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Abstract

This paper addresses the use of dynamical system theory to tackle singular root-*nding problems. The use of continuous-
time methods leads to implicit di5erential systems when applied to singular nonlinear equations. The analysis is based on
a taxonomy of singularities and uses previous stability results proved in the context of quasilinear implicit ODEs. The
proposed approach provides a framework for the systematic formulation of quadratically convergent iterations to singular
roots. The scope of the work includes also the introduction of discrete-time analysis techniques for singular problems which
are based on continuous-time stability and numerical stability. Some numerical experiments illustrate the applicability of
the proposed techniques. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The qualitative relations between discrete and continuous time dynamical systems have been exten-
sively addressed in the last decades. In particular, the discrete dynamics resulting from the numerical
integration of ODEs have motivated much of this research: see [41] and references therein. Within
the so-called dynamical systems approach to numerical analysis, the iteration obtained from the
numerical integration of an ODE may be studied as a discrete dynamical system, parameterized by
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the constants of the integration method. This provides a framework for studying the inheritance of
di5erent qualitative properties.
Following this approach, the present paper analyzes di5erent discretizations of continuous-time

models for singular root-*nding and optimization problems. These singular problems arise, for ex-
ample, in the presence of bifurcation points in continuation methods, as discussed in Section 1.1.
The role of singularities can be properly framed, in the continuous-time context, within the theory of
implicit ODEs, which in turn are closely related to di5erential-algebraic equations or DAEs [4,18].
The use of continuous models also allows one to perform a discretization adapted to the speci*c
features of the problem under consideration. In this direction, the purpose of the present work is
two-fold: from a general point of view, we aim to elaborate on the use of discrete-time analysis
techniques for singular problems, based on continuous-time stability and numerical stability. Our sec-
ond goal is to introduce a systematic methodology for the formulation of quadratically convergent
iterations for singular root-*nding problems.
The document is structured as follows: the rest of this section presents some background on

singular root-*nding problems, continuous-time methods and singular ODEs. Section 2 summarizes
some results from [36] concerning singularities of the continuous-time analog of Newton’s method.
The main results of the present paper are then discussed in Section 3, where a discretization study is
carried out following a taxonomy of singular problems which classi*es them into weak and strong
ones. Finally, concluding remarks are compiled in Section 4.

1.1. Singular root-.nding problems

Let us consider the problem of locating a zero x∗ of f∈Cl(Rn;Rn); l ¿ 4; where the Jacobian
matrix J ∈Cl−1(Rn;Rn×n) (Rn×n being the set of all n×n real matrices) is singular, that is, such that
J (x∗) is a noninvertible matrix. These problems arise, for example, in the presence of bifurcation
points in continuation methods [1,45].
The classical Newton iteration, widely used as a corrector in PC methods for the above-mentioned

continuation problem, is de*ned by the linearly implicit (or quasilinear) di5erence equation

−J (x(k))(x(k+1) − x(k)) = f(x(k)) (1)

and becomes ill-conditioned, or even unde*ned, around such singular solutions. The simplest singular
case is characterized by the transversality condition

(det J )′(x∗)v �= 0 for v∈Ker J (x∗)− {0}; (2)

which has three major implications. First, the Jacobian matrix J (x) is singular on a hypersurface
� � x∗. As will be discussed in Section 1.3, this hypersurface typically includes impasse points which
introduce speci*c diNculties in both continuous and discrete time. Also, it is easily proved (see [27])
that condition (2) implies that dimKer J (x∗) = 1. This indicates that the transversality hypothesis is
a minimal degeneracy assumption, since in this case the Jacobian matrix is rank-de*cient by one.
Finally, as proved by Keller [21], singular equilibria satisfying (2) are isolated, which is not always
the case in general singular problems.
Under conditions equivalent to the transversality hypothesis (2), a result of linear convergence

from a cone-shaped region with vertex in the root was proved by Reddien [30]. This work was
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later improved by several authors (see [8,10,16,17,21,23] and references therein), and then extended
to other numerical methods for singular problems [9,11,22,24]. Some of these papers present accel-
eration schemes to improve the rate of convergence at singular roots [22,23]. As an example, the
iteration

y(k) = x(k) − J−1(x(k))f(x(k)); (3a)

z(k) = y(k) − J−1(y(k))f(y(k)); (3b)

x(k+1) = z(k) − 2J−1(z(k))f(z(k)); (3c)

reported in [23], yields quadratic convergence to certain singular roots.
The present work discusses a di5erent approach to this issue, based on the fact that the loss of

quadratic convergence in the classical Newton method may be seen as the result of a (in a certain
sense) defective transformation of spectra at singular solutions. In this direction, iterations (1) and
(3) may be respectively seen as an Euler and a 3-stage explicit Runge–Kutta integration of the
continuous Newton method presented below. This topic is introduced in Section 1.2, and extensively
discussed in Sections 2 and 3.

1.2. Continuous-time methods

The use of continuous-time systems to solve nonlinear equations may be traced back to Davidenko
[7]. These techniques have been later developed through the introduction of di5erent analogs of
root-*nding algorithms [2,15,26,34,35,42,43,46,47], using ODE and DAE formulations [3,19,37,38],
in the context of homotopy techniques [14,20], and as trajectory methods (see [12] for a survey).
DiNculties related to the presence of singularities are usually better addressed in the continuous-time
setting. These models are often oriented to global problems, although the present paper is focused
on local convergence issues. A unique continuous system may lead to di5erent iterative techniques,
including accelerated versions of basic methods, through the use of di5erent integration schemes.
The convergence analysis of these iterations is then shifted to a stability study of the continuous
system and the discretization method. Damped methods may also be derived from continuous-time
models using variable-stepsize integrators: these techniques are however beyond the scope of the
present work, which essentially requires the use of *xed-stepsize integration schemes to guarantee
quadratic convergence.
In this context, the continuous Newton method is paradigmatic [34,35,42]. This method is de*ned

by the linearly implicit di5erential equation [4,36]

−J (x)ẋ = f(x): (4)

Regular roots of f (points where f(x∗) = 0 and J (x∗) is invertible) lead to asymptotically stable
equilibria of (4), their linearization having a unique (index-1) eigenvalue �=−1. Euler discretization
with stepsize h= 1 leads to the classical Newton method (1), and the semisimple eigenvalue of the
continuous system yields a semisimple null eigenvalue in the discrete setting. Quadratic convergence
to regular roots follows from this fact, the behavior being substantially di5erent at singular solutions.
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1.3. Singular ODEs

The continuous Newton method (4) may be framed within the general context of linearly implicit
(or quasilinear) ordinary di5erential equations [27–29,33,36,40]:

A(x)ẋ = f(x); (5)

where A∈Ck(Rn;Rn×n), and f∈Cl(Rn;Rn), with k; l ¿ 1. The continuous Newton system is a
particular case of (5), with A=−J .
System (5) may be trivially reduced to the explicit ODE

ẋ = A(x)−1f(x) ≡ h(x); (6)

around points where A(x) is regular. If, on the contrary, A(x) has constant rank r ¡n on a neigh-
borhood of a singular point x∗, the equation can be often reduced to a regular system in the theory
of di5erential-algebraic equations (DAEs) [4,18].
The attention in this work is restricted to cases in which A(x) is singular on a hypersurface �, with

x∗ ∈�. This occurs if x∗ is a noncritical singular point [27], that is, if the condition (det A)′(x∗) �= 0
is satis*ed. Singular points will be assumed to be noncritical in this paper, system (5) being in this
case a singular index-0 DAE [36]. In this situation, it follows that dimKer A(x∗)=1 [27]. This case
can be reformulated, using an additional variable, as the singular index-1 semiexplicit DAE [32,36]

ẋ = y;

0 = A(x)y − f(x):

This enlargement is often oriented to the numerical treatment of the system [18]. It is worth men-
tioning that, conversely, singular semiexplicit index-1 DAEs can be reduced to quasilinear form on
the solution manifold, under generic assumptions [32]. Singularities of DAEs also arise in power
systems, magnetohydrodynamics, and nonlinear circuits: in this framework, di5erent qualitative prop-
erties have been studied in [32,39,44].
The main taxonomy of singular points in noncritical quasilinear equations (5) classi*es them

into algebraic singularities, where f(x∗) �∈RgA(x∗), and geometric singularities, satisfying
f(x∗)∈RgA(x∗) [28,29]. Algebraic singularities typically behave as impasse points [5,6,27], where
trajectories collapse in *nite time with in*nite speed. This phenomenon was heuristically observed
in the continuous Newton method [26] while, at the same time, it was being characterized in the
linearly implicit setting [27].
On the other hand, singular equilibria (where f(x∗)=0 and A(x∗) is noninvertible) are geometric

singularities, the local behavior around them being substantially di5erent from that of impasse points.
The qualitative behavior of quasilinear problems around singular roots has been analyzed in [36],
and the main results are surveyed in Section 2. These results underly the discretization study carried
out in Section 3.

2. Singularities of the continuous Newton method

The main stability results for singular zeros of the continuous Newton method are summarized in
this section (see [31,34–36]). These results are structured according to a taxonomy which classi*es
geometric singularities (and, in particular, singular equilibria) into weak and strong ones.
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A noncritical geometric singular point x∗ is said to be a weak singularity if there exists a singular
neighborhood Ux∗ ∩ � of x∗ entirely formed by geometric singularities. Geometric singular points
which fail to satisfy this condition will be termed strong singularities, being accumulation points
of the set of algebraic singularities. With the notation g(x) = AdjA(x)f(x); !(x) = det A(x), weak
singular points may be equivalently de*ned as singularities around which there exists a neighborhood
Ux∗ where !(x) = 0⇒ g(x) = 0 [36].
Weak singular points are important since h(x) = A(x)−1f(x) = g(x)=!(x) may be extended as a

Cm−1 vector *eld, with m = min{k; l}, on a whole neighborhood of x∗ (including singular points)
if this is a noncritical weak singularity [34]. Hence, weak singular problems may be studied using
classical linearization tools, and allow one to structure the singularity analysis. They represent a *rst
step in this analysis, and provide some hints for the study of the more general strong case.

2.1. Weak singular roots

It is well known that the classical Newton method may still be applied to singular one-dimensional
problems, displaying a 1=2 eigenvalue at singular roots where f′′(x∗) �= 0. Quadratic convergence is
recovered using the modi*ed iteration x(k+1)=x(k)−2f(x(k))=f′(x(k)). The extension of this behavior
to multidimensional problems falls within the setting of weak singularities. The continuous-time case
is summarized here, whereas the corresponding discretization study is carried out in Section 3.1.
Weak singular zeros yield asymptotically stable equilibria of the continuous Newton method, under

the transversality assumption (2) [36]:

Theorem 1. Let x∗ be a weak singular zero of the continuous Newton method for f∈C4(Rn;Rn);
satisfying the transversality hypothesis (2). The linearization of the Newton .eld F(x) =
−J (x)−1f(x) at x∗ has eigenvalues −1=2 (simple; with eigenspace Ker J (x∗)); and (if n¿ 2) −1;
with index 1. Therefore, this equilibrium is asymptotically stable.

This result is proved in [36] through the analysis of certain matrix equations and, in particular,
using a singular version of Lyapunov’s equation. The weak case provides counterexamples to the
usual assumption that the domain of convergence of Newton’s method, when applied to singular
roots, should always exclude other singularities [16,17]. A simple example of this behavior is given
by the continuous Newton method when applied to the fold f(x1; x2) = (x21 ; x2), which yields the
linear system F(x1; x2) = (−x1=2;−x2).

2.2. Strong singular roots

In the more general strong case, the existence of a cone-shaped region which is positively invariant
and convergent to the root is proved in [31,36]:

Theorem 2. Let x∗ be a strong singular zero of the continuous Newton method for f∈C4(Rn;Rn);
satisfying the transversality hypothesis (2). There exists a cone-shaped region

W�;� = {x∈Rn: ‖PX (x − x∗)‖6 �‖PN (x − x∗)‖; ‖x − x∗‖6 �}; (7)
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where N =Ker J (x∗); Rn=N ⊕X; and PX (resp. PN ) denotes a projection onto X (resp. N ) along
N (resp. X ); which is positively invariant and convergent to x∗. Taking X = Tx∗�; x̂= x− x∗; z=
PN (x̂); y = PX (x̂); the Newton .eld F may be described on W�;� as

PNF(z; y) =− z
2
+ �

(yy
z

)
+  (zz) + O(‖y‖ ‖z‖) + o(‖x̂‖2); (8a)

PXF(z; y) =−y + #(yz) + O(‖y‖2) + o(‖x̂‖2); (8b)

where �;  and # represent; with abuse of notation

�
(yy

z

)
=
Adj J (x∗)f′′(x∗)yy
2(det J )′(x∗)z

; (9)

 (zz) =
Adj J (x∗)f′′′(x∗)zzz
12(det J )′(x∗)z

; (10)

#(yz) = PX
(Adj J )′(x∗)zf′′(x∗)yz

2(det J )′(x∗)z
: (11)

This result represents a continuous-time analog of Reddien’s theorem describing the behavior
of the classical Newton method at singular roots [30]. Theorem 2 is proved in [36] using a
Lyapunov–Schmidt decomposition and standard ODE results. It is worth mentioning that the values
−1=2 and −1 in the leading terms of (8) correspond to the eigenvalues of the linearization in the
above-mentioned weak case.

3. Discretization issues

It is well known that the classical Newton iteration is quadratically convergent when applied to
regular problems. Newton’s method is obtained after Euler’s discretization of the continuous method
(4) with stepsize one, and this quadratic behavior may be seen as the result of the transformation
of the continuous spectrum $ = {−1} through the mapping � → 1 + �. In this section we ad-
dress this issue for singular problems, in which quadratic convergence is lost, through the use of
other Explicit Runge–Kutta (ERK) discretizations. In the weak case, a spectral study is suNcient to
design quadratically convergent iterations, whereas in strong problems a study of invariance is also
needed.
Our study is founded on the following result, based on the concept of Q-order of

convergence [25]:

Proposition 1. Let x∗ be a .xed point of G ∈C2(Rn;Rn); the spectral radius r(G′(x∗)) satisfying
0¡ r(G′(x∗))¡ 1. Then x∗ is an attractor for G with linear convergence. If; on the other hand;
it is G′(x∗) = 0; then the convergence is (at least) quadratic.
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For later use, note that the assumption r(G′(x∗)) = 0 does not necessarily imply G′(x∗) = 0: the
condition that the (unique) null eigenvalue has index-1 is also needed to guarantee the vanishing
of G′(x∗).

3.1. Weak problems: spectral conditions

Theorem 1 in Section 2.1 reduces the study of weak problems to an explicit setting and, therefore,
allows for the use of classical tools in the analysis of such singularities. Concerning discretization
issues, in explicit systems, as well as in linearly implicit problems around weak singularities, the
existence of a vector *eld describing the dynamics makes it possible to perform the convergence
study through the spectral transform associated with the discretization process. The basic result in
this direction is the following [13, Theorem 4.4.3]:

Proposition 2. Let �1; : : : ; �n be the eigenvalues of a square matrix A. If p(() is a scalar polynomial;
then p(�1); : : : ; p(�n) are the eigenvalues of p(A).

It is immediate to check that an eigenvector of A is also an eigenvector of p(A). This result
may be applied, in particular, to cases in which the polynomial p results from the application of a
numerical integration scheme. Let us consider an s-stage ERK method

x(k+1) = x(k) + h
s∑

i=1

biF(x̃i) (12)

with stage values x̃i given by

x̃1 = x(k); x̃i = x(k) + h
i−1∑
j=1

aijF(x̃j); 1¡i 6 s: (13)

This method de*nes a parameterized iteration of the form x(k+1) = G(x(k); bi; aij; h). F being the
Newton *eld, our purpose is to characterize the convergence properties of such iterations around a
singular equilibrium x∗, depending on the coeNcients bi and aij. These properties are closely linked
to the spectral features of G′(x∗), which can be recursively expressed in terms of F ′(x∗):

G′(x∗) = In + h
s∑

i=1

biF ′(x∗)
dx̃i

dx(k)

∣∣∣∣
x∗

;

dx̃i

dx(k)

∣∣∣∣
x∗
= In + h

i−1∑
j=1

aijF ′(x∗)
dx̃j

dx(k)

∣∣∣∣
x∗

; (14)

where x̃i= x∗ since x∗ is an equilibrium point. This allows us to express G′(x∗) as a polynomial on
F ′(x∗) of degree s:

G′(x∗) = In +
s∑

i=1

di(hF ′(x∗))i : (15)
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In this polynomial, the coeNcient di has the generic form
s∑

m=i

bmamji−1aji−1ji−2 : : : aj2j1 ; (16)

where the sum is extended over all combinations of i − 1 sub-indices j1; : : : ; ji−1 such that 0¡j1
¡j2¡ · · ·¡ji−1¡m. For instance, in a 3-stage method the coeNcients di are

d1 = b1 + b2 + b3; (17a)

d2 = b2a21 + b3a31 + b3a32; (17b)

d3 = b3a32a21: (17c)

Following Proposition 2, the spectrum of G′(x∗) may be obtained from the eigenvalues �i of F ′(x∗)
through the polynomial transformation

p(�i) = 1 +
s∑

j=1

dj(h�i)j: (18)

Note that the eigenvalues of the Newton *eld at a noncritical weak equilibrium are −1=2 and, in
dimension greater than one, −1. The goal of this study is then the derivation of conditions on the
coeNcients bi; aij allowing for the application of Proposition 1, yielding linearly or quadratically
convergent iterations to singular zeros. Note that the freedom in the selection of these coeNcients
makes it possible to normalize the study *xing h= 1, which simpli*es the analysis when compared
with the alternative of choosing the coeNcients bi according to the consistency condition

∑s
i=1 bi=1.

Linear convergence is guaranteed under the conditions |p(−1=2)|¡ 1; |p(−1)|¡ 1. If any of
these values is nonnull, the convergence will be strictly linear. In a 1-stage ERK method, described
by the iteration

x(k+1) = x(k) + b1F(x(k)); (19)

where the presence of the coeNcient b1 is due to the normalization h=1, the spectral transformation
has the form

p(�i) = 1 + b1�i: (20)

The particular case b1=1 yields the classical Newton iteration, and maps the eigenvalues −1=2; −1;
into 1=2; 0, respectively. This is responsible for the linear convergence of Newton’s method to
weak singular roots. In one-dimensional problems, in which the unique eigenvalue of the continuous
method is −1=2, the selection b1 = 2 yields a null eigenvalue in the discrete system. This fact leads
to a quadratically convergent iteration, as indicated in Section 2.1. In dimensions greater than one,
on the other hand, it is not possible to obtain a quadratically convergent iteration using 1-stage
methods. In the sequel, the problem dimension will be assumed greater than one and, therefore,
multistage ERK methods will be needed to achieve quadratic techniques.
From Proposition 1 and the fact that the eigenvalues −1=2 and −1 of the continuous

Newton method have index-1, it follows that a necessary and suNcient condition to achieve
(at least) quadratic convergence of an ERK discretization to noncritical weak singular zeros is that
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0=p(−1=2)=p(−1). This is equivalent to the requirement that the polynomial p(�i) has (2�i+1)
and (�i + 1) as divisors, namely, that its factorization is of the form

p(�i) = (2�i + 1)(�i + 1)q(�i): (21)

This yields certain conditions on the coeNcients bi; aij which will be termed spectral conditions
for quadratic convergence. Note that, as indicated above, at least two stages are needed in an ERK
method to obtain a factorization of form (21).
In the particular case of a 2-stage ERK method, polynomial (18) reads as

p(�i) = b2a21�2i + (b1 + b2)�i + 1; (22)

and must be equal to (2�i+1)(�i+1)=2�2i +3�i+1. This yields the following spectral conditions:

b2a21 = 2; (23a)

b1 + b2 = 3: (23b)

For instance, the combinations b1 = 1; b2 = 2; a21 = 1 and b1 = 2; b2 = 1; a21 = 2 satisfy the
above-mentioned conditions. As a sample, the former yields the following quadratically convergent
iteration to weak singular roots:

x(k+1) = x(k) + F(x(k)) + 2F(x(k) + F(x(k))): (24)

In the 3-stage case, the reasoning is analogous, taking into account the fact that in (21) there is an
additional factor (c�i + 1) with arbitrary c. The polynomial

p(�i) = b3a32a21�3i + (b2a21 + b3a31 + b3a32)�2i + (b1 + b2 + b3)�i + 1 (25)

now has the form

p(�i) = 2c�3i + (2 + 3c)�
2
i + (3 + c)�i + 1; (26)

which yields, after some simple computations, the spectral conditions

2(b1 + b2 + b3)− b3a32a21 = 6; (27a)

3(b1 + b2 + b3)− (b2a21 + b3a31 + b3a32) = 7: (27b)

The parameter set b1 =b2 =a21 =a31 =a32 =1; b3 =2; which characterizes the iteration (3) proposed
in [23], veri*es, in particular, these conditions.
The above study may be summarized in the following result:

Theorem 3. Let x∗ be a weak singular zero of the continuous Newton method for f∈C4(Rn;Rn);
satisfying the transversality hypothesis (2). An ERK discretization of the continuous Newton
method; with stepsize h = 1; yields a (at least) quadratically convergent iteration to x∗ if and
only if the coeBcients of the method verify the spectral conditions given by the factorization (21).
In particular; for 2- and 3-stage methods; such conditions are given by (23) and (27); respectively.

The same reasoning may be applied to non-transversal or critical weak singular zeros at which
the Newton *eld is well-de*ned, as illustrated below (see [34]).
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Example 1. Let us consider the function f(x1; x2) = (x21x2; x
4
1 + x22), which has a unique zero at the

origin. The Jacobian matrix is

J (x1; x2) =

(
2x1x2 x21

4x31 2x2

)
; (28)

its determinant being

!(x1; x2) = det J (x1; x2) = 4x1(x22 − x41): (29)

The singular set is formed by the x2 axis and the two parabolas x2 =±x21. On the other hand, it is
also easy to check that

g(x1; x2) =−Adj J (x1; x2)f(x1; x2) = (−x21(x
2
2 − x41);−2x1x2(x22 − x41)): (30)

Hence, !(x1; x2)=0⇒ g(x1; x2)=0. Therefore, the whole singular set is formed by weak singularities,
which are noncritical except at the origin. The Newton *eld may be analytically de*ned on the whole
plane R2, with (0; 0) the only possible exception. In fact, the Newton *eld is de*ned at every point
of R2, and is given by

F(x1; x2) = (−x1=4;−x2=2): (31)

This expression shows that the origin is a critical weak zero which admits an extension of the vector
*eld. This zero leads to a globally asymptotically stable equilibrium whose eigenvalues are −1=4
and −1=2.
An ERK discretization yielding quadratically convergent iterations for this kind of roots must have

a factorization of (18) of the form p(�i) = (4�i +1)(2�i +1)q(�i). In the case of a 2-stage method,
this is equivalent to

b2a21 = 8; (32a)

b1 + b2 = 6: (32b)

Note, *nally, that a taxonomy of the eigenvalues which may be displayed by the Newton *eld at
di5erent singular roots, allows for the design of quadratic iterations for several types of zeros. In
particular, a 3-stage discretization having a factorization (21) of the form (4� + 1)(2� + 1)(� + 1),
leads to a quadratically convergent iteration to regular roots, noncritical weak singular roots and
critical weak singular roots such as the one above.

3.2. Strong problems: invariance

Strong singular roots raise new and interesting stability issues in the context of singular ODEs and
di5erential-algebraic equations [32,36]. Directional convergence may be proved in certain problems,
the key aspect of this behavior being the existence of cone-shaped regions which are (positively)
invariant for the dynamics. This avoids the evolution towards impasse points close to the solution,
which would result in big jumps after discretization.
These phenomena also pose challenging problems in the discrete setting. The spectral conditions

presented in Section 3.1 are no longer suNcient to guarantee quadratic convergence to strong roots.
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It is also necessary to preserve the invariance of the above-mentioned regions or, more precisely,
the existence of invariant regions also in the discrete context. To achieve this, certain invariance
conditions must be added to the previously discussed spectral ones.
Let us *rst consider some cases in which the discrete dynamics may be proved linearly convergent

to a strong root from certain regions. The following result is a discrete analog of [36, Theorem 4]:

Lemma 1. Let N and X be vector subspaces with dimensions 1 and n− 1; respectively; such that
Rn=N⊕X; and let z=PN (x); y=PX (x) be the projections associated with this direct sum. Consider
the iteration

z(k+1) = 2z(k) + O
(‖y(k)‖2

‖z(k)‖
)
+ O(‖x(k)‖2) (33a)

y(k+1) = By(k) + O(‖x(k)‖2); (33b)

where 2∈R and B is a linear operator X → X . If r(B)¡ |2|¡ 1; then there exist �; �¿ 0 such
that the set W�;� = {x∈Rn: ‖PX (x)‖ 6 �‖PN (x)‖; ‖x‖ 6 �} is positively invariant and linearly
convergent to the origin.

Proof. The invariance of the region W�;� follows from the fact that O(‖y(k)‖2=‖z(k)‖) may be
rewritten as � 2O(‖z(k)‖) on this region. Reducing � and � if necessary, it is possible to take 5¿ 0
small enough so that, in a certain norm, it is

‖By(k)‖6 (r(B) + 5)‖y(k)‖; (34)

‖z(k+1)‖¿ (|2| − 5)‖z(k)‖; (35)

r(B) + 5
|2| − 5

= C ¡ 1: (36)

From the de*nition of W�;�, it is possible to bound the term O(‖x(k)‖2) in (33b) by an expression
of the form  ‖z(k)‖2. Reducing additionally �(�) to guarantee that

 �
(|2| − 5)(1− �)(1− C)

6 �; (37)

we get

‖y(k+1)‖
‖z(k+1)‖ 6

(r(B) + 5)‖y(k)‖+  ‖z(k)‖2
(|2| − 5)‖z(k)‖ 6 C�+

 �
(|2| − 5)(1− �)

6 �: (38)

Finally, linear convergence follows immediately from the contractivity of z and y.

Theorem 4. Let x∗ be a strong singular zero of the continuous Newton method for f∈C4(Rn;Rn);
satisfying the transversality hypothesis (2). Take N = Ker J (x∗); X = Tx∗�. Consider the 1-stage
discretization (with stepsize h= 1) x(k+1) = x(k) + b1F(x(k)); and write x̂ = x − x∗. If 0¡b1¡ 4=3;
then there exists a region W�;� = {x∈Rn: ‖PX (x̂)‖ 6 �‖PN (x̂)‖; ‖x̂‖ 6 �} which is positively
invariant and linearly convergent to x∗.
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Proof. Consider expression (8) for the Newton *eld around a strong singular root. The 1-stage
discretization indicated above yields an iteration of the form

z(k+1) =
(
1− b1

2

)
z(k) + �̃

(
y(k)y(k)

z(k)

)
+  ̃(z(k)z(k)) + O(‖y(k)‖ ‖z(k)‖) + o(‖x̂‖2) (39a)

y(k+1) = (1− b1)y(k) + #̃(y(k)z(k)) + O(‖y(k)‖2) + o(‖x̂‖2); (39b)

where �̃= b1�, etc. It is easy to check that 0¡b1¡ 4=3 implies that |1− b1|¡ |1− b1=2|¡ 1. The
result then follows from Lemma 1.

The particular case b1=1 yields the classical Newton iteration. The linear convergence of Newton’s
method to singular roots was proved by Reddien [30]. The greater generality of the result above
guarantees that the stage values of certain multistage discretizations remain on the cone-shaped region
in which expression (8) is valid.
The general invariance study of quadratically convergent iterations is an open problem. We discuss

in the present work some particular illustrative results based on the following property:

Lemma 2. Let N and X be vector subspaces as in Lemma 1. Consider the iteration

z(k+1) = ’(z(k)z(k)) + O(‖y(k)‖ ‖z(k)‖) + O(‖y(k)‖2) + o(‖x(k)‖2) (40a)

y(k+1) = O(‖y(k)‖2) + o(‖x(k)‖2) (40b)

where ’ is a bilinear operator N × N → N . If ’ is nonnull; then there exist �; �¿ 0 such that
the set W�;� = {x∈Rn: ‖PX (x)‖ 6 �‖PN (x)‖; ‖x‖ 6 �} is positively invariant and quadratically
convergent to the origin.

Proof. Since N is one-dimensional and ’ is nonnull, there exists a constant c0¿ 0 such that

‖’(z(k)z(k))‖¿ c0‖z(k)‖2: (41)

Reducing suNciently � and �, it is then possible to take another constant c1¿ 0 such that

‖z(k+1)‖¿ c1‖z(k)‖2: (42)

On the other hand, the term O(‖y(k)‖2) in (40b) may be bounded by an expression of the form
c2‖y(k)‖2. Hence, we obtain

‖y(k+1)‖
‖z(k+1)‖ 6

c2‖y(k)‖2 + o(‖x(k)‖2)
c1‖z(k)‖2 6

c2
c1

� 2 +
(1 + �)2o(‖x(k)‖2)

c1‖x(k)‖2 : (43)

Reducing � and �(�) so that

c2
c1

�+
(1 + �)2o(‖x(k)‖2)

�c1‖x(k)‖2 6 1; (44)
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we get

‖y(k+1)‖
‖z(k+1)‖ 6 �: (45)

Strict quadratic convergence follows from the absence of linear terms in the iteration, together with
the nonvanishing of ’.

Theorem 5. Let x∗ be a strong singular zero of the continuous Newton method for f∈C4(Rn;Rn);
satisfying the transversality hypothesis (2). Take N =Ker J (x∗); X = Tx∗�. Assume f′′(x∗)yz= 0
and Adj J (x∗)f′′′(x∗)zzz �= 0; for any y∈X −{0} and any z ∈N −{0}. Under these conditions; the
2-stage ERK discretization (24); de.ned by b1 = a21 = 1; b2 = 2; yields a quadratically convergent
iteration to x∗ from a certain positively invariant region W�;�={x∈Rn: ‖PX (x−x∗)‖6 �‖PN (x−
x∗)‖; ‖x − x∗‖6 �}.

Proof. The conditions imposed on f guarantee that  �= 0; # = 0 in (8). Let us then study the
relations between the coeNcients bi; aij which make it possible to apply Lemma 2. To do so, note
that the Newton *eld may be written, on a certain region W�;�, as

PNF(z; y) =− z
2
+ �

(yy
z

)
+  (zz) + h:o:t: (46a)

PXF(z; y) =−y + h:o:t: (46b)

where higher-order terms (h.o.t.) are those which do not inTuence the convergence of the iteration,
in the terms de*ned by Lemma 2.
The iteration resulting from the 2-stage ERK integration is given by

x(k+1) = x(k) + b1F(x̃1) + b2F(x̃2) (47)

with stage values

x̃1 = x(k); x̃2 = x(k) + a21F(x(k)): (48)

In particular, the point x̃2 has the following projections:

PN x̃2 = z(k) + a21

(
−z(k)

2
+ �

(
y(k)y(k)

z(k)

)
+  (z(k)z(k))

)
+ h:o:t:; (49a)

PX x̃2 = y(k)(1− a21) + h:o:t: (49b)

The condition a21 = 1, which following Lemma 1 implies that the stage value x̃2 remains on W�;�,
yields

PN x̃2 =
z(k)

2
+ �

(
y(k)y(k)

z(k)

)
+  (z(k)z(k)) + h:o:t:; (50a)

PX x̃2 = h:o:t: (50b)

and

PNF(x̃2) =−1
2

(
z(k)

2
+ �

(
y(k)y(k)

z(k)

)
+  (z(k)z(k)) +

1
4
 (z(k)z(k))

)
+ h:o:t:
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=−1
4
z(k) − 1

2
�
(
y(k)y(k)

z(k)

)
− 1
4
 (z(k)z(k)) + h:o:t: (51a)

PXF(x̃2) = h:o:t: (51b)

Hence, we may split x(k+1) = x(k) + b1F(x̃1) + b2F(x̃2) as follows:

z(k+1) =PNx(k) + b1PNF(x̃1) + b2PNF(x̃2)

= z(k) + b1

(
−z(k)

2
+ �

(
y(k)y(k)

z(k)

)
+  (z(k)z(k))

)

+ b2

(
−1
4
z(k) − 1

2
�
(
y(k)y(k)

z(k)

)
− 1
4
 (z(k)z(k))

)
+ h:o:t:

=
(
1− b1

2
− b2
4

)
z(k) +

(
b1 − b2

2

)
�
(
y(k)y(k)

z(k)

)

+
(
b1 − b2

4

)
 (z(k)z(k)) + h:o:t: (52a)

y(k+1) = PX x(k) + b1PXF(x̃1) + b2PXF(x̃2) = (1− b1)y(k) + h:o:t: (52b)

The conditions b1 =1; b2 =2 guarantee that the coeNcients of z(k) and � in z(k+1), as well as that of
y(k) in y(k+1), are null. On the other hand, the coeNcient of  in z(k+1) does not vanish. This implies
that the iteration above has the form indicated in Lemma 2, and quadratic convergence follows.

The above reasoning is based on the simplifying symmetry hypothesis f′′(x∗)yz=0, which leads
to #(yz)=0: a general analysis should look for conditions yielding a bound for ‖#(yz)‖ by ‖ (zz)‖.
Note that, after imposing the condition a21 = 1 (which guarantees that the stage value x̃2 remains
on the cone), the values of b1 and b2 may also be obtained from the spectral conditions (23).
Generally speaking, certain invariance conditions must be added to the spectral ones to guarantee
quadratic convergence to singular roots from invariant regions. As an example, the 3-stage ERK
method de*ned by aij =1; b1 = b2 = 1; b3 = 2, which de*nes the iteration (3), yields also quadratic
convergence to strong singular roots [23].

Example 2. Let us consider the behavior of di5erent discretizations of the continuous Newton method
around the singular zero (1; 0) of

f(x1; x2) = (x21 − x41 ; x
5
1 + x22 + x32 − 1): (53)

The Jacobian matrix is

J (x1; x2) =
(
2x1 − 4x31 0
5x41 2x2 + 3x22

)
: (54)
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Fig. 1. Discretizations: (a) Euler: 6-step domain, (b) ERK-2: 3-step domain.

The singular set � is de*ned by the condition !(x1; x2) = det J (x1; x2) = 2x1x2(1 − 2x21)(2 +
3x2) = 0, showing that the root located at (1,0) is singular. It is easy to check that all hypotheses
in Theorems 2, 4 and 5 are satis*ed. In particular, Theorem 2 predicts the existence of a locally
cone-shaped invariant region for the continuous Newton method. This cone has vertical axis, since
Ker J (1; 0)={(0; v2); v2 ∈R}. Also, Theorems 4 and 5 state the existence of invariant cones for the
classical Newton method (resulting after Euler’s integration of the continuous method) and for the
iteration de*ned by the ERK-2 scheme (24), characterized by the values b1 = a21 = 1; b2 = 2. In the
former, linear convergence is expected from this cone-shaped region, whereas quadratic convergence
is predicted for the latter.
Fig. 1 illustrates the di5erent rates of convergence of both discretizations. Note *rst that the

computational cost associated with one step of the 2-stage discretization (24) is equivalent to that
of two steps of the classical Newton iteration, since this is obtained through a 1-stage (Euler)
method. Fig. 1(a) displays the set of points which, after six or less iterations of the classical Newton
method, are located within a 0.001-ball centered at the singular solution (1,0), using the d∞ distance
d∞((x1; x2); (1; 0)) = max{|x1 − 1|; |x2|}. Fig. 1(b) shows the corresponding picture for three or less
iterations of the ERK-2 iteration (24). The improvement provided by the quadratic behavior of the
latter is clear.
The irregular shape of both regions is due to the fact that the singular root at (1,0) is surrounded

by impasse points (x1; 0); x1 �= 1; which produce big jumps after *xed-step discretization.
As a *nal example, Tables 1 and 2 display the evolution of both iterations from the initial point

(1:05; 0:2). In both cases, the discrete dynamics evolve towards the singular equilibrium located at
(1; 0). The third column of both tables displays the error evolution, computed as the d∞ distance
to this solution. Table 1 shows the evolution of the classical Newton method, obtained after Euler
discretization of the continuous system. The linear rate along the vertical direction of the kernel
(represented by the x2 variable) is clearly displayed. On the contrary, in Table 2 the iteration
presents a quadratic evolution towards the singular solution.
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Table 1
Iteration from (1:05; 0:20), Euler discretization

x1-coordinate x2-coordinate Error

x(0)1 = 1:05 x(0)2 = 0:20 e(0) = 0:20
x(1)1 = 1 + 5:34× 10−3 x(1)2 = 0:098 e(1) = 0:098
x(2)1 = 1 + 7:01× 10−5 x(2)2 = 0:051 e(2) = 0:051
x(3)1 = 1 + 1:22× 10−8 x(3)2 = 0:026 e(3) = 0:026
x(4)1 = 1 + 56 10−14 x(4)2 = 0:013 e(4) = 0:013
x(5)1 = 1 + 56 10−14 x(5)2 = 0:0066 e(5) = 0:0066
x(6)1 = 1 + 56 10−14 x(6)2 = 0:0033 e(6) = 0:0033

Table 2
Iteration from (1:05; 0:20), ERK-2 discretization

x1-coordinate x2-coordinate Error

x(0)1 = 1:05 x(0)2 = 0:20 e(0) = 0:20
x(1)1 = 1− 5:20× 10−3 x(1)2 = 3:59× 10−3 e(1) = 5:20× 10−3

x(2)1 = 1− 6:89× 10−5 x(2)2 = 3:23× 10−5 e(2) = 6:89× 10−5

x(3)1 = 1− 1:19× 10−8 x(3)2 = 1:40× 10−8 e(3) = 1:40× 10−8

4. Concluding remarks

This paper shows the applicability of implicit ODEs in singular nonlinear equation solving and
optimization problems. The link between these *elds is given by the linearly implicit form of the
continuous time analog of Newton’s method.
Singular roots pose interesting stability issues in the continuous-time context of singular ODEs.

These problems have been surveyed, under the noncritical assumption, following a taxonomy which
classi*es them into weak and strong ones. The weak case provides counterexamples to the usual
assumption that the domain of convergence of Newton’s method, when applied to singular roots,
should always exclude other singularities. In these problems, the continuous-time context reduces
the formulation of quadratically convergent iterations to a spectral study of ERK discretizations.
The presence of impasse points in the more general strong case involves directional stability results

within the continuous-time framework. This motivates a study of invariance which complements the
previous spectral analysis. The study leads to a systematic formulation of quadratically convergent
iterations to singular roots from certain cone-shaped regions. Singular solutions generically satisfy the
transversality hypothesis (2): hence, ERK-schemes such as the ones described by (3) or (24) might
be appropriate when singular roots are expected and no additional information about the problem is
available. Nevertheless, some examples suggest that the scope of the work potentially includes more
general types of singularities, beyond the transversal ones here considered.
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