baker’s asthma, grass pollen allergy, and food allergy to wheat.115,120–122 However, the prevalence of IgE reactivity to wheat prolin in patients with food allergy and respiratory allergy is low.115 Tri a 14 was identified as an allergen in food allergy patients after ingestion of wheat products,123–125 as well as in patients with baker’s asthma127 and WDEIA.118 Monomeric AA1.028 (Tri a 15), dimeric AA1.019 (Tri a 28), tetrameric AA1 CM1/CM2 (Tri a 29), AA1 CM3 (Tri a 30), and AA1 CM16 are allergens in pediatric patients with wheat allergy,126 patient’s with baker’s asthma,121,128 and those with work-related wheat dermatitis.129

Tri a 18, 25, 32–35, and 39 were identified as allergens in patients with baker’s asthma and/or food allergy.103,105,122,130–133 Four IgE-binding epitopes of Tri a 33, AA46–48, AA76–92, AA271–293, and AA364–384, were identified using overlapping peptide mapping,105 and 3-D modeling showed that these epitopes are partially located on the surface of the protein. No differences were identified in the IgE-binding epitope peptides associated with food allergy and baker’s asthma.105

Tri a 27 was identified as an allergen that causes wheat protein contact dermatitis and wheat food allergy.114,134,135 It is considered that the N-linked glycan moieties with fucose residues contained in this allergen are involved in IgE-binding.136 The highest frequencies of Tri a 27-specific IgE were reported in patients with baker’s asthma.137 Tri a 37 was recently reported as a novel wheat allergen specific for patients with wheat food allergy.138 Twenty percent of patients with wheat food allergy had Tri a 37-specific IgE, whereas the frequency was only 3% among patients with baker’s asthma.137 The IgE-binding epitopes in this allergen have been mapped to three regions of the protein, AA2–31, AA42–71, and AA62–91.106

Water/salt-insoluble wheat allergens

Gliadins and glutelins are water/salt-insoluble wheat proteins that have been identified as causative allergens in patients with wheat food allergy, baker’s asthma, and WDEIA.103,105,113,117,118 Gliadin (Tri a 19) is a major allergen in WDEIA118,119 and children with immediate allergy to ingested wheat.118 Because of the presence of a repetitive domain, there are many IgE-binding epitope sequences in α5-gliadin; however, the consensus sequence comprising QQPFP and QQPFPGQQ in patients with food allergy including WDEIA has been reported.103,105,111 However, the Tri a 19-specific IgE test alone could not be used to diagnose all patients with wheat food allergy.106,147 γ-Gliadin (Tri a 20) is a causative allergen in patients with food allergy to wheat and those with baker’s asthma.113,117 Furthermore, γ-gliadin-specific IgE was also detected in Japanese patients with WDEIA following transdermal sensitization with hydrolyzed wheat protein.108,148 The IgE-binding epitope sequence of QQPFPFPQ in γ-gliadin identified in Japanese patients sensitized via the dermal route was identical to the epitope sequence identified in European patients sensitized orally with hydrolyzed wheat proteins.109 z/β-Gliadin (Tri a 21) and z1,2-gliadin are also important causative allergens in wheat food allergy, WDEIA, and baker’s asthma.104,107,113,146 The IgE-binding epitopes for these allergens were identified in patients with wheat allergy104,107 and in addition, the sequences of QQPFP and PQQPF in gliadin were epitopes in atopic dermatitis-related wheat allergy.109

LMW-GS (Tri a 36) was identified as an allergen that induces wheat food allergy125,130,131 and WDEIA105 in European patients. There are several types of LMW-GS encoded by genes located on group 1 chromosomes at the Glu-A3, Glu-B3, and Glu-D3 loci,153 and patients with wheat allergy exhibited IgE-reactivity to different LMW-GS.150 Although the LMW-GS GluB3-23, B16, and P73 epitopes are well characterized,147,150 only GluB3-23 is defined as Tri a 36 in the IUIS allergen database.147 Tanabe et al.111 identified the QQPFP motif in LMW-GS as a major IgE-binding epitope responsible for atopic dermatitis in patients sensitized with wheat.

High molecular weight glutenin subunits (Tri a 26) has been identified as an allergen responsible for WDEIA in Japanese patients and its IgE-binding epitopes, QQPQGQ, QQPGCQQ, and QQSCQGQ, have been fine-mapped.106 We showed that the combined detection of IgE antibodies specific to epitope peptides or recombinant proteins of Tri a 26 and Tri a 19 improved the sensitivity and specificity of the diagnosis of WDEIA.10,154

Shrimp

Seafood allergy is a common food allergy. The prevalence of fish and shellfish allergies is estimated at 0.2%–0.3% and 0.6%, respectively.155 Allergy to crustacean shellfish, which include shrimp, prawns, lobsters, and crabs, seems to affect school-aged children and adults predominantly.1 Crustacean-allergic patients can show cross-reactivity to different types of shellfish as well as molluscan shellfish, such as gastropods (abalone, limpets, snails), bivalves (scallops, oysters, mussels), and cephalopods (squid, octopus).

Studies of shrimp allergies are the most advanced among the shellfish allergies.156 There are various types of edible shrimp worldwide, with White Pacific shrimp (Litopenaeus vannamei), black tiger (Penaeus monodon), kuruma prawn (Marsupenaeus japonicus), and Japanese spiny lobster (Panulirus japonicas) the most commonly eaten in Japan. The allergens responsible for crustacean allergies are also well studied. Tropomyosin, arginine kinase, sarcoplasmic calcium-binding protein, myosin light chain, troponin C, and triosephosphate isomerase have been identified as allergens in Penaeus monodon, L. vannamei, Crangon crangon (North Sea shrimp), Homarus americanus (American lobster), and some crabs (Table 4).150,159–161

Tropomyosin (group 1)

Tropomyosin is associated with the actin and troponin components of muscle cells, and isoforms of tropomyosin were identified in several shrimp species, including Pandalus borealis (Pan b 1), Penaeus monodon (Pen m 1), Penaeus aztecus (Pen a 1), Penaeus indicus (Pen i 1), Metapenaeus ensis (Met e 1), L. vannamei (Lit v 1), Crangon crangon (Cra c 1), and H. americanus (Hom a 1). Although tropomyosins from crustaceans share high homology (up to 98%), the AA sequence identity of crustacean and molluscan tropomyosin is much lower (approximately 60%).160 The major continuous IgE epitopes were identified in Pen a 1157 and Lit v 1158 using overlapping peptide mapping. Nine IgE-binding peptides in Pen a 1 were identified, five of which, AA37–63, AA82–105, AA115–150,
Table 4
Shrimp allergens.

<table>
<thead>
<tr>
<th>Protein name</th>
<th>IUIS name</th>
<th>MW (kDa)</th>
<th>AA length</th>
<th>Accession no.</th>
<th>IgE-binding epitopes (amino acid number)</th>
<th>Year</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Litopenaeus vannamei (White shrimp)</td>
<td>Pan b 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pandalus borealis (Northern shrimp)</td>
<td>Met e 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metapenaeus ensis (Greakyback shrimp)</td>
<td>Pen i 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penaeus indicus (Indian white shrimp)</td>
<td>Pen m 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peneus monodon (Black tiger shrimp)</td>
<td>Cra c 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crangon crangon (North sea shrimp)</td>
<td>Cra c 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myosin light chain 1</td>
<td>Lit v 5</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Troponin C</td>
<td>Cra c 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triosephosphate isomerase</td>
<td>Cra c 8</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AA190–210, and AA246–284, corresponded with the epitopes of Lit v 1. The sequences LEX1X2L or LEX1X2N (X1 = D, E, N or K, X2 = D or E) in AA1–36 (LEKDN), AA37–63 (LENDL), AA82–105 (LEEDL), and AA246–284 (LEDLE) were identified as common IgE-binding motifs in Lit v 1. The immunodominant regions of Pan b 1 were also mapped by Myrset et al.

Arginine kinase (group 2)

Arginine kinase was identified in three types of shrimp (Cra c 2, Lit v 2, Pen m 2). Eight IgE-binding epitopes were identified in Lit v 2, with the highest diagnostic efficiency shown in the test for AA232–255 peptide-specific IgE. Recent studies showed that Pen m 2 is an important allergen recognized by Th2 cells in patients with shrimp allergy.

Myosin light chain (group 3 and Cra c 5)

Myosin light chain (Lit v 3, Pen m 3) was first identified in Litopenaeus vannamei and Penaeus monodon. Cra c 5 was also confirmed as a novel type of IgE-binding myosin light chain with only 13% AA sequence identity to Lit v 3. Six IgE-binding sequences were identified in Lit v 3.

Sarcoplasmic calcium–binding protein

Sarcoplasmic calcium-binding protein was identified as an allergen in three types of shrimp (Cra c 4, Lit v 4, and Pen m 4). Three IgE-binding regions were identified in Lit v 4.

Troponin C (group 6) and triosephosphate isomerase (Cra c 8)

Troponin C (Cra c 6) and triosephosphate isomerase (Cra c 8) were identified as allergens in patients with shrimp allergy but have not been reported in Litopenaeus vannamei and Penaeus monodon, suggesting they are minor or local shrimp allergens.

Several studies conducted to investigate component-resolved diagnosis using recombinant shrimp allergens and IgE-binding epitope peptides showed that measuring IgE binding to tropomyosin and sarcoplasmic calcium-binding protein is useful for the prediction of clinical reactivity in patients with shrimp allergy although the measurement of IgE specific for other allergens and epitopes is necessary for the accurate diagnosis of shrimp allergy.

Peanut

Twelve allergens have been identified in association with peanut (Arachis hypogaea) allergy (Table 5). These are designated Ara h 1 to Ara h 13, with the exception of Ara h 4, which has been renamed Ara h 3.276 Ara h 2, Ara h 6, and Ara h 7, which belong to the 2S albumin family, are seed storage proteins and have homologous AA sequences and secondary structures. Ara h 2 and Ara h 3, indicating that Ara h 9 is an important allergen in peanut allergy. Oleosins (Ara h 10 and Ara h 11) are obtained from peanut oil bodies. In a recent study, the IgE-binding epitopes of Ara h 10 and Ara h 11 were identified using structural features of the Arabidopsis thaliana oleosin.
in silico methods. In addition, Kobayashi et al. identified the IgE-binding epitope of peanut oleosin 3, which differs from those of Ara h 10 and Ara h 11. Ara h 12 and Ara h 13, which are defensins directed against fungal pathogens, were identified as allergens by Petersen et al. Although they have been listed as peanut allergens by the WHO/IUIS Allergen Nomenclature Subcommittee, the details have not been reported. The prevalence of IgE binding to Ara h 10–13 has not yet been elucidated. From the viewpoint of component–resolved diagnosis of peanut allergy, Ara h 1, 2, 3, 6, and 9 are significant allergens that correlate with reactivity and/or severity, although the sensitivity and specificity of each component is population-dependent.

7S globulin (Ara h 1)

Ara h 1 is a glycosylated seed storage protein. IgE binding to Ara h 1 has a low sensitivity to heating and digestion with pepsin. Twenty-three IgE-binding epitopes were identified throughout the protein by overlapping peptide mapping, and a further epitope, AA361–385, was reported by Shreffler et al. Six of these epitopes, AA90–97, AA98–104, AA108–115, AA124–131, AA134–143, and AA144–151, are pepsin-resistant. Bagh et al. identified five conformational epitope motifs in Ara h 1 by competitive immunoscreening of a phage-displayed random peptide library, and epitope mimics were found to cluster in three areas of Ara h 1. Furthermore, phage-display technology was used to analyze the difference between IgE and IgG epitopes of Ara h 1. Elucidation of IgE and IgG epitope recognition patterns could be a valuable tool for the diagnosis of peanut allergy.

11S globulin (Ara h 3)

Ara h 3 is post-transcriptionally cleaved to form two protein fragments by an asparaginyl endopeptidase after the formation of an intermolecular disulfide bond. Thus, 23-kDa and 36-kDa spots are observed by 2D-PAGE under reducing conditions. Analysis of the IgE-binding epitope sequences in Ara h 3 in three different overlapping peptide array experiments showed that four epitopes, AA30–44, AA237–251, AA276–290, and AA300–312, were important in peanut allergy.

2S albumin (Ara h 2 and 6)

Ara h 2, which consists of two isoforms, Ara h 2.01 and Ara h 2.02, is highly resistant to boiling and proteolytic digestion. Seven to ten IgE-binding epitopes were identified in Ara h 2 using overlapping peptide immunoassays. In addition, post-translational proline hydroxylation of Ara h 2 contributes to linear IgE epitopes.

Ara h 6 shares 55% identity with the AA sequence of Ara h 2 and some of the IgE epitopes of Ara h 6 are cross-reactive with those of Ara h 2. As with Ara h 2, the resistance of Ara h 6 to heat and digestive enzymes was reported. Seven IgE-binding epitopes were identified for Ara h 6 by Otsu et al. and the linear IgE-binding epitopes of Ara h 2 and Ara h 6 were useful in predicting clinical reactions in patients with peanut allergy.

Protein structures of Ara h 1–3, 5, and 8 were elucidated by X-ray crystal structure analysis. B-cell epitopes of Ara h 1–3, 5–13 were predicted using in silico methods, and the predicted epitope sequences of Ara h 1–3 correlated with the epitopes identified experimentally, suggesting that computational prediction of epitopes may contribute to improved accuracy of peanut allergy diagnosis.

Conclusions

Advances in molecular biology and analytical chemistry in the past three decades have facilitated the identification of food allergens and their sequential IgE-binding epitopes. The production of recombinant allergens and the use of 3-D structural analysis have
also contributed to this progress. The results of these studies have enhanced our understanding of the mechanisms of food allergy at the molecular level. Although there are a number of limitations associated with studies of food allergen components and epitopes, the detection and quantification of serum IgE antibodies specific to allergen components and epitope peptides are useful for the diagnosis and prognosis of food allergy. In addition, clarification of the sensitization patterns of allergen components in individual patients might facilitate allergen-specific immunotherapy of food allergy. However, numerous issues remain to be investigated. For example, conformational IgE epitopes and T-cell epitopes have not yet been identified for most food allergens, even those for which the 3-D structure has been determined. Furthermore, many allergens remain unidentified because of biodiversity, especially in seafood, and the disposition and digestion of food allergens after ingestion have not been clarified. Future studies should focus on full IgE and T-cell epitope mapping in individual patients to improve the diagnosis, therapy, and prevention of food allergy.

Conflict of interest

The authors have no conflict of interest to declare.

References

6. Sicherer SH, Sampson HA. Food allergy: epidemiology, pathogenesis, diag-

11. Shreffler WC, Beyer K, Chu TH, Burks AW, Sampson HA. Microarray immu-

16. Moreno EF. Gastrointestinal digestion of food allergens: effect on their aller-

H. Matsuo et al. / Allergology International 64 (2015) 332–343

