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Abstract

We show that the only locally integrable stationary solutions to the integrated Kuramoto–Sivashinsky
equation in R and R

2 are the trivial constant solutions. We extend our technique and prove similar results
to other nonlinear elliptic problems in R

N .
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1. Introduction

The integrated Kuramoto–Sivashinsky equation (abbreviated hereafter as the KSE)

φt + Δ2φ + Δφ + 1

2
|∇φ|2 = 0 (1)

subject to appropriate initial and boundary conditions has been introduced in [15,16] and in
[23,24] in studying phase turbulence and the flame front propagation in combustion theory.
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In the absence of any a priori estimates for the solutions of the scalar equation (1), most au-
thors find it more convenient, for the mathematical study, to consider the differential form of the
equation for u = ∇φ

ut + Δ2u + Δu + (u · ∇)u = 0. (2)

The one-dimensional case has been studied by many authors (see, e.g., [2–6,8,9,11–14,18,20,
26,27] and references therein). It is known that the long-term dynamics of the 1-D equation (2)
with periodic boundary condition, of period L, possesses a complicated global attractor AL with
finite dimension (see, e.g., [5,11,12,18,20,27] and references therein). The best upper bound

for the dimension of the global attractor is of the order O(L
45
40 ) is obtained, based on the

best available upper bound for the size of the absorbing ball, in [10]. Namely, the current
estimates for the upper bound for the dimension of the global attractor depend explicitly on
R = lim supt→∞ |u(·, t)|L2 : if R is of the order O(Lβ), then the upper bound for the Haus-

dorff and fractal dimensions of the global attractor satisfies dH (AL) � df (AL) � O(L
30+10β

40 ).

As mentioned above, the best estimate for R is given in [10]: R ∼ o(L
3
2 ) (see also [2]). On the

other hand, based on numerical simulations and physical arguments it is conjectured [21] that
the upper bound for the dimension of the global attractor should behave like L. This conjectured
estimate also matches the readily available lower bound for the dimension of the global attractor
which is obtained by linearizing about the stationary solution u ≡ 0. To achieve this conjectured
bound for the dimension of the global attractor requires, for instance, one to establish a uniform
bound for the L∞-norm of the solutions on the attractor, which is independent of the period L.
Therefore, the question is: whether the L∞-norm of all the solutions in the global attractor AL

is uniformly bounded, independent of L. The remarkable paper of Michelson [18] shows that all
the bounded stationary (steady state) solutions of the one-dimensional KSE (2) on the whole line
are uniformly bounded by a constant KM . In a paper by Cheskidov and Foias [3], the authors
consider the nonhomogeneous one-dimensional stationary KSE (2) subject to periodic boundary
condition with zero spatial average: namely, the problem

uxxxx + uxx + uux = f (x), u(x) = u(x + L),

L∫
0

u(x)dx = 0.

They obtain an explicit estimate for the Michelson constant KM , namely, KM � 92.2. Further-
more, they have also shown in [3] that the L∞-norm of the infinite time averages of the solutions
of the one-dimensional KSE (2) is uniformly bounded, independent of the period L. More pre-
cisely, let us denote by H = {u ∈ L2: u(x) = u(x + L),

∫ L

0 u(x)dx = 0}, the phase space of the
dynamical system induced by the solutions of the one-dimensional KSE (2), subject to periodic
boundary conditions. And denote by P(H), the set of all time average invariant probability mea-
sures of this dynamical system (for details about stationary statistical solutions and time average
invariant probability measures of dissipative dynamical systems see, e.g., [7]). It is shown in [3]
that the L∞-norm of the set

E =
{
ū ∈ H : ū =

∫
uμ(du), where μ ∈ P(H)

}

H
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is uniformly bounded, independent of the period L. In particular, Michelson’s result is a partic-
ular case of the above mentioned result of [3]. This is because every steady state solution of the
one-dimensional KSE (2) belongs to the set E. To see that, let u0 be a steady state solution of the
one-dimensional KSE (2), then the measure μ(du) = δu0(du) is a trivial time average invariant
probability measure, and hence it belongs to P(H). As a result we have

u0 =
∫
H

uδu0(du) =
∫
H

uμ(du) = ū ∈ E.

The question of global regularity of the Cauchy problem

φt + Δ2φ + Δφ + 1

2
|∇φ|2 = 0 in R

N, φ(x,0) = φ0(x) (3)

or the periodic boundary condition case

φt + Δ2φ + Δφ + 1

2
|∇φ|2 = 0,

φ(x + Lej , t) = φ(x, t) for j = 1,2, . . . ,N, φ(x,0) = φ0(x) (4)

is still an open question in dimensions two and higher cases (see, however, [22] for the case of
thin two-dimensional domains for large, but restricted, initial data). Motivated by the question of
global regularity of (3) or (4), the authors of [1] study what they call the hyper-viscous Hamilton–
Jacobian-like equation for the scalar function u:

ut + Δ2u = |∇u|p, u|∂Ω = ∇u|∂Ω = 0, u(x,0) = u0(x), (5)

where Ω is a smooth bounded domain in R
N .

In the case p > 2, they show that finite time blow-up will occur for special “large” initial
conditions. It is remarked that the blow-up occurs in L∞-norm, i.e., the derivative of the u

remains finite as long as the solution exists and has finite L∞-norm. In particular, there is es-
sential difference in the structure of formation of singularities from that of generalized viscous
Hamilton–Jacobi equations [25]:

ut − Δu = |∇u|p in Ω × (0,∞), u|∂Ω = 0, u(x,0) = u0(x) in Ω, (6)

where Ω is a smooth bounded domain in R
N . Regardless of the value of p, p � 1, problem (6)

satisfies a maximum principle, the L∞-norm of the solutions to problem (6) remains bounded
for as long as the solutions exist. Thus, the solutions to (6) that become singular in finite time
must develop their singularities in one of their derivatives (see [25]). However, for the critical
case of p = 2 in problem (5), it is still unknown whether, for N � 2, there is global regularity for
all initial data, or there will be finite time blow-up for certain initial data. On the other hand, it is
worth mentioning that for the case p = 2 the problem (6) is the viscous Burgers–Hopf equation
which is globally well-posed for N = 1,2,3.

Motivated by the above discussion, we study in this paper the steady state problem (1) in R
N

for N � 1. In particular, we show that in dimensions N = 1,2 the only locally integrable steady
solutions of (3) or (4) are the trivial solutions φ(x) = constant. The techniques developed and
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used here are inspired by the work of Mitidieri and Pohozaev [19]. It is worth mentioning that for
N = 3, Michelson [17] has established, using asymptotic methods, the existence of a nontrivial
radial steady state solution of (3). This is consistent with our results which are restricted to
dimensions N = 1,2.

In Section 2, we will study the stationary solutions and present our main result. In Section 3,
we extend our tools to certain nonlinear elliptic systems in R

N and show nonexistence of non-
trivial solutions to those equations.

2. Steady state Kuramoto–Sivashinsky equation

In this section we consider the integrated version of the homogeneous steady state KSE in R
N

Δ2φ + Δφ + 1

2
|∇φ|2 = 0. (7)

We emphasize the fact that we do not require φ to satisfy any specific boundary condition as
|x| → ∞.

Definition 1. A function φ ∈ H 1
loc(R

N) is called a locally integrable solution of (7) in R
N if φ

satisfies Eq. (7) in the distribution sense, i.e., in D′(RN).

Theorem 2. For N = 1,2, the only locally integrable solutions Eq. (7) are the trivial solution,
i.e., φ = constant.

Proof. Consider the smooth radial cut-off function ϕ0(x) ∈ C∞
0 (RN), such that 0 < ϕ0(x) < 1

whenever 1 < |x| < 2, and

ϕ0(x) =
{

1, |x| � 1,

0, |x| � 2.

Let

ϕR(x) = ϕ0

(
x

R

)
. (8)

Suppose φ is a locally integrable solution of (7), taking action of (7) on the test function ϕR , we
have ∫

RN

∣∣∇φ(x)
∣∣2

ϕR(x)dx = −2
〈
Δ2φ,ϕR

〉 − 2〈Δφ,ϕR〉. (9)

We estimate the right-hand side of the above equality:

2
∣∣〈Δ2φ,ϕR

〉∣∣ = 2

∣∣∣∣
∫

RN

−∇φ(x) · ∇(
ΔϕR(x)

)
dx

∣∣∣∣ � 2
∫

R<|x|<2R

∣∣∇φ(x)
∣∣∣∣D3ϕR(x)

∣∣dx

� 2

( ∫
N

∣∣∇φ(x)
∣∣2

ϕR(x)dx

) 1
2
( ∫ |D3ϕR(x)|2

ϕR(x)
dx

) 1
2

,

R R<|x|<2R
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where Dk denotes a generic expression of the form

Dku =
∑
|α|=k

aα

∂ |α|u
∂x

α1
1 ∂x

α2
2 · · · ∂x

αN

N

,

where α = (α1, α2, . . . , αN) is a multi-index and aα are constants.
Also we have

2
∣∣〈Δφ,ϕR〉∣∣ = 2

∣∣∣∣ −
∫

RN

∇φ(x) · ∇ϕR(x)dx

∣∣∣∣ � 2

( ∫
R<|x|<2R

∣∣∇φ(x)
∣∣∣∣DϕR(x)

∣∣dx

)

� 2

( ∫
RN

∣∣∇φ(x)
∣∣2

ϕR(x)dx

) 1
2
( ∫

R<|x|<2R

|DϕR(x)|2
ϕR(x)

dx

) 1
2

.

The above estimates and (9) imply

∫
RN

∣∣∇φ(x)
∣∣2

ϕR(x)dx � 2

( ∫
RN

∣∣∇φ(x)
∣∣2

ϕR(x)dx

) 1
2
( ∫

R<|x|<2R

|D3ϕR(x)|2
ϕR(x)

dx

) 1
2

+ 2

( ∫
RN

∣∣∇φ(x)
∣∣2

ϕR(x)dx

) 1
2
( ∫

R<|x|<2R

|DϕR(x)|2
ϕR(x)

dx

) 1
2

.

(10)

By Young’s inequality, we reach

∫
RN

∣∣∇φ(x)
∣∣2

ϕR(x)dx � 8

( ∫
R<|x|<2R

|D3ϕR(x)|2
ϕR(x)

dx +
∫

R<|x|<2R

|DϕR(x)|2
ϕR(x)

dx

)
.

By our definition ϕR(x) = ϕ0(
x
R

). Let us change the variables x = Rξ , then we obtain

∫
RN

∣∣∇φ(x)
∣∣2

ϕR(x)dx � 8

(
RN−6

∫
1<|ξ |<2

|D3ϕ0(ξ)|2
ϕ0(ξ)

dξ + RN−2
∫

1<|ξ |<2

|Dϕ0(ξ)|2
ϕ0(ξ)

dξ

)
.

(11)

Now, we further specialize in the choice of the test function ϕ0 such that the integrals on the
right-hand side of (11) are finite. Then (11) implies

∫
N

∣∣∇φ(x)
∣∣2

ϕR(x)dx � 8C0R
N−6 + 8C1R

N−2, (12)
R
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where

C0 =
∫

1<|ξ |<2

|D3ϕ0(ξ)|2
ϕ0(ξ)

dξ, C1 =
∫

1<|ξ |<2

|Dϕ0(ξ)|2
ϕ0(ξ)

dξ. (13)

Case N = 1. Let us first consider N = 1. Let r > 0 be fixed large enough, we consider R to be
large enough such that R > 4r . From (12) we conclude that

∫
|x|<r

∣∣∣∣dφ(x)

dx

∣∣∣∣2

dx �
∫
R

∣∣∣∣dφ(x)

dx

∣∣∣∣2

ϕR(x)dx � 8C0R
−5 + 8C1R

−1. (14)

Passing to the limit as R → ∞ in (14), we obtain that

∫
|x|<r

∣∣∣∣dφ(x)

dx

∣∣∣∣2

dx = 0

for every r > 0. Therefore dφ
dx

= 0 and the assertion of the theorem is proved for N = 1.

Case N = 2. Now we consider the case N = 2. In this case, relation (12) implies that∫
R2

∣∣∇φ(x)
∣∣2

ϕR(x)dx � 8C0R
−4 + 8C1.

Choose as before r > 0 fixed large enough, and let R > 4r . From the above we get

∫
|x|<r

∣∣∇φ(x)
∣∣2

dx �
∫
R2

∣∣∇φ(x)
∣∣2

ϕR(x)dx � 8C0R
−4 + 8C1.

Passing to the limit as R → ∞, we obtain∫
|x|<r

∣∣∇φ(x)
∣∣2

dx � 8C1 (15)

for every r > 0. By the Lebesgue monotone convergence theorem, we conclude that

∇φ ∈ L2(
R

2) and (16)∫
R2

∣∣∇φ(x)
∣∣2

dx � 8C1. (17)

Now, let us return to Eq. (9). Note that

supp{DϕR} ⊆ {
x ∈ R

N | R � |x| � 2R
}
. (18)
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We estimate the right-hand side of relation (9):

2
∣∣〈Δ2φ,ϕR

〉∣∣ = 2

∣∣∣∣
∫
R2

−∇φ(x) · ∇(
ΔϕR(x)

)
dx

∣∣∣∣ � 2
∫

R<|x|<2R

∣∣∇φ(x)
∣∣∣∣D3ϕR(x)

∣∣dx

� 2

( ∫
R<|x|<2R

∣∣∇φ(x)
∣∣2

ϕR(x)dx

) 1
2
( ∫

R<|x|<2R

|D3ϕR(x)|2
ϕR(x)

dx

) 1
2

� 2R−2
( ∫

R<|x|<2R

∣∣∇φ(x)
∣∣2

dx

) 1
2
( ∫

1<|ξ |<2

|D3ϕ0(ξ)|2
ϕ0(ξ)

dξ

) 1
2

� 2C
1
2
0 R−2

( ∫
R<|x|<2R

∣∣∇φ(x)
∣∣2

dx

) 1
2

,

where C0 is given in (13) and in the above we changed the variable x = Rξ and applied (16).
Similarly, for the other integral on the right-hand side of (9),

2
∣∣〈Δφ,ϕR〉∣∣ = 2

∣∣∣∣
∫
R2

−∇φ(x) · ∇ϕR(x)dx

∣∣∣∣ � 2
∫

R<|x|<2R

∣∣∇φ(x)
∣∣∣∣DϕR(x)

∣∣dx

� 2

( ∫
R<|x|<2R

∣∣∇φ(x)
∣∣2

ϕR(x)dx

) 1
2
( ∫

R<|x|<2R

|DϕR(x)|2
ϕR(x)

dx

) 1
2

� 2

( ∫
R<|x|<2R

∣∣∇φ(x)
∣∣2

dx

) 1
2
( ∫

1<|ξ |<2

|Dϕ0(x)|2
ϕ0(x)

dξ

) 1
2

� 2C
1
2
1

( ∫
R<|x|<2R

∣∣∇φ(x)
∣∣2

dx

) 1
2

,

where C1 is given in (13) and in the above we changed the variable x = Rξ and applied (17).
These estimates and (9) imply

∫
R2

∣∣∇φ(x)
∣∣2

ϕR(x)dx � 2C
1
2
0 R−4

( ∫
R<|x|<2R

∣∣∇φ(x)
∣∣2

dx

) 1
2

+ 2C
1
2
1

( ∫ ∣∣∇φ(x)
∣∣2

dx

) 1
2

. (19)
R<|x|<2R
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Passing to the limit as R → ∞ in (19), by (15), (17), and the Lebesgue dominated convergence
theorem we obtain that

∫
R2

|∇φ|2 dx = 0.

Hence, φ(x) = constant. �
As a consequence of the above theorem we have the following corollary.

Corollary 3. The only stationary solutions to (4), i.e., the only periodic solutions of Eq. (7), are
the constants.

Proof. Actually, one can prove this corollary in a direct trivial way and for all N . In this case the
set of test functions V consists of all trigonometric polynomials. The function ϕ(x) = 1 ∈ V is a
test function. Taking the action of (7) on ϕ in the region Ω = [0,L]N will give us

〈
Δ2φ,1

〉 + 〈Δφ,1〉 + 1

2

∫
Ω

∣∣∇φ(x)
∣∣2

dx = 0.

By the periodicity of φ in Ω , we obtain

∫
Ω

|∇φ|2 dx = 0.

It follows readily that ∇φ = 0, which implies that φ = constant. �
Next we consider the nonhomogeneous steady state:

Δ2φ + Δφ + 1

2
|∇φ|2 = f, (20)

where f (x) ∈ L1
loc(R

N).

Corollary 4. Let N � 2, and lim infR→∞
∫

RN f (x)ϕR(x)dx � μ0 < 0 for some constant μ0.
Here ϕR is specified in the manner of (8) and (13). Then Eq. (20) has no locally integrable
solutions, i.e., no solutions in H 1

loc(R
N).

Proof. Taking action of (20) on the test function ϕR defined in (8) and (13), we get

∫
RN

∣∣∇φ(x)
∣∣2

ϕR(x)dx =
∫

RN

f (x)ϕR(x)dx − 2
〈
Δ2φ,ϕR

〉 − 2〈Δφ,ϕR〉.



Y. Cao, E.S. Titi / J. Differential Equations 231 (2006) 755–767 763
By (10), we reach

∫
RN

∣∣∇φ(x)
∣∣2

ϕR(x)dx � 2
∫

RN

f (x)ϕR(x)dx

+ 8

( ∫
R<|x|<2R

|D3ϕR(x)|2
ϕR(x)

dx +
∫

R<|x|<2R

|DϕR(x)|
ϕR(x)

dx

)
.

Since lim infR→∞
∫

RN f (x)ϕR(x)dx � μ0, using the same argument as in the proof of Theo-
rem 2, we obtain ∫

RN

∣∣∇φ(x)
∣∣2

dx � 2μ0 < 0

for N = 1,2, which implies that we do not have any locally integrable solutions for Eq. (20). �
3. Generalization to other nonlinear elliptic problem

In this section we generalize the tools developed in the previous section and apply them to
certain class of nonlinear elliptic problems. Consider the nonlinear elliptic equation

(−Δ)mu ± ∣∣∇ lΔnu
∣∣p = 0 (21)

defined in the whole space R
N , where l = 0 or l = 1, 2n + l � 0, 2m > 2n + l and p > 1.

Definition 5. A function u ∈ W
2n+l,p

loc (RN) is called locally integrable solution of Eq. (21) if u

satisfies Eq. (21) in the distribution sense.

We emphasize again that we do not require the solution u to satisfy any specific boundary
condition as |x| → ∞.

Remark 1. A solution u of Eq. (21) is said to be trivial if ∇ lΔnu = 0, and it is called nontrivial
otherwise.

Theorem 6. Let N � (2m−(2n+l))p
p−1 , then the only locally integrable solutions of Eq. (21) are the

trivial solutions.

Proof. Taking the action of (21) on the test function ϕR defined in (8), we have

〈
(−Δ)mu,ϕR

〉 ± ∫
RN

∣∣∇ lΔnu(x)
∣∣pϕR(x)dx = 0 or

∫
N

∣∣∇ lΔnu(x)
∣∣pϕR(x)dx = ∓〈

(−Δ)mu,ϕR

〉
.

R
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By definition of distribution, we have

∣∣∣∣
∫

RN

∣∣∇ lΔnu(x)
∣∣pϕR(x)dx

∣∣∣∣
= ∣∣ ∓ 〈

(−Δ)mu,ϕR

〉∣∣ =
∣∣∣∣

∫
R<|x|<2R

∇ lΔnu(x) · D2m−(2n+l)ϕR(x) dx

∣∣∣∣

�
( ∫

RN

∣∣∇ lΔnu(x)
∣∣pϕR(x)dx

) 1
p
( ∫

R<|x|<2R

|D2m−(2n+l)ϕR(x)|p′

ϕR(x)p
′−1

) 1
p′

, (22)

where p′ is the conjugate of p: 1
p

+ 1
p′ = 1. So, we have

( ∫
RN

∣∣∇ lΔnu(x)
∣∣pϕR(x)dx

)
�

( ∫
R<|x|<2R

|D2m−(2n+l)ϕR(x)|p′

(ϕR(x))p
′−1

dx

)
.

Again, we change the variables x = Rξ . If we further specify ϕ0 such that

C̃0 =
∫

1<|ξ |<2

|D2m−(2n+l)ϕ0(ξ)|p′

(ϕ0(ξ))p
′−1

dξ < ∞. (23)

We will have

( ∫
RN

∣∣∇ lΔnu(x)
∣∣pϕR dx

)
� C̃0R

θ, (24)

where θ = N − (2m − (2n + l))p′.

Case N <
(2m−(2n+l))p

p−1 . Let us first consider the case N <
(2m−(2n+l))p

p−1 , i.e., θ < 0. Let r > 0

be fixed large enough. We consider R be large enough such that R > 4r . From (24) we conclude
that

∫
|x|<r

∣∣∇ lΔnu(x)
∣∣p dx �

∫
RN

∣∣∇ lΔnu(x)
∣∣pϕR(x)dx � C̃0R

θ . (25)

Passing to the limit as R → ∞ in (25), we obtain that

∫ ∣∣∇ lΔnu(x)
∣∣p dx � 0
|x|<r
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for every r > 0. By Lebesgue monotone convergence theorem, we conclude that

∫
RN

∣∣∇ lΔnu(x)
∣∣p dx = 0.

Then the assertion of the theorem is proved for N <
(2m−(2n+l))p

p−1 .

Case N = (2m−(2n+l))p
p−1 . Next, we consider N = (2m−(2n+l))p

p−1 , i.e., θ = 0. Then relation (24)
implies that

∫
RN

∣∣∇ lΔnu(x)
∣∣pϕR(x)dx � C̃0.

Choose as before r > 0 fixed large enough and let R > 4r . From the above relation we obtain

∫
|x|<r

∣∣∇ lΔnu(x)
∣∣p dx �

∫
RN

∣∣∇ lΔnu(x)
∣∣pϕR(x)dx � C̃0

for every r > 0. By Lebesgue monotone convergence theorem, we conclude that

∇ lΔnu ∈ Lp
(
R

N
)
. (26)

Now, let us return to inequality (22). Note that

supp
{
D2m−(2n+l)ϕR

} ⊆ {
x ∈ R

N | R � |x| � 2R
}
. (27)

Then relations (22) and (27) imply

∫
RN

∣∣∇ lΔnu(x)
∣∣pϕR(x)dx � C̃

1
p′
0

( ∫
R<|x|<2R

∣∣∇ lΔnu(x)
∣∣p dx

) 1
p

, (28)

where C̃0 is defined in the manner of (23). Passing to the limit as R → ∞ in (28), by the absolute
convergence of the integral

∫
R<|x|<2R

|∇ lΔnu(x)|p dx and the Lebesgue dominated convergence
theorem, we obtain that

∫
RN

∣∣∇ lΔnu(x)
∣∣p dx = 0,

which concludes our proof. �
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