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A B S T R A C T

This paper examines the impact of structural oil price shocks on the covariance of U.S.
stock market return and stock market volatility. We construct from daily data on
return and volatility the covariance of return and volatility at monthly frequency. The
measures of daily volatility are realized-volatility at high frequency (normalized
squared return), conditional-volatility recovered from a stochastic volatility model, and
implied-volatility deduced from options prices. Positive shocks to aggregate demand
and to oil-market specific demand are associated with negative effects on the
covariance of return and volatility. Oil supply disruptions are associated with positive
effects on the covariance of return and volatility. The spillover index between the
structural oil price shocks and covariance of stock return and volatility is large and
highly statistically significant.

ã 2014 Elsevier B.V. All rights reserved.

1. Introduction

A considerable volume of work has emerged examining the connections between oil price shocks and stock returns and
between oil price shocks and stock market volatility. Early papers finding a negative relationship between oil prices and
stock market returns include Jones and Kaul (1996), for Canada and the U.S., Sadorsky (1999) for the U.S., and Papapetrou
(2001) for Greece. Nandha and Faff (2008) report a negative connection between oil prices and global industry indices, Chen
(2010) establishes that an increase in oil prices leads to a higher probability of a declining S&P index, and Miller and Ratti
(2009) find that stock market indices in 6 OECD countries respond negatively to increases in the oil price in the long run,
particularly before 2000.1 In an important contribution, Kilian and Park (2009) emphasize that in analyzing the influence of
oil prices on the stock market, it is essential to identify the underlying source of the oil price shocks. Kilian and Park (2009)

* Corresponding author. Tel.: +1 330 308 7414.
E-mail address: wkang3@kent.edu (W. Kang).

1 A negative effect of positive oil price shocks on stock market return has been confirmed by a number of authors for oil importing countries.
Jimenez-Rodriguez and Sanchez (2005) argue that the negative effects for oil importing countries are reinforced because of intensive trade connections.
Arouri and Rault (2011) find that large oil price changes have a positive impact on stock returns in oil-exporting countries.
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show that oil price increases driven by aggregate demand cause U.S. stockmarkets to rise and that those driven by oil-market
specific demand shocks cause stock markets to fall.2

With regard to the effect of oil price shocks on stockmarket volatility, Malik and Ewing (2009) find evidence of significant
transmission of volatility between oil and some sectors in the US stock market, Vo (2011) shows that there is inter-market
dependence in volatility between U.S. stock and oil markets, and Arouri et al. (2012) report that there is volatility
transmission from oil to European stock markets. Degiannakis et al. (2014) show that a rise in price of oil associated with
increased aggregate demand significantly raises stock market volatility in Europe, and that supply-side shocks and oil
specific demand shocks do not affect volatility.

The objective in this paper is to investigate how structural oil price shocks drive the contemporaneous stock market
return and volatility relationship. In recent years, there has been considerable volatility in the U.S. stockmarket and dramatic
fluctuation in the global price for crude oil. The relationship between stock market return and volatility is of central
importance in finance. Under the capital asset pricing model of Merton (1980), return and volatility of the aggregate stock
market portfolio are positively related, although empricial confirmation of the nature of relationship has been
controversial.3 Bollerslev and Zhou (2006) put much of the diversity of findings about the stock market return and
volatility relationship down to different methods of measuring volatility. The measures of volatility used in empirical
examination of the links between stock return and volatility have included realized-volatility, based on using high frequency
data to compute measures of volatility at a lower frequency, conditional-volatility, recovered from a stochastic volatility
model, and implied-volatility, deduced from options prices.

In this paper, we will construct from daily data of return and volatility the covariance of return and volatility at monthly
frequency. Themeasures of daily volatility are realized-volatility at high frequency (normalized squared return), conditional-
volatility recovered froma stochastic volatilitymodel, and implied-volatility deduced fromoptions prices. The latter variable
provides a forward looking measure of the contemporaneous stock market return and volatility relationship.

It is found that a positive shock to aggregate demand is associated with negative effects on the covariances of return and
volatility with the statistical significance of the effect extending for a longer period for implied-covariance. Positive shocks to
oil-market specific demand have a statistically significant negative effect on the return and volatility covariance relationships
over thefirst four tofivemonthsof the shock. In contrast to thefindings for realizedorconditional-covariance, anunanticipated
reduction in crude oil production is associated with a statistically significant increase in implied-covariance of return and
volatility that extends for 24 months. In the long-term, shocks to global oil supply, innovations in aggregate demand, and
oil-market specific demanddisturbances forecast 14.7%,13.7%, and 33%of the variation in the stockmarket implied-covariance
of return and volatility.

To investigate the changes in the dynamics of oil price shocks and the covariance in U.S. stockmarket return and volatility
over time, we estimate a structural vector autoregression (SVAR)model using rolling samples. The fraction of the variation of
implied-covariance of return and volatility explained by oil-market specific demand shocks increased dramatically in
2008:09 to around 43%, and has averaged over 40% since that time. Global oil production predicts 8.4% of the variance of
implied-covariance of return and volatility over 2005–2006 before rising to an average of 21.3% fromMarch to September in
2008, and averaging 18.6% over 2011:07–2013:12. This contrasts with the contribution of global aggregate demand to
forecasting the implied-covariance of return and volatility which is greater over 2005–2006 (about 30.0%) than
subsequently, (11.5% over 2011:01–2013:12).

The paper is organized as follows. Section 2 describes the data source. Section 3 presents the stock covariance of return
and volatility measures and the structural VAR model. Section 4 discusses empirical results on the dynamics of global oil
price shocks and stock market. Section 5 concludes.

2. Data source

In this study, stockmarket variables atmonthly frequencywill be constructed fromdaily data. The stockmarket return for
the U.S. is fromdaily returns of aggregate U.S. stockmarket indices drawn fromCRSP that represent a value-weightedmarket
portfolio including NYSE, AMEX, and Nasdaq stocks from January 1973 to December 2013. This high frequency datawill then
be used to construct measures of covariance of returns and volatility at monthly frequency in line with construction in the
literature of use of high frequency data to construct measures of implied and conditional-volatility.

2 Hamilton (2009) argues that oil price shocks in recent years are mainly due to growth in developing markets, and not associated with the negative
consequences of supply-side disruption. Filis et al. (2011) find oil price increases occasioned by demand-side influence have a positive impact on stock
market returns. Apergis and Miller (2009) find small effects of structural oil price shocks on stock market returns in a number of developed countries,
whereas Abhyankar et al. (2013) argue that the effects are significant in Japan.

3 Although, the asset pricing model suggests a positive and proportional relationship between excess return andmarket volatility, empirical results have
varied. For example, French et al. (1987) find that U.S. stockmarket returns and the conditional variance are significantly positively correlated. Theodossiou
and Lee (1995) and Lee et al. (2001) show there is a positive relationship between stock market returns and the conditional variance in the international
markets. Ghysels et al. (2005) find a significant positive relation between risk and return in the stock market using a mixed data sampling approach to
measure volatility. In contrast, Glosten et al. (1993) and Hibbert et al. (2008) report a significantly negative relationship between expected returns and the
conditional variance in the U.S. stock market. Li et al. (2005) analyze 12 largest international stock markets and show a significant negative
contemporaneous relationship between stock market returns and stock market volatility.
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The daily implied-volatility data are the Chicago Board of Options Exchange (CBOE) VIX fear index, available in the CRSP
database or at Yahoo finance. For the analysis of the U.S. stock market’s implied-covariance of return and volatility, the
sample period is given by the availability of the VIX index from January 1990 to December 2013. This high frequency data are
then used to construct a measure of implied-covariance of returns and volatility at monthly frequency.

Themonthly world production of crude oil is a proxy for oil supply. The percent change in the oil supply is 100multiplied
by the log difference of theworld crude oil production inmillions of barrels per day averagedmonthly. The real price of oil is
the refiner’s acquisition cost of imported crude oil, from the U.S. Department of Energy, and deflated by the U.S. CPI, from the
Bureau of Labor Statistics. The refiner’s acquisition cost of imported crude oil is available from January 1974. Following
Barsky and Kilian (2002), weuse theU.S. producer price index for oil (DRI code: PW561) and the composite index for refiner’s
acquisition cost of imported crude oil to extend the oil price data back to January 1973.

Global economic activity is given by Kilian (2009) real aggregate demand index.4 This index is based on equal-weighted
dry cargo freight rates. A rise in the index indicates higher demand for shipping services driven by increased global economic
activity. An advantage of the measure is that it is global and it reflects activity in developing and emerging economies.

3. Methodology

3.1. Covariance specifications

We construct from daily datameasures of the covariance between return and volatility that will be atmonthly frequency.
The measures of covariance of return and volatility will be for realized-covariance, conditional-covariance, and
implied-covariance. The construction of these covariance variables is inspired by the measure of realized-volatility based
on Merton (1980). Merton (1980) and Andersen and Bollerslev (1998) sum the higher frequency squared log-returns to
generate a lower frequency volatility measure.We followa similar procedure to obtain ameasure of the covariance of return
and volatility at monthly frequency based on daily data on return and daily data on volatility (realized, conditional, and
implied, in turn).

3.1.1. Daily volatility
We examine three main volatility estimates in the literature: realized-volatility, conditional-volatility, and

implied-volatility (e.g., Engle (2002)). The realized-volatility is based on Merton (1980) methodology that assumes the
stock returns are generated by a diffusion process.5 We first compute the ratio of the first difference of daily returns ðDrtÞ to
the square root of the numer of trading-days intervening

ffiffiffiffiffiffiffiffiffiffi
D’t

q
. The daily stock volatility realizedsd

t

� �
is the square of the ratio,

Drt=
ffiffiffiffiffiffiffiffiffiffi
D’t

q� �2

, that denotes daily contribution to monthly/annual stock volatility (e.g., Baum et al. (2008)).6

The daily conditional-volatility conditionalsd
t

� �
is the conditional variance of daily returns that is generated by the GARCH

(1,1) model.7 It is generally used and based on the notion that investors know the most recently available informationwhen
they make their investment decisions. The conditional-volatility and realized-volatility measures are both current-looking
volatility in the sense that the two measures estimate the stock market volatility at the current time. Ghysels et al. (2005)
forecast monthly variance with past daily squared returns (a method referred to as mixed data sampling or MIDAS) and
report that the forecast variance process is highly correlatedwith both theGARCH and the rollingwindows estimates (French
et al., 1987).

The implied-volatility is Chicago Board of Options Exchange (CBOE) volatility index VIX that is considered as an important
tool for measuring investors’ sentiment inferred from option prices.8 The forward-looking implied-volatility represents a
measure of the expectation of stockmarket volatility over the next 30 day period. The one-day implied-volatility ðimpliedsd

tÞ is
the difference of daily VIX between t � 1 and tði:e:;st�1 � stÞ in order to keep the daily return and volatility over the
identical time horizon (e.g., Connolly et al. (2005); Bollerslev and Zhou (2006)).

3.1.2. Monthly covariance of return and volatility
The monthly return and volatility covariance ðcovmÞ are the mean of the product of daily return ðrdtÞ and volatility ðsd

tÞ
minus the product of the mean of daily return ðrdtÞ, and the mean of daily volatility ðsd

tÞ within a month:

4 The data are available at http://www-personal.umich.edu/lkilian/paperlinks.html.
5 The use of higher frequency stock return data on a monthly basis is valuable to obtain a more powerful test, since the homoscedastic diffusion process

suggests that the evidence of the sample variance is inversely related to the sample frequency (e.g., Merton, 1980). The low sample variance reflects the
underlying stock return movement rather than extreme draws that mitigates possible estimation inefficiency.

6 In the literature the realized stock volatility utilizing higher frequency data to computemeasures of volatility at a lower frequency is assumed to provide
more accurate estimates of volatility (e.g., Andersen and Bollerslev (1998), Ebens (1999)).

7 Inference in the model using the GARCH conditional-volatility is complicated by the problem of generated regressors analyzed by Pagan (1984), in that
in a standard regression model the asymptotic variance of the OLS estimator changes when we replace unobserved regressors by generated regressors.

8 VIX is a measure of expected volatility over the next 30 calendar days (22 calendar days) in the S&P 500 based on prices of options to buy or sell stocks,
and thus, is forward looking. VIX captures both uncertainty about the fundamental values of assets and uncertainty about the behavior of other investors.
The computation of VIX takes into account advances in financial theory. Kanas (2012) provides a detailed description of the index. Blair et al. (2001) note
that implied volatilities may contain misspecification problems. However, Fleming et al. (1995) argue that indices of implied volatilities alleviate these
measurement errors.
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c ovkm rdt ;
ksd

t

� �
¼ Em rdt � Em rdt

� �� �
ksd

t � Em ksd
t

� �� �h i
(1)

where k= realized, conditional, implied, and Em denotes the expectationwithin amonth. Thus, Em ksd
t

� �
is themonthlymean

of the daily volatility and Em rdt
� �

is the monthly mean of the daily returns.
The monthly stock volatility may be given by variance or standard deviation. Degiannakis et al. (2014) and many other

authors favor standard deviation as indicator of volatility, and definemonthly stock volatility as the square root of the sum of
the daily volatility contributions:

volkm
ksd

t

� �
¼

ffiffiffiffiffiffiffiffiffiffiXm
r¼1

k

vuut sd
t ; k ¼ realized; conditional; implied: (2)

The covariance of return and volatility and the stock return volatility, defined in Eqs. (1) and (2), for k = realized,
conditional and implied, are reported in Figs.1 and 2, respectively. Realized-covariance showsmore extreme values than the
corresponding conditional and implied measures, and realized-covariance also includes many negative values. Values for
realized and implied measures of covkm are highest immediately after the global financial crisis, with peak months being
October andNovember 2008. The implication is that, return for given volatility is highest during thesemonths. Following the
global financial crisis, local peaks in realized and impliedmeasures of covkm occur inMay 2010, whenworld stockmarkets fell
sharply during a flare up of the Eurozone crisis, and in August 2011, a month during which Standard and Poor downgraded
U.S. sovereign debt and the U.S. and other global stock markets crashed. The peak value for conditional measure of the
covariance of return and volatility, covconditionalm , is during October 1987, a month that includes ‘Black Monday’, October 19,
1987, when the DJIA dropped by over 22%.

3.2. Structural VAR model

We utilize a structural vector autoregression (SVAR) model to examine the effects of oil price shocks identified and
differentiated according to their supply and demand-side sources and their relation to the U.S. stockmarket return, volatility,
and covariance, respectively. Oil price shocks can affect stock price return and volatility by effects on expected corporate cash
flow and on the discount rate applied to future earnings (through expected inflation and expected real interest rate).

The structural vector autoregression model of order j is in the following:

B0Xt ¼ c0 þ
Xj

i¼1

BiXt�i þ et (3)

where Xt is a 4� 1 vector of endogenous variables, B0 denotes a 4� 4 contemporaneous coefficient matrix, c0 represents a
4� 1 vector of constant terms, Bi refers to the 4� 4 autoregressive coefficient matrices, and et stands for a 4� 1 vector of
structural disturbances. The block of the endogenous variables Xt includes the percent change in world oil production
ðDprodtÞ, global real aggregate demand reatð Þ, and the real price of oil ðrpotÞ. Kilian (2009) notes that this block captures the
supply and demand conditions in the world oil market and attributes the fluctuation of oil prices to oil supply-side shocks,
shocks to the aggregate demand, and the oil-market specific demand shocks. The second block includes the U.S. stockmarket
real return, volatility or covariance.

To construct the structural VAR representation (3), we first need to consistently estimate its reduced-form using the
least-squares method. The reduced-form VAR model is obtained by multiplying both sides of Eq. (3) with B�1

0 which is
[(Fig._1)TD$FIG]

Fig. 1. Monthly covariance of stock market return and volatility.
Note: The monthly covariance of stock market return and volatility is constructed from daily data on stock market return and daily volatility and defined in
Eq. (1). The measures of daily volatility are realized-volatility at high frequency (normalized squared return), conditional-volatility recovered from a
stochastic volatility model, and implied-volatility deduced from options prices. Realized-covariance and conditional-covariance are over 1973:01–2013:12
and implied-covariance is over 1990:01–2013:12.
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postulated to have a recursive structure such that the reduced form errors et are linear combinations of the structural errors
et in the following:

et ¼
eDprod
t
ereat
erpot
ecovt

0
BB@

1
CCA ¼

b11 0 0 0
b21 b22 0 0
b31 b32 b33 0
b41 b42 b43 b44

0
BB@

1
CCA

eDprod
t
ereat
erpot
ecovt

0
BB@

1
CCA (4)

where eD prod
t reflects oil supply shocks, ereat captures aggregate demand shocks, erpot denotes oil market-specific demand

shocks, and ecovt is the return and volatility covariance shocks.
FollowingKilian (2009), we take j ¼ 24, because the long lag of 24 allows for a potentially long delay in the shock effects of

oil prices and for a sufficient number of lags to remove serial correlation.9 The previous literature has shown that long lags
are important in structural models of the world oil market to account for the low frequency co-movement between the real
price of oil and global economic activity. Hamilton and Herrera (2004) argue that a lag length of 24 months is sufficient to
capture the dynamics in the data in modeling business cycles in commodity markets. Ciner (2013) also emphasizes
importance of the use of long lags in that oil price shocks that persistmore (less) than a year have a positive (negative) impact
on stock returns.

The exclusion restrictions on B�1
0 in the structural VARmodel are based on the assumption in Kilian and Park (2009). The

supply of crude oil is inelastic in the short run, in the sense that the oil supply does not respond to contemporaneous changes
in oil demandwithin a givenmonth because of the high adjustment cost of oil production. The fluctuation of real prices of oil
does not lower global real economic activity within a given month because of slow global real reaction. In line with the
standard approach of treating innovations to the price of oil as predetermined with respect to the economy (e.g., Lee and Ni
(2002)), we rule out instananeous responses from shocks to oil prices in the world oil market to the U.S. stock market. A
recent study by Kilian and Vega (2011) finds that there is no significant evidence of feedback within a givenmonth fromU.S.
aggregates to the price of crude oil.

Notice that in Eq. (4) et � N 0;S
� �

in the reduced-form VAR model and the partial correlation coefficients quantify the
contemporaneous correlation between two components of the error terms, rij ¼ �sij=

ffiffiffiffiffiffiffiffiffiffi
diidjj

p
; where sij denotes the

elements of the precision matrix S
�1

; and is given by:

re a r po cov
D prod 0:049 0:050 0:089

ð0:53Þ ð0:45Þ ð0:93Þ
r ea 0:147 �0:220

ð1:46Þ ð2:20Þ
r p o �0:250

ð2:11Þ

2
666666664

3
777777775
: (5)

The values in the parenthesis of the matrix in (5) are absolute t-statistic to the standard error generated by recursive-design
wild bootstrapwith 2000 replications proposed byGonçalves and Kilian (2004). The covariance refers to implied-covariance.
When realized/conditional-covariance is used, we obtain similar results. This provides us with supporting evidence on the

[(Fig._2)TD$FIG]

Fig. 2. Monthly volatility of stock market return.
Note: The monthly variance of stock market return is constructed from daily data on stock market return and daily volatility and defined in Eq. (2).
The measures of daily volatility are realized-volatility at high frequency (normalized squared return), conditional-volatility recovered from a
stochastic volatility model, and implied-volatility deduced from options prices. Realized variance and conditional variance are over 1973:01–2013:12 and
implied-variance is over 1990:01–2013:12.

9 Sims (1998) and Sims et al. (1990) argue that even a variable that displays no inertia does not necessarily show absence of long lags in regressions on
other variables.
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exclusion restrictions (shocks to oil prices predetermined to the economy), because the contemporaneous correlations
between oil price shocks, and stock market return and volatility covariance are small and statistically insignificant within a
given month.10 As a consequence, the exclusion restrictions on B�1

0 in the structural VAR model are appropriate.
The stationarity of the variables in the model is investigated by conducting Augmented Dicky–Fuller (ADF),

Phillips–Perron (PP), and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests for each of the series, the first difference of
the natural logarithm of oil production, aggregate demand, real oil price, and stock market return and volatility covariance.
Table 1 shows that we can reject the null hypothesis, based on the ADF, PP, and KPSS tests, thatDprodt; reat; and covtcontain
a unit root at the 1% significant level. We also find that the three tests suggest that real price of oil ðrpotÞ contains a unit root.
The nonstationarity of real oil prices may lead to a loss of a symptotic efficiency as reflected in wider error bands in the
estimation. However, taking the first difference may result in removal of the slow moving component in the series, and
incorrectly differencing can cause the estimates to be inconsistent given the nature of standard unit root tests (e.g., Kilian and
Murphy (2014)). Since the estimated impulse response is robust, even if the stationary assumption is violated, we use the
level of the real price of oil in common with prior oil literature (e.g., Kilian and Park (2009)).

4. Empirical results

4.1. Impulse responses to oil market structural shocks

We report the impulse response functions (IRFs) of the covariance of stock return and volatility and of volatility over
24 months to one-standard deviation structural oil market shocks (global oil production, global real economic activity and
real price of oil). One-standard error and two-standard error bands, indicated by dashed and dotted lines, respectively, are
computed by conducting recursive-design wild bootrap with 2000 replications proposed by Gonçalves and Kilian (2004).
The analysis of the IRFs presents the short-run dynamic response of dependent variables (i.e., vertical axis labels) to the
structural shocks.

4.1.1. Responses of covariance of return and volatility
The cumulative impulse responses to the structural oil market shocks for the covariance of stock return and

realized-volatility (realized-covariance) are shown in Fig. 3A, for the covariance of stock return and conditional-volatility
(conditional-covariance) is shown in Fig. 3B, and for the covariance of stock return and implied-volatility
(implied-covariance) is shown in Fig. 3C. In each figure the responses are first to shocks to a reduction in global oil
production, second to a positive innovation in global real economic activity, and third to a positive shock to the real price of
oil.

A positive shock to global aggregate demand is associatedwith negative effects on the covariances of return and volatility
in Figs. 3A–3C . The negative effect is statistically significant in the 4thmonth for realized-covariance, in the 1st, 4th, and 5th
months for conditional-covariance, and in the 4–6th, 10th and 11th months for implied-covariance. Positive shocks to
oil-market specific demand have a statistically significant negative effect on the return and volatility covariance
relationships in Figs. 3A–3C over the first four to five months of the shock, with the largest impact being achieved in the 3rd
month.

In Figs. 3A and 3B, unanticipated disruptions of crude oil supply do not have a statistically significantly effect on realized
or conditional-covariance. In contrast, in Fig. 3C, an unanticipated reduction in crude oil production is associated with a
statistically significant increase in implied-covariance of return and volatility, with the effect building up over several
months, before starting to futher rise between the 13th and 24th months. Our findings suggest that the forward-looking

Table 1
Results of stationarity test.

Variables ADF test PP test KPSS test

Without trend With trend Without trend With trend Without trend With trend

Dprod �10.994*** �11.004*** �25.182*** �25.161*** 0.041 0.030
rea �4.010*** �4.035*** �3.456*** �3.450*** 0.409*** 0.407***
rpo �1.621 �1.686 �2.068 �2.129 1.250*** 1.209***
covrealized �7.144*** �7.334*** �9.546*** �9.623*** 0.407* 0.068
covimplied �5.777*** �6.620*** �9.594*** �10.238*** 1.681*** 0.081
covconditional �8.024*** �8.100*** �18.406*** �18.430*** 0.166 0.040

Notes: The null hypotheses for ADF and PP are: the series has a unit root I(1), whereas the null hypothesis of the KPSS test is: the series is stationary I(0). *, **,
and *** denote the significant level at 1%, 5%, and 10% level, respectively. The prod is the first difference of the natural logarithm of oil production, rea is real
aggregate demand, rpo is the natural logarithm of real price of oil, cov is the stock market return and volatility covariance, and D is the first difference
operator.

10 Swanson and Granger (1997) suggest using the value of partial correlation coefficients to determine the variable ordering and relevant t-statistics for
identifying restriction on the VAR models.
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implied-volatility may provide additional information compared to the current-looking conditional- and realized-measures
as prior studies have concluded (e.g., Andersen et al. (2005)).

4.1.2. Responses of volatility
Wenowbriefly examine the effect of oil supply and demand side shocks onU.S. stockmarket volatility. In the Eq. (3), stock

market volatility is ordered last instead of covariance. Thus, the block of the endogenous variables Xt includes the percent
change in world oil production D prodt

� �
, global real aggregate demand reatð Þ, the real price of oil rpotð Þ, and stock market

return volatility (volkm; k ¼ realized; conditional; implied). The cumulative impulse responses to the structural oil market
shocks for realized-volatility, conditional-volatility, and implied-volatility are shown in Figs. 4A–4C, respectively.11

A positive shock to global aggregate demand is associated with negative effects on volatility in Figs. 4A–4C. The negative
effect is statistically significant between the 4th and 12thmonths for implied-variance. Positive shocks to oil-market specific
demand have a statistically significant negative effect on each of themeasures of volatility over the first three to fourmonths

[(Fig._3A)TD$FIG]

Fig. 3A. Cumulative impulse responses of realized-covariance.
Note: Fig. 3A shows cumulative responses of covariance using realized-volatility to structural oil shocks based on the structural VAR Eq. (3) in the text.

[(Fig._3B)TD$FIG]

Fig. 3B. Cumulative impulse responses of conditional-covariance.
Note: Fig. 3B shows cumulative responses of covariance using conditional-volatility to structural oil shocks based on the structural VAR Eq. (3) in the text.

[(Fig._3C)TD$FIG]

Fig. 3C. Cumulative impulse responses of implied-covariance.
Note: Fig. 3C shows cumulative responses of covariance using implied-volatility to structural oil shocks based on the structural VAR Eq. (3) in the text.

[(Fig._4A)TD$FIG]

Fig. 4A. Cumulative impulse responses of realized-volatility.
Note: Fig. 4A shows cumulative responses of realized-volatility to structural oil shocks based on the structural VAR Eq. (3) in the text.

11 With regard to real stock returns, an unexpected expansion in the global real aggregate demand causes a significant increase in real stock return from
the 1st to the 10thmonth. Shocks to oil-market specific demand causes a persistent decrease in stock return after the 8thmonth. Unanticipated disruptions
of oil supply do not have a significant effect on the real stock return. These results are consistent with the finding in Kilian and Park (2009) who argue that
the impact of oil price shocks on U.S. real stock returns are predominantly by oil demand side shocks.
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of the shock. This result is slightly different from the finding by Degiannakis et al. (2014) using European stock market data
that show oil-market specific demand has a negative effect on volatility that is only statistically significant at impact.

In Figs. 4A and 4B, unanticipated disruptions of crude oil supply do not have a statistically significantly effect on
realized or conditional-volatility. This result is the same as the finding by Degiannakis et al. (2014) that realized and
conditional-volatility for European stock market data are not significantly impacted by oil supply surprises. In Fig. 4C, an
unanticipated reduction in crude oil production is associated with a statistically significant increase in implied-volatility
over 5–9th and 18–24th months. This latter result contrasts with that by Degiannakis et al. (2014) (for implied-volatility for
European stockmarket data)who find that oil supply distruptions are associatedwith increases in implied-volatility for only
the first two months, and these effects are not statistically significant.12

4.2. Variance decompositions and spillovers of return/volatility relationship

Wenowexamine the forecast error variance decomposition (FEVD) showing the percent contribution of structural shocks
in the crude oil market to the overall variation of the covariance of stock return and stock return volatility. The FEVDs
quantify how important the three structural oil price shocks have been on average for the return and volatility covariance in
the stock market. In addition, to provide greater understanding of interdependence of the oil market and the stock market,
we follow Diebold and Yilmaz (2009, 2013) and report the spillover from the variance decomposition associated with the
variables in the SVAR model in Eq. (3).

4.2.1. Variance decompositions
In Table 2, panels A1, B1, and C1 report FEVD results for realized, conditional, and implied-covariances, respectively. The

values in parentheses in Table 2 represent the absolute t-statistics when coefficients’ standard errors were generated using a
recursive-designwild bootstrap. Shocks to crude oil production explain a statistically significant 14.7% of the variation in the
implied-covariance of return and volatility at the 60 month horizon. Shocks to crude oil supply do not explain a statistically
significantly amount of variation in realized or conditional-covariance. In the first few months the effects of aggregate
demand shocks on the covariances of return and volatlity are negligible and not statistically significant. Over time,
the explanatory power of aggregate demand shocks on the covariances of return and volatility increase in size and
statistical significance. At the 60 month horizon, aggregate demand shock explains 9.2% of realized-covariance, 7.9% of
conditional-covariance, and 13.7% of implied-covariance of return and volatility.

Oil-market specific demand shocks explain a statistically significant 28.1% of variation in realized-covariance, a
marginally statistically significant 10.2% of conditional-covariance at the 60month horizon, and a statistically significant 33%
of the variation in the implied-covariance of return and volatility. Overall, the largest percent contribution of structural
shocks in the crude oil market to covariance of stock return and stock return volatility is when volatility is based on
implied-volatility. Over a 60-month period shocks to oil supply disruptions, shocks to aggregate demand, and oil-market
specific demand disturbances explain statistically significant 14.7%,13.7%, and 33% of the variation in the implied-covariance
of return and volatility, respectively, (in Panel C1 of Table 2).

[(Fig._4B)TD$FIG]

Fig. 4B. Cumulative impulse responses of conditional-volatility.
Note: Fig. 4B shows cumulative responses of conditional-volatility to structural oil shocks based on the structural VAR Eq. (3) in the text.

[(Fig._4C)TD$FIG]

Fig. 4C. Cumulative impulse responses of implied-volatility.
Note: Fig. 4C shows cumulative responses of implied-volatility to structural oil shocks based on the structural VAR Eq. (3) in the text.

12 The data period for Degiannakis et al. (2014) also differs from that in this study. The data in Degiannakis et al. (2014) are for Eurostoxx 50 index from
January 1999-December 2010.
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4.2.2. Spillover of oil market and the stock market
In Panel A2 (B2 and C2) of Table 2, the off-diagonal elements give the 24-step ahead forecast error variance of a variable

coming from shocks arising in the other variable using realized (conditional and implied) covariance. The value 1=4� sum of
off-diagonal elements provides us with the spillover index measuring the degree of connectedness for the oil market and
the stock market. The spillover index 0.256 (0.207 and 0.359) for realized-covariance (conditional-covariance and
implied-covariance) is highly statistically significant and reinforces the finding that oil price shocks and the connection
between stock market return and volatility are interrelated.

Table 2
Forecast error variance decomposition (FEVD) of stock return and volatility covariance.

Horizon Oil supply shock Aggregate demand shock Oil-market specific demand shock Other shocks

Panel A1. Realized-covariance
1 0.002 (0.37) 0.042 (1.21) 0.060 (1.44) 0.896 (13.37)
3 0.002 (0.34) 0.047 (1.29) 0.184 (2.43) 0.766 (9.14)
12 0.013 (0.77) 0.051 (1.50) 0.283 (3.43) 0.653 (8.01)
24 0.018 (0.90) 0.082 (2.10) 0.286 (3.85) 0.614 (8.07)
60 0.020 (0.95) 0.092 (2.35) 0.281 (4.03) 0.607 (8.27)
Spillover index: 0.256 (6.38)

Panel A2. Spillover table when forecast horizon H=24 for realized-covariance

Contributions from

Contributions to (1) Oil supply shock (2) Aggregate demand shock (3) Oil-market specific demand shock (4) Other shocks
(1) 0.921 (31.32) 0.039 (2.09) 0.027 (1.57) 0.014 (1.08)
(2) 0.021 (0.43) 0.845 (8.27) 0.030 (0.68) 0.105 (1.21)
(3) 0.006 (0.19) 0.316 (2.49) 0.634 (4.93) 0.045 (0.76)
(4) 0.018 (0.91) 0.082 (2.10) 0.286 (3.82) 0.614 (8.06)
Spillover index: 0.256 (6.38)

Panel B1. Conditional-covariance

Horizon Oil supply shock Aggregate demand shock Oil-market specific demand shock Other shocks

1 0.000 (0.08) 0.020 (0.54) 0.007 (0.27) 0.973 (17.12)
3 0.002 (0.21) 0.032 (0.77) 0.042 (0.76) 0.925 (11.06)
12 0.021 (0.70) 0.052 (1.21) 0.074 (1.08) 0.853 (8.13)
24 0.043 (1.02) 0.075 (1.64) 0.097 (1.38) 0.785 (7.02)
60 0.050 (1.19) 0.079 (1.73) 0.102 (1.46) 0.770 (6.79)

Panel B2. Spillover table when forecast horizon H=24 for conditional-covariance

Contributions from

Contributions to (1) Oil supply shock (2) Aggregate demand shock (3) Oil-market specific demand shock (4) Other shocks
(1) 0.901 (27.69) 0.040 (2.18) 0.027 (1.53) 0.032 (1.44)
(2) 0.014 (0.30) 0.877 (8.57) 0.034 (0.61) 0.075 (0.89)
(3) 0.006 (0.17) 0.382 (2.78) 0.610 (4.48) 0.002 (0.07)
(4) 0.043 (1.03) 0.075 (1.64) 0.097 (1.38) 0.785 (7.05)
Spillover index: 0.207 (4.73)

Panel C1. Implied-covariance

Horizon Oil supply shock Aggregate demand shock Oil-market specific Demand shock Other shocks

1 0.005 (0.27) 0.072 (1.25) 0.058 (1.17) 0.866 (9.87)
3 0.045 (1.04) 0.046 (1.02) 0.249 (2.79) 0.661 (6.64)
12 0.079 (1.54) 0.073 (1.61) 0.395 (4.83) 0.454 (5.69)
24 0.144 (2.44) 0.094 (2.02) 0.361 (5.15) 0.401 (5.98)
60 0.147 (2.67) 0.137 (2.69) 0.330 (5.19) 0.386 (6.24)

Panel C2. Spillover table when forecast horizon H=24 for implied covariance

Contributions from

Contributions to (1) Oil supply shock (2) Aggregate demand shock (3) Oil-market specific demand shock (4) Other shocks
(1) 0.825 (17.47) 0.100 (2.89) 0.048 (1.77) 0.027 (1.13)
(2) 0.048 (0.55) 0.770 (5.84) 0.165 (1.49) 0.016 (0.31)
(3) 0.057 (0.79) 0.292 (2.32) 0.569 (4.34) 0.082 (1.03)
(4) 0.144 (2.44) 0.094 (1.99) 0.361 (5.24) 0.401 (5.95)
Spillover index: 0.359 (7.97)

Notes: Table 2 shows percent contributions of demand and supply shocks in the crude oil market to the variability of stock return and volatility covariance.
The forecast error variance decomposition is based on the structural VAR model described in the text. The values in parentheses represent the absolute
t-statistics when coefficients’ standard errors were generated using a recursive-design wild bootstrap.
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4.3. Variance decompositions of stock return volatility

Table 3reports the contributions of structural oil shocks to the variation of stock return volatility. In Table 3 shocks to
crude oil production and to aggregate demand do not explain a statistically significantly amount of variation in realized
or conditional-volatility. Shocks to crude oil production explain a statistically significant 12.4% of the variation in the
implied-volatility of return at the 60 month horizon. At the 60 month horizon, aggregate demand shocks explain a
statistically significant 12.9% of implied-volatility.

Table 3
Forecast error variance decomposition (FEVD) of stock volatility.

Horizon Oil supply shock Aggregate demand shock Oil-market specific demand shock Other shocks

Panel A1. Realized-volatility
1 0.001 (0.14) 0.008 (0.30) 0.011 (0.55) 0.980 (24.15)
3 0.002 (0.26) 0.019 (0.57) 0.037 (1.02) 0.942 (16.62)
12 0.010 (0.50) 0.042 (1.01) 0.115 (2.04) 0.834 (11.95)
24 0.015 (0.59) 0.047 (1.20) 0.127 (2.18) 0.812 (11.54)
60 0.016 (0.63) 0.067 (1.34) 0.124 (2.22) 0.792 (10.49)

Panel A2. Spillover table when forecast horizon H =24 for realized-volatility

Contributions from

Contributions to (1) Oil supply Shock (2) Aggregate demand shock (3) Oil-market specific demand shock (4) Other ocks

(1) 0.901 (29.25) 0.039 (2.20) 0.027 (1.57) 0.033 (1.87)
(2) 0.013 (0.29) 0.898 (9.53) 0.034 (0.62) 0.054 (0.76)
(3) 0.006 (0.17) 0.400 (2.94) 0.590 (4.45) 0.004 (0.11)
(4) 0.015 (0.58) 0.047 (1.22) 0.127 (2.15) 0.812 (11.49)
Spillover index: 0.200 (4.80)

Panel B1. Conditional-volatility

Horizon Oil supply shock Aggregate demand shock Oil-market specific demand shock Other shocks

1 0.000 (0.00) 0.006 (0.21) 0.026 (0.92) 0.969 (20.14)
3 0.002 (0.26) 0.016 (0.46) 0.058 (1.30) 0.924 (14.08)
12 0.008 (0.40) 0.042 (0.90) 0.117 (2.00) 0.834 (11.25)
24 0.013 (0.45) 0.044 (1.05) 0.131 (2.12) 0.813 (11.01)
60 0.014 (0.49) 0.068 (1.30) 0.129 (2.16) 0.790 (10.16)

Panel B2. Spillover table when forecast horizon H =24 for conditional-volatility

Contributions from

Contributions to (1) Oil supply shock (2) Aggregate demand shock (3) Oil-Market Specific demand shock (4) Other shocks

(1) 0.895 (28.38) 0.039 (2.22) 0.027 (1.56) 0.040 (1.97)
(2) 0.013 (0.29) 0.912 (9.94) 0.033 (0.58) 0.042 (0.65)
(3) 0.006 (0.20) 0.411 (3.03) 0.579 (4.40) 0.004 (0.13)
(4) 0.013 (0.45) 0.044 (1.06) 0.131 (2.11) 0.813 (11.03)
Spillover index: 0.200 (4.76)

Panel C1. Implied-volatility

Horizon Oil supply shock Aggregate demand shock Oil-market specific demand Shock Other shocks

1 0.003 (0.18) 0.046 (1.08) 0.014 (0.50) 0.937 (16.53)
3 0.014 (0.55) 0.037 (0.99) 0.078 (1.25) 0.871 (11.53)
12 0.072 (1.51) 0.089 (1.75) 0.214 (2.96) 0.625 (7.67)
24 0.118 (2.11) 0.104 (2.23) 0.201 (3.28) 0.577 (7.92)
60 0.124 (2.31) 0.129 (2.34) 0.204 (3.46) 0.544 (7.71)

Panel C2. Spillover table when forecast horizon H =24 for implied-volatility

Contributions from

Contributions to (1) Oil supply shock (2) Aggregate demand Sshock (3) Oil-Market specific demand shock (4) Other shocks

(1) 0.832 (17.69) 0.095 (2.82) 0.047 (1.77) 0.026 (1.09)
(2) 0.059 (0.66) 0.760 (5.87) 0.152 (1.36) 0.029 (0.51)
(3) 0.057 (0.77) 0.298 (2.27) 0.609 (4.59) 0.035 (0.56)
(4) 0.118 (2.13) 0.104 (2.32) 0.201 (3.28) 0.577 (7.93)
Spillover index: 0.305 (6.53)

Notes: Table 3 shows percent contributions of demand and supply shocks in the crude oil market to the variability of stock volatility. The forecast error
variance decomposition is based on the structural VAR model described in the text. The values in parentheses represent the absolute t-statistics when
coefficients’ standard errors were generated using a recursive-design wild bootstrap.
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Oil-market specific demand shocks explain statistically significant fractions of the variation in all three measures of
stock return volatility at the 12 month, 24 month, and 60 month horizons. At the 60 month horizon oil-market specific
demand shocks forecast 12.4%,12.9%, and 20.4% of variation in realized-volatility, conditional-volatility, implied-volatility of
return, respectively. The largest percent contribution of structural shocks in the crude oil market to volatility of stock return
is when volatility is based on implied-volatility. Over a 60-month period, the structural oil shocks forecast 45.7% of the
variation in implied-volatility, in constrast to 20.8% of the variation in realized-volatility and 21% of the variation in
conditional-volatility.

In Table 3, the spillover index for oil price shocks and the volatility of stock return is 0.200 (0.200 and 0.305) for realized
(conditional and implied) volatility, and is highly statistically significant. Comparison of results in Tables 2 and 3 shows that
for realized and implied-volatility, the spillover between oil price shocks and covariance of return and volatility is higher
than the spillover between oil price shocks and volatility.

4.4. Rolling sample analysis

Wenowexamine the effect of the structural oilmarket shocks on the return and volatility relationship overtime. In recent
years, there have been dramatic price fluctuations in the price for crude oil as well as major fluctuation in the stock market.
To investigate changes in the dynamics of the interaction of the global oil market and U.S. stock market, we estimate the
structural VAR model with 180-month rolling samples starting in January 2005.13 For each rolling SVAR estimation the
spillover index is obtained.

Fig. 5 displays the evolution of the contribution of oil supply and demand side shocks to the forecast error variance of the
implied-covariance of return and volatility after 24months, along with the actual time series relative to its baseline forecast.
In Fig. 5, the top panel shows the contribution of global oil supply disturbances, the middle panel the contribution of global
aggregate demand, and the bottom panel the contribution of oil-market specific demand.

Global oil production predicts 14.7% of the variation of implied-covariance of return and volatility overall (in Table 2), but
the forecast amount was 8.4% over 2005–2006 before rising to an average of 21.3% from March to September in 2008,
and averaging values 18.6% over 2011:07–2013:12. In juxtaposition the contribution of global aggregate demand to
forecasting the implied-covariance of return and volatility is greater over 2005–2006 (about 30.0%), than subsequently.
Over 2011:01–2013:12, global aggregate demand forecastes 11.5% of the implied-covariance of return and volatility. The
decline in the relative contribution of oil production shocks, and the increase over time in the relative contribution of global
aggregate demand shocks to forecasting the implied-covariance of stock return and volatility seems to occur gradually over
2007, and thus, predates the full onset of the global financial crisis (on 15 September 2008 with Lehman Brothers filing for
bankruptcy).

Change in the ability of oil-market specific demand shocks to forecast the implied-covariance of stock return and
volatility is different from that of the other two structural oil shocks. There is a sharp increase in fraction of volatility in

[(Fig._5)TD$FIG]

Fig. 5. Dynamic contributions to the variation of implied-covariance of stock market return and volatility, 2005:01–2013:12.
Note: Variance decomposition contributions to the variation of implied-covariance of stock market return and volatility after 24 months described in the
text and estimated using 180-month rolling windows.

13 The time-varying relationship between the covariance of stock return and volatility and oil pricemovement could also be examined in terms of changes
in the correlations between these variables along the lines of the time-varying multivariate heteroskedastic framework in Degiannakis et al. (2013).
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implied-covariance of stock return and volatility explained from 17.63% in August 2008 to 43.09% in September 2008.
Following the global financial crisis, oil-market specific demand shocks (oil price movement not explained by shocks to
global oil production and global aggregate demand) forecast a much larger fraction of implied-covariance of stock return,
and volatility than in the years immediately preceeding the global financial crisis. Oil-market specific demand shocks
forecast 14% of variation in implied-covariance of stock return and volatility before August/September 2008, and 41.6% after
these dates.

5. Robustness check

We now perform some variations on our basic analysis of the effects of oil shocks on the covariance of stock return and
volatility to check the robustness of results with respect to the lag length of the structural VAR model, the forecast horizon,
and results for a normalization of the covariance of stock returns with volatility. When the forecast error variance
decomposition is based on the structural VAR model by taking shorter 12 lags and shorter 12 forecast horizon for the
spillover table, results are similar to those already obtained in Table 2. In particular, the largest percent contribution of
structural shocks in the crude oil market to covariance of stock return and stock return volatility is when covariance is
based on implied-volatility. Over a 60-month period shocks to oil supply disruptions, shocks to aggregate demand, and
oil-market specific demand disturbances explain statistically significant 7.7%, 15.0%, and 30.6% of the variation in the
implied-covariance of return and volatility, respectively.14 Outcomes slightly smaller than those noted for the model with
longer lag lengths in Table 2.

Given the large values occasionally assumed by in Fig. 1, we examine the response of the covariance of return and
volatility normalized by volatility to structural oil shocks to determine if similar results hold for a smoother measure of
covariance. Normalized covariance is defined as:

lk
m ¼

covkm rdt ;
ksd

t

� �

volkm
ksd

t

� � ; k ¼ realized;conditional;implied; (6)

where covkm rdt ;
ksd

t

� �
and volkm

ksd
t

� �
are given in Eqs. (1) and (2).

The ratio of implied-covariance of return and volatility to implied-volatility is shown in Fig. 6. The range of values for lk
m

in Fig. 6 is much narrower than that for either covariance of return and volatility in Fig. 1. In Fig. 6, the peak value for lk
m is

0.885 in October 2008 and the only negative values of lk
m occur in 1990:05 (�0.068) and 1993:03 (�0.007).

The cumulative impulse responses to the structural oil shocks for the normalized covariance of stock return and
implied-volatility are shown in Fig. 7. A positive shock to global aggregate demand is associated with negative effects on
the normalized covariance of return and volatility that are marginally significant over 5–10 months. Positive shocks to
oil-market specific demand have a statistically significant negative effect on normalized covariance in Fig. 7 over the first
four months of the shock. An unanticipated reduction in crude oil production is associated with an increase in normalized
covariance, that is statistically significant over a number of months. Thus, impulse response result to structural oil price
shocks is similar for normalized covariance of stock return and volatility and for covariance of stock return and volatility.

6. Conclusions

The study examines the effects of global oil price shocks on the stock market return and volatility contemporaneous
relation using a structural VAR model. We construct from daily data measures of return and volatility the covariance of

[(Fig._6)TD$FIG]

Fig. 6. Normalized covariance of return and volatility.
Note: Fig. 6 shows normalized implied-covariance of return and volatility, covkm rdt ;

ksd
t

� �
,volkm

ksd
r

� �
defined in Eq. (6) over 1990:01–2013:12. The

monthly implied normalized covariance is constructed from monthly data on the implied-covariance of stock return and volatility and on
implied-volatility, derived from daily data on stock market return and daily volatility. The measure of daily volatility is implied-volatility
deduced from options prices.

14 Results are available upon request.
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return and volatility at monthly frequency. The measures of daily volatility are realized-volatility at high frequency
(normalized squared return), conditional-volatility recovered from a stochastic volatility model, and implied-volatility
deduced from options prices. It is found that oil price shocks contain information for forecasting the contemporaneous
relationship between stock return and stock volatility.

Positive shock to global aggregate demand is associated with negative effects on the covariances of return and volatility
with the statistical significance of the effect extending for a longer period for implied-covariance. Positive shocks to
oil-market specific demand have a statistically significant negative effect on the return and volatility covariance
relationships for several months. An unanticipated reduction in crude oil production is associated with a statistically
significant increase implied-covariance of return and volatility that extends for 24 months. The spillover index between
the structural oil price shocks and covariance of stock return and volatility is highly statistically significant and is 35.9%
for the covariance of return and implied-volatility.

The dynamic contributions of oil supply and demand side shocks to the covariance of stock return and volatility are
calculated from a rolling SVARmodel. Global oil production predicts 8.4% of the variance of implied-covariance of return and
volatility over 2005–2006, before rising to an average of 21.3% from March to September in 2008 and averaging values
18.6% over 2011:07–2013:12. This contrasts with the contribution of global aggregate demand to forecasting the
implied-covariance of return and volatility which is greater over 2005–2006 (about 30.0%), than subsequently (11.5% over
2011:01–2013:12). These changes occur gradually over 2007 and predate the full onset of the global financial crisis.
Oil-market specific demand shocks forecast 14% of variation in implied-covariance of stock return and volatility before
August/September 2008, and 41.6% after these dates.

There is a sharp increase in fraction of volatility in implied-covariance of stock return and volatility explained by
oil-market specific demand shocks from 17.63% in August 2008 to 43.09% in September 2008. Following the global financial
crisis, oil-market specific demand shocks forecast a much larger fraction of implied-covariance of stock return and volatility
than in the years immediately preceeding the global financial crisis. These results might aid investors, researchers, or
regulators interested in the determinants of the joint behavior, and risk-return trade-off of stock return and volatility.
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Fig. 7. Normalized covariance of return and volatility.
Note: Fig. 7 shows cumulative responses of normalized covariance of return and implied-volatility to structural oil shocks based on the structural VAR in the
text.
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