
Theoretical Computer Science 412 (2011) 1652–1668

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Inductive inference and computable numberings
Klaus Ambos-Spies a,∗, Serikzhan Badaev b, Sergey Goncharov c

a University of Heidelberg, Institut für Informatik, Im Neuenheimer Feld 294, D-69120 Heidelberg, Germany
b Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty 050038, Kazakhstan
c Sobolev’s Math. Institute, 4 Koptyug ave., Novosibirsk 630090, Russia

a r t i c l e i n f o

Keywords:
Computably enumerable sets
Computable numberings
Inductive inference

a b s t r a c t

It has been previously observed that for many TxtEx-learnable computable families of
computably enumerable (c.e. for short) sets all their computable numberings are evidently
0′-equivalent, i.e. are equivalent with respect to reductions computable in the halting
problem. We show that this holds for all TxtEx-learnable computable families of c.e. sets,
and prove that, in general, the converse is not true. In fact there is a computable family A
of c.e. sets such that all computable numberings of A are computably equivalent and A
is not TxtEx-learnable. Moreover, we construct a computable family of c.e. sets which is
not TxtBC-learnable though all of its computable numberings are 0′-equivalent. We also
give a natural example of a computable TxtBC-learnable family of c.e. sets which possesses
non-0′-equivalent computable numberings. So, for the computable families of c.e. sets,
the properties of TxtBC-learnability and 0′-equivalence of all computable numberings are
independent.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The theory of inductive inference has many relationships to the theory of computable numberings. Both these theories
arose almost at the same time, in the 1960s, and since that time they have developed in a parallel way using similarmethods
and ideas. Sometimes, these theories had direct influence on each other. For instance, Kummer [14] suggested a solution for
the famous problem of Ershov on characterizing the classes of computable functions with pairwise equivalent computable
numberings. A criterion was given in terms of co-learning. We should note that another solution of that problem was given
earlier by Goncharov [9] in the context of computable Abelian groups, see [10] for a direct proof of Goncharov’s criterion in
terms of computable numberings. As an example in the opposite direction, we can mention a criterion of Jain and Sharma
[12] for a class of c.e. sets to be TxtEx-learnable which was given in terms of computable numberings.

It is not our goal to give a survey with a complete analysis of the interrelations of the theory of computable numberings
and inductive inference theory. This is a too wide and deep subject and we do not consider ourselves leaders in the field
of learning theory. We just wish to attract attention to these interrelations which we met during our research as well as
during discussions with Frank Stephan and John Case. We are sure that the theory of inductive inference could pose natural
questions and be useful for computable numbering theorists too.

We deal with language identification in the limit from positive data, namely, we use the classical learning model of
Dana Angluin [8] and restrict ourselves to the two scenarios of identification: explanatory learning and behaviorally correct
learning, i.e., TxtEx and TxtBC.

The theory of computable numberings started with the study of the sequences of sets of natural numbers which admit
uniformalgorithmic procedures for enumerating the elements of the sets of the sequence. Ifwe identify this kind of sequence

∗ Corresponding author.
E-mail address: ambos@math.uni-heidelberg.de (K. Ambos-Spies).

0304-3975/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2010.12.041

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81132385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.tcs.2010.12.041
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:ambos@math.uni-heidelberg.de
http://dx.doi.org/10.1016/j.tcs.2010.12.041

K. Ambos-Spies et al. / Theoretical Computer Science 412 (2011) 1652–1668 1653

with a mapping of the set of natural numbers onto the family of all sets from this sequence then we get the notion of
computable numbering. The standard sequence W0,W1,W2, . . . of c.e. sets is the most important computable numbering.
Here indices are the codes of programs of the functions whose domains are the elements of the sequence.

It is a well known fact that a numbering α : N −→ A of a family A of c.e. sets is computable if and only if α(x) = Wf (x)
for some computable function f and all x. Informally, each strategy of uniform algorithmic enumeration of a family A
automatically finds aW -index of any set of the family by means of its approximation (or text) given by this strategy. And if,
for every set in A, we change our strategy finitely often (as we usually do in the priority constructions with finite injuries)
thenwewill get a suitableW -index eventually. This informal consideration is a base for understanding the close connections
between procedures of constructing computable numberings and language identification.

Most of the classes of c.e. sets considered in the theory of inductive inference are not computable. It seems that this is
caused by the study of learning in the limit of families of computable functions. There, for a family of computable functions
which has a computable numbering, the set of the least indices of the functionswith respect to that numbering is computably
enumerable. This immediately gives the existence of a learning strategy in the limit. Nevertheless, we could observe that
special computable classes of c.e. sets are used as extensions of learnable (but not necessarily computable) classes (for
instance, see the characterization of language identification in [12,11]). On the other hand, the study of non-computable
families of c.e. sets is not too interesting for the theory of numberings, so in our paper we will deal only with computable
families of c.e. sets.

It is well known [13] that computable families of finite sets, finite classes of computably enumerable sets, and some
classes of the graphs of computable functions are TxtEx-learnable. On the other hand, the computable numberings of any
of these classes are pairwise equivalent with respect to the reduction by 0′-computable functions. It might be that these
observations led Frank Stephan to propose the following conjecture to one of the authors of this paper:

For every computable family A of c.e. sets, the following are equivalent.

(i) A is TxtEx-learnable.
(ii) All computable numberings of A are 0′-equivalent.

Our aim is to demonstrate that one of the directions of this statement is true, namely the direction (i) ⇒ (ii) (see Theorem3.1
below) and to prove that the converse fails. In fact, we show that there is a computable family of c.e. sets A such that all
computable numberings of A are equivalent with respect to the reduction by computable functions and such that A is not
TxtEx-learnable (see Theorem 4.1 below).

This leaves the question of whether we can restore Stephan’s conjecture if we replace explanatory learnability by the
weaker notion of behaviorally-correct learnability. We answer this question negatively too by constructing a computable
familyA of c.e. setswhich is not TxtBC-learnable though all of its computable numberings are 0′-equivalent (see Theorem6.1
below).We also give a natural example of a computable TxtBC-learnable family of c.e. setswhich possesses non-0′-equivalent
computable numberings (see Theorem 5.1 below). So, for a computable family A of c.e. sets, the TxtBC-learnability and 0′-
equivalence of all computable numberings are independent.

The outline of the paper is as follows. In Section 2 we introduce the basic concepts we will deal with. In Section 3 we
prove Theorem 3.1. It should be noted that this result is not new but that Frank Stephan was aware of this fact when he
communicated his conjecture to us. We first show that Theorem 3.1 is a consequence of some deep facts of learning theory.
Then we give a simple self contained proof using some technique of the theory of numberings. In Sections 4–6 we prove
Theorems 4.1, 5.1 and 6.1, respectively. The paper is finished with some concluding remarks in Section 7.

The present paper is an extended version of the presentation [1] given at the conference TAMC 2008. The results of
Sections 5 and 6 are added to the results of that presentation. Moreover, the proof of Theorem 4.1 which was only sketched
there is given in more detail here.

2. Preliminaries

We follow the monograph [5] in Russian and the survey papers [6,2] for the terminology and notations accepted in the
theory of numberings. A mapping α : N −→ A of the set N of natural numbers onto a family A of computably enumerable
sets is called a computable numbering of A if the set {⟨x, n⟩ : x ∈ α(n)} is c.e., and a family A of subsets of N is called
computable if it has a computable numbering. In other words, a computable family A is a uniformly c.e. class of sets, and
every computable numbering α of A defines a uniform c.e. sequence α(0), α(1), . . . of the members of A. A numbering α
is called reducible (0′-reducible) to a numbering β if α = β ◦ f for some computable (computable relative to the halting
problem) function f . Numberings α, β are called equivalent (0′-equivalent) if they are reducible (0′-reducible) to each other.

We let ϕ0, ϕ1, ϕ2, . . . be a standard enumeration of the unary partial recursive functions, and let W0, W1, W2, . . . be the
corresponding standard enumeration of the family E of all c.e. sets where We = dom(ϕe). The halting problem is the set
K = {e : ϕe(e) ↓} = {e : e ∈ We}.

The concepts of inductive inference we will deal with are as follows. (For more details see the monographs [13,16].) In
our context a language L will be just a c.e. set. A text for a set L is a function t : N → N (i.e., an infinite sequence of natural
numbers) such that range(t) = L. Below we will identify a text t for L with an ascending sequence of finite sequences of
natural numbers σn (n ≥ 0), σ0 @ σ1 @ σ2 @ . . . , such that σn is an initial segment t � n′ of t , and we let content(σn) denote
the set of members of the sequence σn.

1654 K. Ambos-Spies et al. / Theoretical Computer Science 412 (2011) 1652–1668

A learnerM identifies in the limit or learns in the limit a language L from a text t for L if
1. limn→∞ M(t � n) exists (we say in this case thatM converges on the text t) and
2. L = Wlimn→∞ M(t�n);

and M TxtEx-identifies in the limit or TxtEx-learns in the limit L if M identifies in the limit L from every given text t for L. M
TxtEx-identifies or TxtEx-learns a family A of languages if M TxtEx-identifies every language L ∈ A. Finally, we say that a
family A is TxtEx-learnable if it is TxtEx-identified by some computable learner. TxtEx denotes the class of all TxtEx-learnable
families, [8].

A learnerM behaviorally correctly identifies or behaviorally correctly learns a language L from a text t for L if
1. M(t � n) ↓ for all n ≥ 0 and
2. L = WM(t�n) for all sufficiently large n;

and M TxtBC-behaviorally correctly identifies or TxtBC-behaviorally correctly learns L if M behaviorally correctly identifies L
from every given text t for L. M TxtBC-identifies or TxtBC-learns a family A of languages if M TxtBC-identifies every language
L ∈ A. Finally, we say that a family A is TxtBC-learnable if it is TxtBC-identified by some computable learner.

Below we will use the following well known observation.
Proposition 2.1. For every computable family A of c.e. sets, if A is TxtEx-learnable (TxtBC-learnable) then it is TxtEx-learnable
(TxtBC-learnable) by some primitive recursive learner.

3. Computable numberings of computable TxtEX-learnable families

In this section we will show that any two computable numberings of a computable TxtEx-learnable family of languages
are 0′-equivalent.
Theorem 3.1. Computable numberings of a computable TxtEx-learnable family of languages are pairwise 0′-equivalent.

We first point out how this fact can be deduced from a sequence of some known facts. Then we give a more simple direct
proof.

Let us recall the necessary notions and statements.
A sequence σ is called a locking sequence for a learner M on a language L [4] if content(σ) ⊆ L, WM(σ) = L, and, for every

sequence σ ′, if σ ⊑ σ ′ and content(σ ′) ⊆ L thenM(σ ′) = M(σ).
A learnerM is called order-independent [4] if, for every language L identified in the limit byM and for all texts t and t ′ for

L, M(t) = M(t ′).
A learner M is called rearrangement-independent [7,17] if, for all sequences σ and σ ′ such that content(σ) = content(σ ′)

and |σ | = |σ ′
|, M(σ) = M(σ ′).

The following two propositions are crucial.
Proposition 3.1 ([7,17]). For every computable learner M, there exists a computable learner M ′ such that

• for every language L, if M identifies in the limit L then M ′ also identifies in the limit L,
• M ′ is order-independent,
• M ′ is rearrangement-independent.

Proposition 3.2 ([4]). If M identifies in the limit L then there is a locking sequence for M on L.
Now, given a computable family A identified in the limit by a learner M , then one can replace M by a learner M ′ as in

Proposition 3.1 and try to find the least locking sequence (relative to some coding of sequences) for any given language
L ∈ A. By this crucial idea developed in [11,12] to characterize TxtEx-identifiable classes, it is easy to deduce the following
statement from [11].
Proposition 3.3. If M identifies in the limit a computable family A of c.e. sets then there is a 0′-computable function f such that
for every L ∈ A and every two numbers i, j, if Wi = L,Wj = L then f (i) = f (j) and Wf (i) = L.

Evidently, Proposition 3.3 implies that any two computable numberings of A are 0′-equivalent.
We now turn to our more simple, direct proof of Theorem 3.1. Our proof will use the following representation of

computable numberings by Lachlan (see [3] for the details).
Let A be a computable family of c.e. sets. We say that a c.e. set A represents A if A = {Wx : x ∈ A}. Now if A represents A

then any computable function f enumerating A induces a computable numbering αf of A where αf (x) = Wf (x). Moreover,
if f and g are computable functions enumerating A then the corresponding numberings αf and αg of A are equivalent. So,
up to equivalence, any c.e. set A representing A induces a unique computable numbering of A in the way just described.
Conversely, for any computable numbering α of A, there is a c.e. set A representing A such that the numbering induced by
A is equivalent to α. The latter follows from the following well known fact of the theory of numberings: α : N −→ A ⊆ E
is a computable numbering iff α is reducible to the standard numberingW = ⟨We : e ≥ 0⟩, so A can be chosen as the range
of a function which reduces α toW .

In the following we will refer to the above observations on representations as Lachlan’s representation theorem. The
following lemma gives a criterion for the numberings induced by two representations of a computable family to be 0′-
equivalent.

K. Ambos-Spies et al. / Theoretical Computer Science 412 (2011) 1652–1668 1655

Lemma 3.1. Let A and B be c.e. sets such that

{Wa : a ∈ A} = {Wb : b ∈ B} (1)

and let α and β be the numberings induced by the sets A and B respectively. Then α is 0′-reducible to β if and only if there exists
a computable function g : N × N → N such that, for any a ∈ A,

lim
s→∞

g(a, s) ↓ & lim
s→∞

g(a, s) ∈ B & Wa = Wlims→∞ g(a,s). (2)

Proof. The proof is a straightforward modification of the proof of Lemma 2.2 from [3]. �

Based on the above observations on numberings we can now present our proof of Theorem 3.1.

Proof. Let A be a computable TxtEx-learnable family, let M be a computable learner of A, and let A and B be any c.e. sets
such that

A = {Wa : a ∈ A} = {Wb : b ∈ B}.

By Lachlan’s representation theorem and by Lemma 3.1, it suffices to define a computable function g satisfying (2).
In order to do so, we will show that there is a computable function

state : N3
→ {0, 1}

such that, for any numbers a ∈ A and b ∈ B the following hold.

Wa = Wb ⇒ lim
s→∞

state(a, b, s) ↓ & lim
s→∞

state(a, b, s) = 1 (3)

Wa ≠ Wb ⇒ lim
s→∞

state(a, b, s) ↓ & lim
s→∞

state(a, b, s) = 0. (4)

If we define the function g by letting g(a, s) be the least b ∈ Bs such that state(a, b, s) = 1 (if there is such a b and by
letting g(a, s) = 0 otherwise) then g will have the desired properties. Namely, given a ∈ A, by (1), we may fix b minimal
such that b ∈ B and Wa = Wb. Then, given a stage s0 such that b ∈ Bs0 , by (3) and (4), we may fix s1 ≥ s0 such that, for
s ≥ s1, state(a, b, s) = 1 and state(a, b′, s) = 0 for all b′ < b. So, for any stage s ≥ s1, g(a, s) = b.

The function state(a, b, s) is defined by induction on s. Simultaneouslywith state(a, b, s)wedefine a finite string σ(a, b, s)
over N and we let content(σ (a, b, s)) be the set of numbers occurring in σ(a, b, s).

For s = 0 we let σ(a, b, 0) = λ and state(a, b, 0) = 1. For the definition of σ(a, b, s + 1) and state(a, b, s + 1) we
distinguish the following mutually exclusive cases.

Case 1: content(σ (a, b, s)) ⊈ Wa,s ∩ Wb,s.
Then let σ(a, b, s + 1) = σ(a, b, s) and state(a, b, s + 1) = 0.
Case 2: content(σ (a, b, s)) ⊆ Wa,s ∩ Wb,s and

M(σ (a, b, s)) = M(σ (a, b, s)Wa,s) = M(σ (a, b, s)Wb,s).

(HereWa,s is viewed as the string of the elements ofWa,s in the order of enumeration (and, similarly, forWb,s).)
Then let σ(a, b, s + 1) = σ(a, b, s) and state(a, b, s + 1) = 1.
Case 3: content(σ (a, b, s)) ⊆ Wa,s ∩ Wb,s and M(σ (a, b, s)) ≠ M(σ (a, b, s)Wa,s) or M(σ (a, b, s)) ≠ M(σ (a, b, s)Wb,s).
Then let σ(a, b, s+ 1) = σ(a, b, s)Wa,sWb,s ifM(σ (a, b, s)) ≠ M(σ (a, b, s)Wa,s) and σ(a, b, s+ 1) = σ(a, b, s)Wb,sWa,s

otherwise. In either case let state(a, b, s + 1) = 0.
This completes the definition of σ and state.
To show that the function state satisfies (3) and (4), fix a ∈ A and b ∈ B. Note that, by definition,

σ(a, b, s) ⊑ σ(a, b, s + 1), (5)
content(σ (a, b, s)) ⊆ Wa,s ∪ Wb,s, (6)

and

σ(a, b, s) @ σ(a, b, s + 1) ⇒ content(σ (a, b, s)) ⊆ Wa,s ∩ Wb,s. (7)

Next we will show that there are only finitely many stages s such that Case 3 applies in the definition of σ(a, b, s + 1)
and state(a, b, s + 1). For a contradiction assume that this happens infinitely often. Since, for s < s′ such that Case 3 applies
to s+ 1 and s′ + 1, content(σ (a, b, s+ 1)) = Wa,s ∪Wb,s and content(σ (a, b, s+ 1)) ⊆ content(σ (a, b, s′)) ⊆ Wa,s′ ∩Wb,s′ , it
follows thatWa ∪Wb ⊆ Wa ∩Wb henceWa = Wb. So the infinite sequence lims→∞ σ(a, b, s) is an enumeration (i.e., a text)
of bothWa andWb. Moreover, if Case 3 holds at stage s+ 1 then the extension σ(a, b, s+ 1) of σ(a, b, s) is chosen in such a
way thatM(σ (a, b, s)) ≠ M(σ) for some σ with σ(a, b, s) @ σ ⊑ σ(a, b, s + 1). So on the sequence lims→∞ σ(a, b, s) the
learnerM changes its mind infinitely often, hence does not learnWa contrary to assumption.

Now, since Case 3 applies only finitely often and since σ(a, b, s) is only extended at a stage s+ 1 at which Case 3 applies,
we may fix s0 such that σ(a, b, s) = σ(a, b, s0) for all s > s0 and Case 3 does not apply after stage s0. Distinguish the
following two cases.

1656 K. Ambos-Spies et al. / Theoretical Computer Science 412 (2011) 1652–1668

First assume that content(σ (a, b, s0)) ⊈ Wa ∩ Wb. Then, by (6), Wa ≠ Wb and Case 1 applies to all stages s > s0 hence
lims→∞ state(a, b, s) = 0. So (4) holds.

Finally, assume now that content(σ (a, b, s0)) ⊆ Wa∩Wb. Then, for every s1 > s0 with content(σ (a, b, s0)) ⊆ Wa,s1 ∩Wb,s1 ,
Case 2 applies to all stages s > s1 hence lims→∞ state(a, b, s) = 1. It remains to show that Wa = Wb in this case. Now, by
definition, M(σ (a, b, s0)) = M(σ (a, b, s0)Wa,s) and M(σ (a, b, s0)) = M(σ (a, b, s0)Wb,s), so given the enumeration of Wa
obtained by the initial segments σ(a, b, s0)Wa,s (s ≥ s1), the learner M does not make any changes in his prediction after
stage s1. Since M learns Wa this implies that M(σ (a, b, s0)) is an index of Wa. By a similar argument, M(σ (a, b, s0)) is an
index ofWb too, hence Wa = Wb.

This completes the proof of Theorem 3.1. �

4. A non-TxtEx-learnable class with only equivalent numberings

In this section we give a counterexample to the converse part of the conjecture of Frank Stephan. Indeed, we will prove
the following stronger statement.

Theorem 4.1. There exists a computable family A of c.e. sets such that all computable numberings of A are pairwise equivalent
and A is not TxtEx-learnable.

Proof. It suffices to construct a computable numbering α such that for the family A = {α(x) : x ∈ N} of c.e. sets the
following hold.

(a) All computable numberings of A are equivalent to α.
(b) A is not TxtEx-learnable.

Indeed, we will build a positive numbering α, i.e., a numbering α such that the relation α(x) = α(y) is c.e. in x and y.
Any positive numbering is minimal under reduction, [15]. So, in order to ensure (a), it suffices to reduce all computable
numberings of A to the numbering α. Moreover, in order to ensure (b), by Proposition 2.1 it suffices to guarantee that no
primitive recursive learner TxtEx-identifies A.

Requirements. LetM0,M1, . . . be a computable sequence of all primitive recursive learners, and let γ0, γ1, . . . be a uniformly
computable sequence of all computable numberings of computable families of c.e. sets. Then the numbering α has to meet
the following requirements for all k, e ∈ N:

P : α is a computable positive numbering.
Rk : If γk is a numbering of A then γk is reducible to α.
Ne : For somem, Me fails to TxtEx-learn the set α(m).

We will refer to Rk as the kth reduction requirement and to Ne as the eth nonlearning requirement. The priority ordering
among the requirements Rk and Ne is defined as usual by giving requirements with a smaller index higher priority and by
giving Rn higher priority than Nn. The requirement P is global.

Strategies. We identify each α-index nwith a triple of numbers, n = ⟨e, i, j⟩, where the individual components of n have
the following meaning:

• e means that the set α(n) might be used for diagonalizing against the learner Me, i.e., for meeting the nonlearning
requirement Ne,

• i denotes the attempt number for trying to diagonalize against Me (due to our strategy for meeting the higher priority
reduction requirements, a single attempt might not suffice),

• jmeans that α(n) is the jth candidate in the ith attempt for diagonalizing againstMe.

We denote the components e, i, j of a triple n = ⟨e, i, j⟩ by π1(n), π2(n), and π3(n) respectively. Moreover, we refer to
the sets α(n) with π1(n) = e and π2(n) = i as the sets in section (e, i) or sets in the ith e-section. (So sets in the ith e-section
(e, i) are reserved for the ith attempt for meeting Ne.)

For meeting the requirements P and Rk we have to take some precautions in the enumerations αs(n) of the sets α(n),
where αs(n) denotes the finite part of α(n) enumerated by the end of stage s of the construction below. (As usual, for any
parameter pused in the constructionwhich depends on stage s, we assume that p retains its value at stage s+1, i.e., ps+1

= ps,
unless explicitly stated otherwise.)

Let b(n) = 2n and let a(n) = 2n + 1. Initially, we let

α0(n) = {b(n)} (8)

and call b(n) the base element of α(n). So, for n ≠ m, α0(n) ≠ α0(m) and α0(n) can be positively distinguished from α0(m)
by its base element. In fact, sets in different sections will be permanently distinguishable by their base elements, i.e., the
base element of a set α(n) will never be put into any set α(m) in a different section:

[π1(m) ≠ π1(n) or π2(m) ≠ π2(n)] ⇒ b(n) ∈ α(n) \ α(m). (9)

K. Ambos-Spies et al. / Theoretical Computer Science 412 (2011) 1652–1668 1657

Numbers a(s) may be enumerated into some sets α(m) in the course of the construction, where a(s) will not enter any set
α(m) before stage s. Moreover, for sets α(m) and α(n) in the same section (e, i) the conclusion of (9) may fail since our
strategy for meeting the nonlearning requirements may force us to enumerate the base element of α(n) into α(m). (If this
happens, the role of the base element of α(n)will be played by some new number a(s) put into α(n) before b(n) enters α(m)
— unless we make α(n) and α(m) agree.)

After stage 0 numbers will be enumerated into the sets α(n) only by the strategies for meeting the nonlearning require-
ments. It will be convenient to let these strategies act at even stages only, while the strategies for meeting the reduction
requirements will build the required reduction functions at odd stages. So, for s, n ≥ 0,

α2s+1(n) = α2s(n). (10)

Strategy for meeting P . In order to make α positive we ensure that two sets α(m) and α(n) which agree at some stage
will agree in the limit and, conversely, that sets which agree will agree from some stage on, i.e. for all stages s and numbers
m and n,

αs(m) = αs(n) ⇒ ∀ t ≥ s (αt(m) = αt(n)) (11)

and

α(m) = α(n) ⇒ ∃t (αt(m) = αt(n)). (12)

So, in particular, α(m) = α(n) if and only if αs(m) = αs(n) for some stage s. By effectivity of the construction, this implies
that {(m, n) : α(m) = α(n)} is computably enumerable.

Strategy for meetingRk. The strategy formeeting the reduction requirements is more involved. Fix uniformly computable
enumerations {γ s

k (x)}s≥0 of the sets γk(x), k, x ≥ 0, such that γ s
k (x) is finite and γ 2s+1

k (x) = γ 2s
k (x). (I.e., just as for the sets

α(n) we limit the enumeration of numbers into the sets γk(x) to even stages.)
We say that k is correct if γk is a numbering of A, i.e.,

A = {γk(x) : x ≥ 0}. (13)

So, assuming that k is correct, we have to define a reduction gk of γk to α, i.e., a computable function gk such that

∀ x (γk(x) = α(gk(x))). (14)

At stage s of the construction, gk will be defined on a finite initial segment 0, . . . , xsk − 1 where x0k = 0, and we let g s
k(x)

denote the value of gk(x) for 0 ≤ x < xsk. The domain of gk will be extended at odd stages only.
Note that, assuming (13), it follows from (8) that any set γk(x) contains at least one base element. So, before defining

gk(x) we can wait for a stage such that a base element has entered γk(x). If s is the least stage such that γ s
k (x) contains a

base element and b(⟨e, i, j⟩) is the least base element in γ s
k (x) then we call (e, i) the target section of gk(x) and denote it by

(ek,x, ik,x). Note that, still assuming (13), it follows from (9) that γk(x) is a member of section (ek,x, ik,x) hence we will have
to set gk(x) = ⟨ek,x, ik,x, j′⟩ for some number j′ ≥ 0.

In fact, if the target section (ek,x, ik,x) of gk(x) is connected to a higher priority nonlearning requirement, i.e., ek,x < k,
then the value of gk(x) will be specified only at the end of the construction (using some finite information on the outcomes
of the strategies for meeting the higher priority nonlearning requirements Ne, e < k). In the course of the construction we
will only assign the temporary value gk(x) = ⊥.

For defining gk(x) if the target satisfies ek,x ≥ k, we have to introduce some more features of the construction first. So it
will be crucial to note that at any stage of the construction the sets in a section (e, i) will be in one of the following states.

• Section (e, i) is unused at stage s. If unused at s, all sets in section (e, i) are still in their initial state, i.e. αs(⟨e, i, j⟩) =

α0(⟨e, i, j⟩) = {b(⟨e, i, j⟩)} for j ≥ 0. All sections are unused at stage 0.
• Section (e, i) is active at stage s. Once active, section (e, i) will stay active forever unless it will be eventually cancelled.
• Section (e, i) is cancelled at stage s. If (e, i) becomes cancelled at stage s first then s is even and (e, i) remains cancelled

for ever. Moreover, for n ≥ 1 and j ≤ n,

αs+2n(⟨e, i, j⟩) =

j′≤n

αs(⟨e, i, j′⟩) ∪ {a(0), . . . , a(s + n)}. (15)

So, in the limit, all sets in section (e, i) are merged and trivialized, namely,

α(⟨e, i, j⟩) = {b(n) : π1(n) = e & π2(n) = i} ∪ {a(n) : n ≥ 0} (16)

for all j ≥ 0. (Note that this procedure is consistent with (10)–(12).)

1658 K. Ambos-Spies et al. / Theoretical Computer Science 412 (2011) 1652–1668

Now, if gk(x) has target (ek,x, ik,x) with ek,x ≥ k then we ensure that the value ⟨ek,x, ik,x, jk,x⟩ assigned to gk(x) is correct
as follows. If we let gk(x) = ⟨ek,x, ik,x, jk,x⟩ at stage 2s+1 then we choose jk,x such that γ 2s

k (x) = α2s(⟨ek,x, ik,x, jk,x⟩). In order
to preserve this agreement we limit the action of enumerating the base element b(⟨e, i, j⟩) of a set α(⟨e, i, j⟩) in a section
(e, i) into another set α(⟨e, i, j′⟩) of this section as follows. Unless we do not merge the sets α(⟨e, i, j⟩) and α(⟨e, i, j′⟩), i.e.,
set α(⟨e, i, j⟩) = α(⟨e, i, j′⟩), before we put b(⟨e, i, j⟩) into α(⟨e, i, j′⟩) we put a new number a(t) (taking over the role of the
base element) into α(⟨e, i, j⟩) which will never enter α(⟨e, i, j′⟩) (unless α(⟨e, i, j⟩) and α(⟨e, i, j′⟩) are merged later). In fact
wemay iterate this game, i.e. wemay put the element a(t) – which has taken over the role of the base element of α(⟨e, i, j⟩)
– into α(⟨e, i, j′⟩) or some other set α(⟨e, i, j′′⟩) later but we do not do this unless we have added a new distinguishing el-
ement a(t ′) to α(⟨e, i, j′⟩) before. (This will not happen here but in the proof of Theorem 6.1.) What will be crucial is that
these procedures guarantee

α(⟨e, i, j⟩) ≠ α(⟨e, i, j′⟩) ⇒ ∀ s ∃ y [y ∈ α2s(⟨e, i, j⟩) \ α2s+2(⟨e, i, j′⟩)]. (17)

Moreover, if ⟨e, i, j⟩has been assigned to some gk(x)prior to the stage 2s+2 atwhichwewant to put b(⟨e, i, j⟩) (or someother
element of α(⟨e, i, j⟩)) into the set α(⟨e, i, j′⟩) then this action is delayed until the new number y distinguishing α(⟨e, i, j⟩)
from the other sets in the section has shown up in γk(x) too. (If k is correct this delay will be finite.)

Finally, we have to (further) slow down the enumeration of the sets in a given section (e, i) in order to ensure that, for
correct k and for any x such that gk(x) has target (e, i), gk(x) can be eventually assigned a currently correct value.

We now formally define the strategy for meeting the reduction requirement Rk for given k ≥ 0.
The restraint on enumerating numbers into the sets α(n) imposed by Rk is as follows.
For x < x2s+1

k call x k-incorrect (on section (ek,x, ik,x)) at stage 2s+1 if k ≤ ek,x, (ek,x, ik,x) is not cancelled at stage 2s+1, and

γ 2s+1
k (x) ≠ α2s+1(gk(x)). (18)

Call x = x2s+1
k k-incorrect (on section (ek,x, ik,x)) at stage 2s + 1 if the target (ek,x, ik,x) of gk(x) is defined at stage 2s + 1,

k ≤ ek,x, (ek,x, ik,x) is not cancelled at stage 2s + 1,

∀ j ≥ 0 [γ 2s+1
k (x) ≠ α2s+1(⟨e, i, j⟩)], (19)

and there is no pair (k′, x′) such that ⟨k′, x′
⟩ < ⟨k, x⟩, gk′(x′) has target (ek,x, ik,x) and gk′(x′) becomes defined at stage 2s+ 1.

Call a number x k-correct at stage 2s + 1 if x is not k-incorrect at stage 2s + 1.
If there is a number x such that x is k-incorrect on (e, i) at stage 2s+1 then section (e, i) is k-frozen (via x) at stage 2s+2.

Section (e, i) is frozen at stage 2s+2 if (e, i) is k-frozen for some k ≤ e. If (e, i) is frozen at stage 2s+2 then no new elements
are allowed to enter any of the sets in this section at stage 2s + 2. (This is consistent with (15) since cancelled sections are
not frozen.) So, by (10),

(e, i) frozen at stage 2s + 2 ⇒ ∀ j ≥ 0 [α2s(⟨e, i, j⟩) = α2s+2(⟨e, i, j⟩)]. (20)

Now the domain of gk is expanded at odd stages as follows. Given s ≥ k, gk(x2sk) becomes defined at stage 2s + 1 (and
x2s+1
k = x2sk + 1) if the following hold.

(D1) The target section (ek,x2sk , ik,x2sk) of gk(x2sk) is defined at stage 2s.

(D2) If ek,x2sk ≥ k and section (ek,x2sk , ik,x2sk) is not cancelled at stage 2s then there is a number j such that γ 2s
k (x2sk) =

α2s(⟨ek,x2sk , ik,x2sk , j⟩).

(D3) For all x < x2sk there is a stage t such that us ≤ t < s and such that x is k-correct at stage 2t + 1 where us is the least
stage u such that x2uk = x2sk .

The value of gk(x2sk) is determined by distinguishing the following cases. If ek,x2sk < k, let g2s+1
k (x2sk) = ⊥. If ek,x2sk ≥ k and

section (ek,x2sk , ik,x2sk) is cancelled at stage 2s, let g2s+1
k (x2sk) = ⟨ek,x2sk , ik,x2sk , 0⟩. Finally, if ek,x2sk ≥ k and section (ek,x2sk , ik,x2sk) is

not cancelled at stage 2s, let g2s+1
k (x2sk) = ⟨ek,x2sk , ik,x2sk , jk,x2sk ⟩where jk,x2sk is the least j such that γ 2s

k (x2sk) = α2s(⟨ek,x2sk , ik,x2sk , j⟩)
holds.

To show that this guarantees that, for correct k, the reduction gk is total and correct (whenever gk(x) ≠ ⊥), we prove
a series of claims based on the assumption that the enumeration of the sets α(n) satisfies (10), (11), (15) (for cancelled
sections), (17) and (20). Fix k.

Claim 1. Assume that gk(x) is defined (at stage 2s + 1). Then the target section (ek,x, ik,x) of gk(x) is defined (at stage 2s) and
either ek,x < k and gk(x) = ⊥ or ek,x ≥ k and gk(x) = ⟨ek,x, ik,x, jk,x⟩ for some number jk,x ≥ 0. (Moreover, if ek,x ≥ k, section
(ek,x, ik,x) is not cancelled at stage 2s, and gk(x) becomes defined at stage 2s + 1 then γ 2s

k (x) = α2s(gk(x)).)

Proof. Straightforward. �

Claim 2. Assume that k is correct. Then, for any x, the target section (ex, ix) of gk(x) is defined and γk(x) = α(⟨ex, ix, j⟩) for some
j ≥ 0.

Proof. Straightforward. �

K. Ambos-Spies et al. / Theoretical Computer Science 412 (2011) 1652–1668 1659

Claim 3. Assume that k is correct. Then, for any x, the following hold.

(a) gk(x) is defined.
(b) If gk(x) = ⟨ek,x, ik,x, jk,x⟩ then γk(x) = α(⟨ek,x, ik,x, jk,x⟩).
(c) There are infinitely many stages s such that x is k-correct at stage 2s + 1.

Proof. The proof is by induction. Fix x and assume that the claim holds for all x′ < x. Let sx be the least stage s such that
x2sk = x. By Claim 2, fix s′ ≥ max(sx, k) such that the target section (ek,x, ik,x) of gk(x) is defined at stage 2s′ and fix j0 such
that γk(x) = α(⟨ek,x, ik,x, j0⟩).

Now, for a proof of (a), for a contradiction assume that gk(x) is not defined. Then x2sk = x for all s ≥ sx. So condition (D1) for
defining gk(x2sk) is satisfied for all s ≥ s′. Moreover, by inductive hypothesis, there is a stage s′′ ≥ s′ such that (D3) holds for all
s ≥ s′′. So, since gk(x) is not defined, condition (D2) fails for all s ≥ s′′. Hence ek,x ≥ k, section (ek,x, ik,x) is never cancelled, and

∀ s ≥ s′′ ∀ j [γ 2s
k (x) ≠ α2s(⟨ek,x, ik,x, j⟩)]. (21)

So if we let s′′′ be the least number s ≥ s′′ such that, for any pair (k′, x′) such that ⟨k′, x′
⟩ < ⟨k, x⟩ and gk′(x′) is defined, gk′(x′)

is defined by stage 2s − 1, then, for s ≥ s′′′, x is k-incorrect at stage 2s + 1 hence section (ek,x, ik,x) is frozen at stage 2s + 2.
It follows, by (20), that α(⟨ek,x, ik,x, j⟩) = α2s′′′(⟨ek,x, ik,x, j⟩) for all j ≥ 0 hence, in particular, all sets in section (ek,x, ik,x) are
finite. By γk(x) = α(⟨ek,x, ik,x, j0⟩) this implies

γ s
k (x) = αs(⟨ek,x, ik,x, j0⟩)

for all sufficiently large s. But this contradicts (21).
For a proof of parts (b) and (c), fix s′x such that gk(x) becomes defined at stage 2s′x + 1 and distinguish the following three

cases.
First assume that gk(x) = ⊥. Then (b) trivially holds and ek,x < k hence x is k-correct at all stages 2s + 1 for s > s′x.
Next assume that gk(x) = ⟨ek,x, ik,x, jk,x⟩ and section (ek,x, ik,x) is eventually cancelled. By the latter and (16), all sets in

section (ek,x, ik,x) are merged. So

γk(x) = α(⟨ek,x, ik,x, j0⟩) = α(⟨ek,x, ik,x, jk,x⟩)

hence (b) holds. Moreover, once (ek,x, ik,x) is cancelled, xwill become k-correct forever.
Finally, for the remainder of the proof, assume that gk(x) = ⟨ek,x, ik,x, jk,x⟩, e,x ≥ k, and section (ek,x, ik,x) is never can-

celled. For a proof of (b) and (c) it suffices to show

∃
∞ s [γ 2s

k (x) = α2s(⟨ek,x, ik,x, jk,x⟩)]. (22)

For a contradiction assume that (22) fails. Since, by definition of gk(x) and choice of s′x,

γ
2s′x
k (x) = α2s′x(gk(x)) = α2s′x(⟨ek,x, ik,x, jk,x⟩),

we may fix s′′ ≥ s′x such that

γ 2s′′
k (x) = α2s′′(⟨ek,x, ik,x, jk,x⟩) & ∀ s > s′′ [γ 2s

k (x) ≠ α2s(⟨ek,x, ik,x, jk,x⟩)]. (23)

It follows that section (e, i) is frozen at all stages ≥ 2s′′ + 4 hence, in particular,

α(⟨ek,x, ik,x, j0⟩) = α2s′′+2(⟨ek,x, ik,x, j0⟩). (24)

By γk(x) = α(⟨ek,x, ik,x, j0⟩) this implies that γ s
k (x) = αs(⟨ek,x, ik,x, j0⟩) for all sufficiently large s hence, by (23),

α(⟨ek,x, ik,x, jk,x⟩) ≠ α(⟨ek,x, ik,x, j0⟩).

So, by (17), there is a number y such that

y ∈ α2s′′(⟨ek,x, ik,x, jk,x⟩) \ α2s′′+2(⟨ek,x, ik,x, j0⟩).

By (23) and (24), however, this implies that y ∈ γk(x) \ α(⟨ek,x, ik,x, j0⟩) contrary to γk(x) = α(⟨ek,x, ik,x, j0⟩).
This completes the proof of Claim 3. �

By the first two parts of Claim 3, for correct k the reduction function g is total and, for any x such that gk(x) ≠ ⊥, the
reduction is correct, i.e., γk(x) = α(gk(x)).

To show that the severe limitations on the enumeration of the sets α(n) caused by the Rk strategies will not interfere
with the task of meeting the nonlearning requirements, the following observations will be crucial.

Claim 4. Assume that the domain of gk is infinite. Then, for any x, gk(x) is defined and there are infinitely many stages 2s + 1 at
which x is k-correct.

Proof. The first part is straightforward. The second part follows from clause (D3) in the definition of gk(x2sk). �

We say that a section is permanently frozen if it is frozen at all sufficiently large even stages.

1660 K. Ambos-Spies et al. / Theoretical Computer Science 412 (2011) 1652–1668

Claim 5. For any number e there are only finitely many e-sections which are permanently frozen.
Proof. Fix e. For k such that the domain of gk is finite, let xk = lims→∞ xsk = sups→∞ xsk, and fix i0 such that, for any k ≤ e
such that the domain of gk is finite and for any x ≤ xk such that gk(x) has target (e, i) for some i, i < i0. We will show that,
for i ≥ i0, section (e, i) is not permanently frozen.

For a contradiction assume that i ≥ i0 and (e, i) is permanently frozen, say (e, i) is frozen at all stages 2s with s ≥ s0.
Then, by definition, section (e, i) is never cancelled and

∀ s ≥ s0 ∃ k ≤ e ∃ x [x k-incorrect on (e, i) at stage 2s + 1]. (25)
Moreover, by (20),

∀ s ≥ s0 ∀ j ≥ 0 [α(⟨e, i, j⟩) = α2s(⟨e, i, j⟩) = α2s0(⟨e, i, j⟩)]. (26)
In order to get the desired contradiction we will refute (25).

We start with some simple observations. Let I be the set of all (coded) pairs ⟨k, x⟩ such that x is k-incorrect on (e, i) at
some odd stage. Then, for ⟨k, x⟩ ∈ I , k ≤ e and gk(x) has target (e, i). By i ≥ i0, this implies that the domain of gk is infinite.
Hence, by Claim 4, gk is total and x is k-correct at infinitely many odd stages.

By the latter, and since there are only finitelymany pairs ⟨k, x⟩ in I such that gk(x) is defined by the end of stage 2s0+1,we
may fix a stage s1 ≥ s0 such that, for any such pair ⟨k, x⟩, there is a stage t , s0 ≤ t ≤ s1, such that x is k-correct at stage 2t+1.

Next fix s ≥ s1 and ⟨k, x⟩ in I such that gk(x) is defined by stage 2s + 1. We will show that x is k-correct at stage 2s + 1.
Fix u such that gk(x) becomes defined at stage 2u + 1. We first observe that there is a stage t , max(s0, u) ≤ t ≤ s, such
that x is k-correct at stage 2s + 1. For u ≤ s0 this is immediate by choice of s1 and by s ≥ s1. If u > s0 then t = u will do
since, by clause (D2) in the definition of gk, x is k-correct at the stage at which gk(x) becomes defined. So, in order to show
that x is k-correct at stage 2s + 1, it suffices to show that, assuming that x is k-correct at stage 2t + 1 where t ≥ s0 and
g2t+1
k (x) is defined, x is k-correct at all stages 2s + 1 > 2t + 1. Now, by choice of t , gk(x) = ⟨e, i, j⟩ for some j ≥ 0 and

γ 2t+1
k (x) = α2t+1(⟨e, i, j⟩). It suffices to show that the latter equation holds for all 2s+1 > 2t +1 in place of 2t +1. Now, by

t ≥ s0 and (26), α(⟨e, i, j⟩) has reached its final value at stage 2t + 1. So the equality will only be destroyed if a new number
enters γk(x) after stage 2t +1. In this case, however, xwill be k-incorrect at all sufficiently large odd stages. But, as observed
above, for ⟨k, x⟩ ∈ I this is impossible.

Now, by our last observation and by (25), for any stage s ≥ s1, there is a pair ⟨k, x⟩ in I such that x is k-incorrect on (e, i)
at stage 2s+1 and gk(x) is not yet defined at stage 2s+1. Let ⟨k′, x′

⟩ be the least coded pair which has this property for some
s ≥ s1. By ⟨k′, x′

⟩ ∈ I , gk′ is total hence there is a stage v > s ≥ s1 such that gk′(x′) becomes defined at stage 2v+1. It follows,
by definition and by minimality of ⟨k′, x′

⟩, that no pair ⟨k, x⟩ such that gk(x) is undefined at stage 2v + 1 is k-incorrect on
(e, i) at stage 2v + 1, a contradiction.

This completes the proof of Claim 5. �

Strategy for meeting Ne. Given the ith e-section (e, i), in the ith attempt for meeting Ne we build a (finite or infinite)
sequence of strings over N, namely

σ 0
e,i @ σ 1

e,i @ · · · @ σ
j∗
e,i

(j∗ ≥ 0) or
σ 0
e,i @ σ 1

e,i @ σ 2
e,i @ · · ·

such that – if the ith attempt is the successful one – either

content(σ j∗
e,i) ⊆ α(⟨e, i, 0⟩) ∩ α(⟨e, i, j∗ + 1⟩) & Me fails to learn α(⟨e, i, 0⟩) or α(⟨e, i, j∗ + 1⟩) (27)

or
j∈N

content(σ j
e,i) = α(⟨e, i, 0⟩) & Me fails to learn α(⟨e, i, 0⟩) from the text σe,i = lim

j→∞

σ
j
e,i. (28)

This is achieved by induction on j ≥ 1, where string σ
j
e,i is defined in cycle j given below (σ 0

e,i is the empty string).
When cycle 1 is started at stage 2s1 then s1 > 0, section (e, i) was unused at stage 2s1 − 1, and section (e, i) becomes

active at stage 2s1. Cycle j will affect α(⟨e, i, 0⟩), called the primary set of section (e, i), and α(⟨e, i, j⟩), called the active set
(in cycle j). If cycle j is started at stage 2sj, the active set and the sets α(⟨e, i, j′⟩) with j′ > j, called unused sets, are still in
their initial states. If cycle j is completed, the active set is cancelled and merged with the primary set. (So the cancelled sets
agree with the primary set.) Moreover, at the start of cycle j, there will be a unique number, denoted by b̂j−1(⟨e, i, 0⟩) and
called the critical element of the primary set, such that the primary set is the disjoint union

α2sj(⟨e, i, 0⟩) = content(σ j−1
e,i) ∪̇ {b̂j−1(⟨e, i, 0⟩)}. (29)

For j = 0, b̂0(⟨e, i, 0⟩) = b(⟨e, i, 0⟩) while, for j ≥ 1, b̂j(⟨e, i, 0⟩) = a(j) where a(j) is enumerated into the primary set at the
end of cycle j. The critical element will positively distinguish the primary set from all other sets in section (e, i) which have
not been merged with the primary set.

Now cycle j (started at stage 2sj) is as follows.
Cycle j (j ≥ 1).

K. Ambos-Spies et al. / Theoretical Computer Science 412 (2011) 1652–1668 1661

1. Wait for the least s′j > sj such that section (e, i) is not frozen at stage 2s′j + 2.
2. At stage 2s′j + 2 enumerate the elements of the primary set with exception of the critical element into the active set:

α
2s′j+2

(⟨e, i, j⟩) = α
2s′j (⟨e, i, j⟩) ∪ [α

2s′j (⟨e, i, 0⟩) \ {b̂j−1(⟨e, i, 0⟩)}]. (30)

1. Wait for the least stage s′′j > 2s′j + 2 such that

Me(σ
j−1
e,i b̂j−1(⟨e, i, 0⟩)

s′′j −(2s′j+2)
) ≠ Me(σ

j−1
e,i) (31)

or

Me(σ
j−1
e,i b(⟨e, i, j⟩)s

′′
j −(2s′j+2)

) ≠ Me(σ
j−1
e,i). (32)

3. Wait for the least s′′′j > s′′j such that section (e, i) is not frozen at stage 2s′′′j + 2.
4. At stage 2s′′′j + 2 complete the cycle.

Merge the active set with the primary set and add a new critical number to the primary set:

∀ j′ ≤ j (α
2s′′′j +2

(⟨e, i, j′⟩) = α
2s′′′j (⟨e, i, 0⟩) ∪ α

2s′′′j (⟨e, i, j⟩) ∪ {b̂j(⟨e, i, 0⟩)} (33)

where b̂j(⟨e, i, 0⟩) = a(j). (Note that once a set ismergedwith the primary set it will agreewith the primary set at all later
stages hence in the limit; i.e., if a number is enumerated in the primary set then it is tacitly simultaneously enumerated
in all sets previously merged with the primary set.)

Define σ
j
e,i as follows.

σ
j
e,i =

σ

j−1
e,i b̂j−1(⟨e, i, 0⟩)

s′′j −(2s′j+2) b(⟨e, i, j⟩) if (31) holds
σ

j−1
e,i b(⟨e, i, j⟩)s

′′
j −(2s′j+2) b̂j−1(⟨e, i, 0⟩) otherwise.

Declare the active set α(⟨e, i, j⟩) cancelled and start cycle j+ 1 with the new active set α(⟨e, i, j+ 1⟩) at the next even
stage, i.e., let 2sj+1 = 2s′′′j + 4.

Note that it may happen that cycle j cannot be completed since we wait in step 1 or step 3 or step 4 forever. In this case
the sequence (σ n

e,i) is finite and j∗ = j − 1.
Numbers are enumerated into sets of section (e, i) after stage 0 only in steps 2 and 5 of the above cycles (unless section

(e, i) is cancelled and trivialized according to rule (15)). So, by a straightforward induction on j, the following hold.

(S1) If the attack is in cycle j at stage s (i.e., 2sj ≤ s ≤ 2s′′′j +2) then the still unused setsαs(⟨e, i, j′⟩), j′ > j are still in their ini-
tial states, and their base elements have not yet entered any other set, i.e, for j′ > j and j′′ ≠ j′, b(⟨e, i, j′⟩) ∉ αs(⟨e, i, j′′⟩).

(S2) If the attack is in cycle j at stage s and cycle j is not yet completed (i.e., 2sj ≤ s < 2s′′′j + 2) then the base element of the
active set αs(⟨e, i, j⟩) has not yet entered any other set, i.e, b(⟨e, i, j⟩) ∉ αs(⟨e, i, j′⟩) for j′ ≠ j. Moreover, αs(⟨e, i, j⟩) is
in its initial state (if s < 2s′j + 2) or

αs(⟨e, i, j⟩) \ b(⟨e, i, j⟩) = αs(⟨e, i, 0⟩) \ b̂j−1(⟨e, i, 0⟩) = content(σ j−1
e,i)

(if s ≥ 2s′j + 2).
(S3) If the attack is in cycle j at stage s and cycle j is not yet completed (i.e., 2sj ≤ s < 2s′′′j + 2) then the primary set agrees

with all previously cancelled sets:

∀ j′ < j ∀ t ≥ s (αt(⟨e, i, 0⟩) = αt(⟨e, i, j′⟩)).

Moreover, the critical element of the primary set has not entered the active set:

b̂j−1(⟨e, i, 0⟩) ∈ αs(⟨e, i, 0⟩) \ αs(⟨e, i, j⟩).

(S4) If cycle j is completed at stage s (i.e., s = 2s′′′j + 2) then the active set is cancelled and merged with the primary set, i.e.,
αt(⟨e, i, j⟩) = αt(⟨e, i, 0⟩) for all t ≥ s. Moreover, b̂j(⟨e, i, 0⟩) = a(j) and αs(⟨e, i, 0⟩) = α2sj(⟨e, i, 0⟩) ∪̇ {b̂j(⟨e, i, 0⟩)}.

This easily implies that the enumeration of the setsα(n) in section (e, i) obeys the rules (10)–(12), (17) and (20): if section
(e, i) is unused, this is trivial. Moreover, once cancelled, (9)–(12) hold as observed above; (17) and (20) become trivial, since
in a cancelled section all sets are made to agree and since a cancelled section cannot become frozen. So wemay assume that
(e, i) is active.

Then (10) and (20) hold since steps 2 and 5 in a cycle are limited to even stages at which section (e, i) is not frozen.
For a proof of (11) note that, by the above observations, for j′ < j′′, the sets αs(⟨e, i, j′⟩) and αs(⟨e, i, j′′⟩) agree at stage s if

and only if both sets have been cancelled by stage s or the first set is the primary set and the second set has been cancelled,
and in either case the sets will agree forever. Similarly, for a proof of (12) note that, for j′ < j′′, the sets α(⟨e, i, j′⟩) and
α(⟨e, i, j′′⟩) agree in the limit if and only if both sets are eventually cancelled or the first set is the primary set and the second
set is eventually cancelled.

1662 K. Ambos-Spies et al. / Theoretical Computer Science 412 (2011) 1652–1668

For a proof of (17) fix j′ < j′′ and s such that α(⟨e, i, j′⟩) ≠ α(⟨e, i, j′′⟩). We have to show that there are numbers y′ and
y′′ such that

y′
∈ α2s(⟨e, i, j′⟩) \ α2s+2(⟨e, i, j′′⟩) & y′′

∈ α2s(⟨e, i, j′′⟩) \ α2s+2(⟨e, i, j′⟩). (34)

Since all cancelled sets are merged with the primary set, α(⟨e, i, j′⟩) ≠ α(⟨e, i, j′′⟩) implies that j′′ is never cancelled. So the
attack gets stuck in some cycle j and either j < j′′ or j′ < j = j′′. In the former case, by (S1), α(⟨e, i, j′′⟩) will be in its initial
state forever and its base element will not enter any other set in section (e, i). So (34) will hold for y′

= b(⟨e, i, j′⟩) and
y′′

= b(⟨e, i, j′′⟩). In the latter case, it follows from (S2) that the base element of the active set α(⟨e, i, j⟩) will never enter
any other set in section (e, i) hence, by j = j′′, y′′

= b(⟨e, i, j⟩) will do. Similarly, by (S3), the critical element b̂j−1(⟨e, i, 0⟩)
of the primary set will be an element of a set in section (e, i) if and only if j′ < j. So y′

= b̂j−1(⟨e, i, 0⟩) will satisfy (34).
The above observations show that the Ne strategy is compatible with the P strategy and Rk strategies. So, in particular,

requirement P is met and Claims 1–5 above are true.
To explain why the Ne strategy succeeds in meeting requirement Ne we first show that – assuming that no cycle gets

stuck in step 1 or step 4 and that section (e, i) is never cancelled – the sequence (σ n
e,i) built by the above described attack

has property (27) (if finite) or (28) (if infinite), hence witnesses thatMe fails to TxtEx-learn A.
First assume that the attack gets stuck in a cycle j. Then the sequence (σ n

e,i) is finite and j∗ = j − 1. Moreover, by
assumption, the attack gets stuck in step 3 of cycle j, i.e., wewait forever for a stage s′′j ≥ 2s′j+2 such that (31) or (32) holds. So

∀ n ≥ 1 [Me(σ
j−1
e,i b̂j−1(⟨e, i, 0⟩)n) = Me(σ

j−1
e,i b(⟨e, i, j⟩)n) = Me(σ

j−1
e,i)]. (35)

and, by (S2) and (S3),

α(⟨e, i, 0⟩) = α
2s′j+2

(⟨e, i, 0⟩) = content(σ j−1
e,i) ∪̇ {b̂j−1(⟨e, i, 0⟩)}

and

α(⟨e, i, j⟩) = α
2s′j+2

(⟨e, i, j⟩) = content(σ j−1
e,i) ∪̇ {b(⟨e, i, j⟩)}

where b̂j−1(⟨e, i, 0⟩) ≠ b(⟨e, i, j⟩).
So α(⟨e, i, 0⟩) ≠ α(⟨e, i, j⟩), σ

j−1
e,i b̂j−1(⟨e, i, 0⟩)ω is a text for α(⟨e, i, 0⟩), and σ

j−1
e,i b(⟨e, i, j⟩)ω is a text for α(⟨e, i, j⟩).

Finally, by (35), the learner Me learns from both texts the index Me(σ
j∗
e,i). So Me fails to TxtEx-learn α(⟨e, i, 0⟩) or α(⟨e, i, j⟩).

It follows with j∗ = j − 1 that (27) holds.
Now assume that the attack gets never stuck, i.e., that all cycles are completed. Then the sequence (σ n

e,i) is infinite. More-
over, given j, by completion of step 3 of cycle j, (31) or (32) holds, and in step 5 of cycle j the extension σ

j
e,i of σ

j−1
e,i is chosen

so such that

Me(σ
j
e,i) ≠ Me(σ

j−1
e,i).

Since, by (S2) and (S4),

α2sj(⟨e, i, 0⟩) ⊆ content(σ j
e,i) ⊆ α2sj+1(⟨e, i, 0⟩),

it follows that σe,i = limj→∞ σ
j
e,i is a text for α(⟨e, i, 0⟩) and the learnerMe changes its mind on the text σe,i infinitely often.

So (28) holds.
By the above, in order to meet requirement Ne, it suffices to ensure that there will be an attack which does not get stuck

in step 1 or step 4 of any cycle and which is not cancelled. This is achieved by starting attacks on Ne as follows.

1. At stage 2e + 2 an attack on section (e, 0) is started.
2. If at stage s there is an attack on a section (e, i) which is in a cycle j and s ∈ {2sj + 2, 2s′j + 2, 2s′′j + 2, 2s′′′j + 2} then fix

i minimal with this property.
Say that (the attack on) section (e, i) acts at stage s. Cancel all attacks on sections (e, i′) with i′ > i, i.e., cancel all

sections (e, i′) with i′ > i at stage s which were active at stage s − 2. Moreover, if s = 2sj + 2 or s = 2s′′j + 2 (i.e., the
attack has reached step 1 or step 4 of cycle j and begins to wait for a stage at which section (e, i) is not frozen) then start
a new attack on section (e, i′) at stage s where i′ is chosen minimal such that (e, i′) is unused at stage s − 2.

To show that this suffices to get a valid attack, for a contradiction assume that there is no attack on any e-section (e, i)
such that the attack does not get stuck in step 1 or step 4 of any cycle and such that (e, i) is never cancelled. So, if there is
an attack on a section (e, i) which is never cancelled, the attack gets stuck in step 1 or step 4 of some cycle. Obviously this
implies that section (e, i) is permanently frozen. Since, by Claim 5, there are only finitelymany i ≥ 0 such that section (e, i) is
permanently frozen,we get the desired contradiction by showing that, for any i ≥ 0, there is a number i′ ≥ i such that section
(e, i′) becomes active and is never cancelled. The proof is by induction. Fix i. If i = 0 then i′ = 0 has the required properties
since section (e, 0) becomes active but cannot become cancelled. If i > 0, by inductive hypothesis choose i′′ ≥ i−1 such that
section (e, i′′) has the required properties. If i′′ ≥ iwe are done. So assume i′′ = i − 1. Since the attack on (e, i − 1) is never
cancelled it gets stuck at some stage s at the beginning of step 1 or step 4 of some cycle. So a new attack is started on a section

K. Ambos-Spies et al. / Theoretical Computer Science 412 (2011) 1652–1668 1663

(e, i′) where i′ ≥ i is minimal such that (e, i′) is unused at stage s − 2 and all sections (e, i′′′) with i < i′′′ < i′ are cancelled
at stage s. By the latter, since (e, i) will not act after stage s and since (e, i) is never cancelled, (e, i′) will never be cancelled.

This completes the construction of the sets α(n) and the proof that the nonlearning requirements Ne are met. By our
previous discussion of the requirements P and Rk, it only remains to show that, for a reduction requirement Rk such that
k is correct, we can effectively replace the temporary values gk(x) = ⊥ assigned to the reduction function gk in such a way
such that (14) holds.

So, for the remainder of the proof, fix k such that k is correct, i.e., (13) holds. Now, if g s
k(x) = ⊥ then we have

computed a target section (ek,x, ik,x) for gk(x) by stage s such that ex < k and γk(x) is a set in section (ek,x, ik,x), i.e.,
γk(x) = α(⟨ek,x, ik,x, jk,x⟩) for some jk,x. So, given e < k, it suffices to define a partial computable function je such that

∀ x [ek,x = e ⇒ je(x) ↓ & γk(x) = α(⟨e, ik,x, je(x)⟩)]. (36)

For defining such a function je, we have to analyse the possible outcomes of the strategy for meeting nonlearning re-
quirement Ne.

Note that any e-section (e, i) is either permanently unused or permanently active, i.e., active from some stage on, or even-
tually cancelled. Moreover, if permanently active, then (e, i) is either finitary, namely the corresponding attack gets stuck in
some cycle, or infinitary, namely the corresponding attack runs through all cycles.

Now, as observed above, there is a least number i such that section (e, i) is permanently active and, if finitary, the
corresponding strategy gets stuck in step 3 (not in step 2 or step 4) of the final cycle. Now, if section (e, i) is infinitary, then it
acts infinitely often and all sections (e, i′) with i < i′ are eventually cancelled. On the other hand, if section (e, i) is finitary,
then, at the last stage s at which (e, i) acts, all previously active sections (e, i′) with i < i′ are cancelled at stage s. Moreover,
since (e, i) does not get stuck in step 1 or step 4, no new e-section becomes active at stage s hence at the end of stage s all
sections (e, i′) with i < i′ are cancelled or unused. Moreover the status of such a section (e, i′) cannot change later since, at
the first change, some section (e, i′′)with i′′ < i had to act and section (e, i) became cancelled contrary to assumption. Since
by stage s only finitely many e-sections can become cancelled, it follows that almost all e-sections are permanently unused.

So, in any case, either almost all e-sections are cancelled or almost all e-sections are unused. This leaves the analysis of the
structure of a permanently active section (e, i). If (e, i) is infinitary then all sets α(⟨e, i, j⟩), j ≥ 1, are eventually cancelled,
hence merged with the primary set. If (e, i) is finitary and j is the final cycle then the active set α(⟨e, i, j⟩) and any unused
set α(⟨e, i, j′⟩), j′ > j, can be positively distinguished from the other sets in section (e, i) by its base element. The cancelled
sets α(⟨e, i, j′⟩), j′ < j, are merged with the primary set, and α(⟨e, i, 0⟩) can be positively distinguished by its final critical
element b̂j−1(⟨e, i, 0⟩) from the uncancelled sets.

By the above analysis, the information on the final status of the e-sections (including the number j of the final cycle of a
permanently active finitary section (e, i)) is finitely presentable, and, given this information, the partial function je can be
defined as follows.

Fix x. By simulating the construction find the stage s (if any) at which the target (ek,x, ik,x) of gk(x) becomes defined. If
ek,x ≠ e there is no need to define je(x). So assume ek,x = e and let i = ik,x. Distinguish the following cases depending on i.
If (e, i) is permanently unused then let je(x) be the first number j such that b(⟨e, i, j⟩) shows up in γk(x). (Since in an unused
section all sets consist of their base element only, γk(x) = α(⟨e, i, je(x)⟩).) If (e, i) is permanently active and infinitary or
if (e, i) is eventually cancelled then let je(x) = 0. (Since all sets in such a section (e, i) are merged, γk(x) = α(⟨e, i, 0⟩).)
Finally, if (e, i) is permanently active and finitary and the attack on section (e, i) gets stuck in cycle j then enumerate γk(x)
until either the critical element b̂j−1(⟨e, i, 0⟩) or a base element b(⟨e, i, j′⟩) with j′ ≥ j shows up in γk(x), and let je(x) = 0
or je(x) = j′, respectively. (Again, by our analysis above, γk(x) = α(⟨e, i, je(x)⟩).)

This completes the proof of Theorem 4.1. �

5. A TxtBC-learnable class with nonequivalent numberings

Theorem 5.1. There is a computable family A of c.e. sets which is TxtBC-learnable and which possesses computable numberings
α and β which are not 0′-equivalent.

Proof. Let A = {K ∪ Dn : n ≥ 0} where K is the (diagonal) halting problem and Dn is the finite set with canonical index n.
Then, obviously, A is TxtBC-learnable: A learnerM is obtained by lettingM(σ) be an index of K ∪ content(σ).

So it suffices to give computable numberings α and β of A such that β ≰0′ α.
Let α be the obvious numbering of A given by

α(n) = K ∪ Dn.

For the definition of the numbering β , fix aΠ0
2 -complete set C . β will code information on C in such away that the existence

of a 0′-reduction of β to α could be turned into a Turing reduction of C to the halting problem (thereby contradicting the
Π0

2 -completeness of C).
Since C ∈ Π0

2 there is a computable set R such that, for n ≥ 0,

n ∈ C ⇔ ∃
∞x (⟨n, x⟩ ∈ R).

1664 K. Ambos-Spies et al. / Theoretical Computer Science 412 (2011) 1652–1668

Define V⟨n,k⟩ by

V⟨n,k⟩ =

N if ∃≥kx (⟨n, x⟩ ∈ R)
∅ otherwise.

Note that the sets V⟨n,k⟩, n, k ≥ 0, are uniformly c.e. So there is a computable function f such that

Wf (⟨n,k⟩) = V⟨n,k⟩. (37)

Moreover, by choice of R and by definition of V⟨n,k⟩,

n ∈ C ⇒ ∀ k ≥ 0 (V⟨n,k⟩ = N) (38)

and

n ∉ C ⇒ ∃ kn ≥ 0 [∀ k < kn (V⟨n,k⟩ = N) & ∀ k ≥ kn (V⟨n,k⟩ = ∅)]. (39)

Now define β by letting

β(2n) = K ∪ {f (⟨n, 0⟩)} ∪ {f (⟨n, k + 1⟩) : k ≥ 0 & V⟨n,k⟩ ≠ ∅} (40)

and

β(2n + 1) = α(n). (41)

Obviously, β is a computable numbering. Moreover, β codes C as follows.

n ∈ C ⇒ β(2n) = K (42)

and

n ∉ C ⇒ ∃ xn ∉ K (β(2n) = K ∪ {xn}). (43)

(For a proof of (42) fix n ∈ C . By (37) and (38), Wf (⟨n,k⟩) = V⟨n,k⟩ = N for all k ≥ 0. So, in particular, f (⟨n, k⟩) ∈ Wf (⟨n,k⟩),
i.e., f (⟨n, k⟩) ∈ K for all k ≥ 0. Hence β(2n) = K by (40). For a proof of (43) fix n ∉ C and fix kn as in (39). Then, by (39)
and (40), β(2n) = K ∪ {f (⟨n, k⟩) : k ≤ kn}. Moreover, as above, f (⟨n, k⟩) ∈ K for k < kn whereas f (⟨n, kn⟩) ∉ K since
Wf (⟨n,kn⟩) = V⟨n,kn⟩ = ∅. So β(2n) = K ∪ {xn} for xn = f (⟨n, kn⟩) ∉ K .)

Since, by (42) and (43), {β(2n) : n ≥ 0} ⊆ A, it follows with (41) that β is a numbering of A.
It remains to show that β ≰0′ α. For a contradiction assume that β ≤0′ α via g , i.e., β(n) = α(g(n))where g ≤T K . Then,

by (42) and (43) and by definition of α,

n ∈ C ⇔ β(2n) ⊆ K ⇔ α(g(2n)) ⊆ K ⇔ Dg(2n) ⊆ K .

Since g ≤T K , and since, for given m, Dm ⊆ K can be decided relative to K , it follows that C ≤T K . But this contradicts our
assumption that C is Π0

2 -complete.
This completes the proof. �

6. A non-TxtBC-learnable class with only 0′-equivalent numberings

In the proof of Theorem 4.1 we used the fact [15] that any positive numbering is minimal under reduction by computable
functions. The same is true for reduction by 0′-computable functions.

Proposition 6.1. Let α and β be computable numberings of a computable family A of c.e. sets such that α is positive and β is
0′-reducible to α. Then α and β are 0′-equivalent.

Proof. Fix a function f ≤T K such that β ≤0′ α via f , i.e., β(n) = α(f (n)) for all numbers n. Since α and β are numberings
of A, the function g defined by

g(m) = µn(α(f (n)) = α(m))

is total and, for any numberm, α(m) = β(g(m)). Moreover, since α is positive, the relation

R(n,m) ⇔ α(n) = α(m)

is computably enumerable hence R ≤T K . Since g is computable relative to f and R, it follows that g ≤T K too. So α ≤0′ β
via g . �

Theorem 6.1. There exists a computable familyA of c.e. sets such that all computable numberings ofA are pairwise 0′-equivalent
and A is not TxtBC-learnable.

K. Ambos-Spies et al. / Theoretical Computer Science 412 (2011) 1652–1668 1665

Proof. Since the proof resembles the proof of Theorem 4.1 and uses many of the features of this previous proof, we only
give a sketch. In particular, we adopt the terminology of the proof of Theorem 4.1.

We construct a computable numbering α such that the familyA = {α(x) | x ∈ N} of c.e. sets has the required properties.
It suffices to meet the following requirements.

Requirements. Let M0, M1, . . . be a computable sequence of all primitive recursive learners, and let γ0, γ1, . . . be a
uniformly computable sequence of all computable numberings of computable families of c.e. sets. Then the numbering
α has to meet the following requirements for all k, e ∈ N:

P : α is a computable positive numbering.
Rk : If γk is a numbering of A then γk is 0′-reducible to α.
Ne : For somem, Me fails to TxtBC-learn the set α(m).

By Proposition 6.1, the global requirement P together with the reduction requirements Rk ensure that all computable
numberings of A are pairwise 0′-equivalent. By Proposition 2.1, the nonlearning requirements Ne guarantee that A is not
TxtBC-learnable.

Strategies for meeting P and Rk. The strategies for meeting the global requirement P and the reduction requirements Rk
are directly adopted from the proof of Theorem 4.1.

In order to meet P we satisfy the conditions (11) and (12) thereby ensuring that two sets α(m) and α(n) agree in the
limit if and only if they agree at some stage of the effective construction given below.

FormeetingRk weuse themachinery introduced in the proof of Theorem4.1 formeeting the corresponding requirement.
Recall that there, assuming that k is correct, we constructed the required computable reduction function gk satisfying (14) in
two steps. In the course of the construction, we specified the value of gk(x) only if γk(x) was a member of a section reserved
for a lower priority nonlearning requirement. If γk(x) was a member of a section reserved for a higher priority nonlearning
requirement then, in the course of the construction, we assigned the temporary value ⊥ to gk(x), and only after completion
of the construction, using some finite (but nonuniform) information on the outcomes of the finitely many higher priority
nonlearning requirements we replaced ⊥ by the correct value.

Now here the first part of the definition of gk is exactly as in the previous proof, i.e., we will ensure that the enumeration
of numbers into the sets α(n) by the nonlearning requirements will follow the rules established in the proof of Theorem 4.1
and we will inductively define gk as described there. So Claims 1–5 established there will hold here too. In particular, the
part of gk defined in the course of the construction will be computable and – assuming that k is correct – the final values
assigned to gk(x) in the course of the constructionwill be correct. The reason, why here the function gk will be computable in
the halting problem only, is found in the second part of the definition. If, for a number x, only a temporary value gk(x) = ⊥

will be assigned in the course of the construction and the actual value of gk(x) will be determined only after completion of
the construction then the specification of this value will require some information on the outcomes of the higher priority
nonlearning requirements. For some numbers x this information can be only obtained by using the halting problem as an
oracle.

Strategy for meeting Ne. It will be convenient to split the numbers a(n) = 2n + 1 into the numbers c(n) = 4n + 1 and
d(n) = 4n + 3, called coding numbers and diagonalization numbers, respectively. (The nth coding number c(n) essentially
plays the same role as number a(n) in the previous proof.)

Given the ith e-section (e, i), in the ith attempt for meeting Ne we build a (finite or infinite) sequence of strings over N,
namely

σ 0
e,i @ σ 1

e,i @ · · · @ σ
j∗
e,i

(j∗ ≥ 0) or

σ 0
e,i @ σ 1

e,i @ σ 2
e,i @ · · ·

such that content(σ j
e,i) ⊆ α(⟨e, i, 0⟩) and such that – if the ith attempt is the successful one – either there is a sequence of

diagonalization numbers d̂1 < d̂2 < · · · such that, for τm = σ
j∗
e,i b(⟨e, i, j

∗
+ 1⟩) d̂1 . . . d̂m (m ≥ 0),

m≥0

content(τm) = α(⟨e, i, j∗ + 1⟩) & ∀m ≥ 0 [WMe(τm) ≠ α(⟨e, i, j∗ + 1⟩)] (44)

or
j≥0

content(σ j
e,i) = α(⟨e, i, 0⟩) & ∀ j ≥ 0 ∃ σ [σ

j
e,i @ σ @ σ

j+1
e,i & WMe(σ) ≠ α(⟨e, i, 0⟩)]. (45)

So eitherMe does not TxtBC-learn the set α(⟨e, i, j∗ +1⟩) from the text for α(⟨e, i, j∗ +1⟩) defined by the sequence τm,m ≥ 0,
orMe does not TxtBC-learn the set α(⟨e, i, 0⟩) from the text for α(⟨e, i, 0⟩) defined by the sequence σ

j
e,i, j ≥ 1.

The above is achieved by induction on j ≥ 1, where string σ
j
e,i is defined at the end of cycle j below (σ 0

e,i is the empty
string).

1666 K. Ambos-Spies et al. / Theoretical Computer Science 412 (2011) 1652–1668

When cycle 1 is started at stage 2s1 then s1 > 0, section (e, i) was unused at stage 2s1 − 1, and section (e, i) becomes
active at stage 2s1. Cycle j will affect the primary set α(⟨e, i, 0⟩) and the (currently) active set α(⟨e, i, j⟩). If cycle j is started
at stage 2sj, then – as in the previous construction – the active set and the unused sets α(⟨e, i, j′⟩), j′ > j, are still in their
initial states. Moreover, there will be a critical element of the primary set, b̂j−1(⟨e, i, 0⟩), such that, at stage 2sj, the primary
set is the disjoint union of content(σ j−1

e,i) and {b̂j−1(⟨e, i, 0⟩)} (i.e., (29) holds), and b̂j−1(⟨e, i, 0⟩) is not a member of any other
uncancelled set in section (e, i). For j = 1, b̂j−1(⟨e, i, 0⟩) = b(⟨e, i, 0⟩)while, for j > 1, b̂j−1(⟨e, i, 0⟩) = c(j−1) and c(j−1) is
enumerated into the primary set at the end of cycle j−1. If cycle j is completed, the active set is cancelled and some (proper)
part of the active set is enumerated into the primary set. All cancelled sets are made to agree but, in contrast to the previous
proof, the cancelled sets will not agree with the primary set.

Now cycle j (started at stage 2sj) is as follows.
Cycle j (j ≥ 1).

1. Wait for the least s′j > sj such that section (e, i) is not frozen at stage 2s′j + 2.
2. At stage 2s′j + 2 enumerate the elements of the primary set with the exception of the critical element into the active set:

α
2s′j+2

(⟨e, i, j⟩) = α
2s′j (⟨e, i, j⟩) ∪ [α

2s′j (⟨e, i, 0⟩) \ {b̂j−1(⟨e, i, 0⟩)}]

= α
2s′j (⟨e, i, j⟩) ∪ content(σ j−1

e,i). (46)

Let τ0 = σ
j−1
e,i b(⟨e, i, j⟩), and start the following subcycle (j, 1), i.e., let sj,1 = s′j + 1.

Subcycle (j,m) (m ≥ 1).
(a) Wait for the least s′j,m > sj,m such that section (e, i) is not frozen at stage 2s′j,m + 2.
(b) At stage 2s′j,m + 2 enumerate the least diagonalization number which has not previously entered any set in section

(e, i), say d̂m, into α(⟨e, i, j⟩). Set
τm = τm−1d̂m,

and, for n < m, enumerate WMe(τn) for up to m steps. If, for some such n, a number d̂p with n < p ≤ m shows up in
WMe(τn) then let nm be the least such n, stop the subcycle at stepm, let s′′j = s′j,m + 1, and continue with step 3 of cycle
j. Otherwise, start subcycle (j,m + 1) at the next even stage, i.e., let sj,m+1 = s′j,m + 1.

3. Wait for the least s′′′j > s′′j such that section (e, i) is not frozen at stage 2s′′′j + 2.
4. At stage 2s′′′j + 2, for m and nm as above, enumerate content(τnm) ∪ {c(j)} into α(⟨e, i, 0⟩), let b̂j(⟨e, i, 0⟩) = c(j), and let

σ
j
e,i = τnm b̂j−1(⟨e, i, 0⟩). Declare the active set α(⟨e, i, j⟩) cancelled, merge it with all previously cancelled sets,

∀ j′

1 ≤ j′ ≤ j ⇒ α

2s′′′j +2
(⟨e, i, j′⟩) =

1≤j′′≤j

α
2s′′′j (⟨e, i, j′′⟩)

, (47)

and start cycle j + 1 with the new active set α(⟨e, i, j + 1⟩) at the next even stage, i.e., let 2sj+1 = 2s′′′j + 4.

Note that in step 1 of cycle j, where a part of the primary set is enumerated into the active set, the current critical number
does not enter the active set. Similarly, when a part of the active set is enumerated into the primary set at step 4 of the
attack then there is a diagonalization number d̂p, nm < p ≤ m which has entered the active set in subcycle (j, p) of step 2
and which will never enter the primary set. This easily implies that condition (17) in the proof of Theorem 4.1 is satisfied.
Since, moreover, we only enumerate new numbers in the sets in section (e, i) at even stages at which (e, i) is not frozen,
one can easily show that the above action obeys the rules made by the reduction strategies. So Claims 1–5 in the proof of
Theorem 4.1 hold here too.

Moreover, if – whenever we start to wait for an unfrozen stage (in step 1 or 3 of cycle j or step (a) of subcycle (j,m)) –
we start a new attack on a new unused section (e, i′), i′ > i; and if – whenever we make some progress in our attack – we
cancel all e-sections (e, i′) with i′ > i on which we had started an attack before, then as in the proof of Theorem 4.1 we can
argue that there will be a permanently active section (e, i) such that the attack on this section never gets stuck in a step
waiting for (e, i) not to be frozen.

In order to show that the above strategy succeeds, fix such a section (e, i). Note that there are two possible outcomes of
the attack on this section. First we may get stuck in step 2 of some cycle j since we run through all subcycles (j,m), m ≥ 1.
Then we build an infinite sequence τ0 @ τ1 @ τ2 . . . where

content(τ0) ⊂ content(τ1) ⊂ content(τ2) ⊂ · · ·

and
m≥0

content(τm) = α(⟨e, i, j⟩).

Moreover, for any n ≥ 0,

WMe(τn) ∩ (α(⟨e, i, j⟩) \ content(τn)) = ∅

K. Ambos-Spies et al. / Theoretical Computer Science 412 (2011) 1652–1668 1667

(since otherwise for sufficiently largem ≥ n the subcycle will be left). So
WMe(τn) ≠ α(⟨e, i, j⟩)

for all n hence Me will fail to learn α(⟨e, i, j⟩) (according to (44) for j∗ = j − 1).
Otherwise we run through all cycles j. Since we do not get stuck in step 2 of cycle j, form and nm as given there,

σ
j−1
e,i @ τnm @ σ

j
e,i

and WMe(τnm) contains one of the diagonalization numbers d̂p with nm < p ≤ m. Note that all such numbers are not in
content(σ j

e,i) and will never enter α(⟨e, i, 0⟩). Hence WMe(τnm) ≠ α(⟨e, i, 0⟩). Moreover,

content(σ j−1
e,i) ⊆ α2sj(⟨e, i, 0⟩) ⊆ content(σ j

e,i)

hence
α(⟨e, i, 0⟩) =

j≥0

content(σ j
e,i).

Hence, if we complete all cycles j, the construction will ensure that (45) holds.
So in either case the strategy succeeds in meeting Ne.
In order to complete the proof, given k such that k is correct, we have to give a 0′-effective procedure for replacing

temporary values gk(x) = ⊥ in the definition of the reduction gk in such a way such that (14) holds. In fact, given e < k, it
suffices to define a partial 0′-computable function je such that (36) holds.

The definition of je is based on the following analysis of the final effect which the strategy for meeting the nonlearning
requirement Ne has on the e-sections.

As observed above, we may fix i0 minimal such that the attack on section (e, i0) is permanently active and never gets
stuck in a stepwaiting for a stage at which section (e, i0) is unfrozen. It follows that section (e, i0) acts infinitely often hence,
for i > i0 section (e, i)will eventually be cancelled and all sets in section (e, i) are identified. So, in particular, no e-section is
permanently unused and all but finitely many e-sections are trivialized by cancellation. It remains to analyze permanently
active e-sections (e, i).

First assume that (e, i) is permanently active and finitary, i.e., the attack on section (e, i) gets stuck in some cycle j (either
by waiting forever for a stage at which (e, i) is unfrozen or by running through all subcycles (j,m), m ≥ 1). Then the sets
α(⟨e, i, 1⟩), . . . , α(⟨e, i, j−1⟩) are cancelled, hence agree, and these are the only sets in section (e, i)which agree. Moreover,
from jwe can compute numbers yj′ , j′ ≥ 0, such that yj′ positively distinguishes α(⟨e, i, j′⟩) from the other sets in the section
(which do not agree with α(⟨e, i, j′⟩)). Namely, the final critical element b̂j−1(⟨e, i, 0⟩) of the primary set is unique to this
set, i.e., for y0 = b̂j−1(⟨e, i, 0⟩), y0 ∈ α(⟨e, i, j′′⟩) if and only if j′′ = 0. The greatest diagonalization number d̂ which enters
α(⟨e, i, j− 1⟩) in cycle j− 1 is an element of the cancelled sets but of none of the other sets. So if we let yj′ = d̂ for 1 ≤ j′ < j
then yj′ ∈ α(⟨e, i, j′′⟩) if and only if α(⟨e, i, j′⟩) is cancelled, i.e., if and only if 1 ≤ j′′ < j. Finally, for j′ ≥ j, the base element
b(⟨e, i, j′⟩) of α(⟨e, i, j′⟩) is unique to this set. So if we let yj′ = b(⟨e, i, j′⟩) for j′ ≥ j then yj′ ∈ α(⟨e, i, j′′⟩) if and only if j′′ = j′.

Now assume that (e, i) is permanently active and infinitary, i.e., all cycles j are completed. Then all sets α(⟨e, i, j⟩), j ≥ 1
are eventually cancelled, hence agree; i.e.,

∀ j ≥ 1 [α(⟨e, i, j⟩) = α(⟨e, i, 1⟩)]. (48)
Moreover, the primary set α(⟨e, i, 0⟩) is a proper subset of α(⟨e, i, 1⟩). Namely, for any j ≥ 1,

α2sj(⟨e, i, 0⟩) ⊆ α
2s′j+1+2

(⟨e, i, j + 1⟩)
hence, by (48), α(⟨e, i, 0⟩) ⊆ α(⟨e, i, 1⟩). This inclusion is proper since, for instance, the greatest diagonalization number
d̂ which enters α(⟨e, i, 1⟩) in cycle 1 never enters α(⟨e, i, 0⟩). So here – assuming that we know that (e, i) is permanently
active and all cycles j are completed – we can find a number y which positively distinguishes the merged sets α(⟨e, i, j⟩),
j ≥ 1, from the primary set α(⟨e, i, 0⟩), but the primary set cannot be positively distinguished from the other sets in the
section.

Now given the finite list of the indices i such that (e, i) is permanently active together with the information whether or
not (e, i) is finitary or not, and if so the number j of the final cycle, we can define je as follows.

Given x, wait that the target section (ek,x, ik,x) for gk(x) is defined. By construction,
∃ j ≥ 0 [γk(x) = α(⟨ek,x, ik,x, j⟩)]. (49)

If ek,x ≠ e then je(x)may be undefined. So assume ek,x = e and let i = ik,x. Now if (e, i) is not permanently active then section
(e, i) is cancelled and all sets in section (e, i) agree. So, by (49), γk(x) = α(⟨e, i, 0⟩) and we may let je(x) = 0. Otherwise,
first assume that (e, i) is finitary. Then we can compute numbers yj′ as above and enumerate γk(x) up to the first stage at
which such a number yj′ shows up in γk(x). Then γk(x) = α(⟨e, i, j′⟩) and we may let je(x) = j′. Finally, if (e, i) is infinitary
thenwe can compute the greatest diagonalization number d̂which has entered α(⟨e, i, 1⟩) in cycle 1. Now, using the halting
problem as an oracle, we may decide whether d̂ ∈ γk(x). (Note that this is the only place where in the definition of gk oracle
0′ is used!) If so, we let je(x) = 1; if not, we let je(x) = 0.

This completes the sketch of the proof of Theorem 6.1. �

1668 K. Ambos-Spies et al. / Theoretical Computer Science 412 (2011) 1652–1668

Frank Stephan has pointed out to us an alternative proof of Theorem 6.1 by giving an explicit example of a computable
family A of c.e. sets such that all computable numberings of A are pairwise 0′-equivalent and A is not TxtBC-learnable.
Still we think that our proof describing the construction of a family A with this property might be of interest for looking at
possible strengthenings of Theorem 6.1 (see Open Problem 2 below).

7. Conclusion

The starting point of our research was the conjecture of Frank Stephan: a computable family of c.e. sets is TxtEx-
learnable if and only if its computable numberings are pairwise 0′-equivalent. We refuted this conjecture in one direction
by constructing a computable family A of c.e. sets such that all computable numberings of A are computably equivalent
and A is not TxtEx-learnable.

Open Problem 1. Is there a learning scenario S such that, for every computable familyA of c.e. sets,A is S-learnable iff and
only if all computable numberings of A are computably equivalent?

We have also shown that, for a computable family A of c.e. sets, the TxtBC-learnability and 0′-equivalence of its
computable numberings are independent. We do not know whether Theorem 6.1 can be improved like the statement of
Theorem 4.1.

Open Problem 2. Is there a computable family A of c.e. sets such that all computable numberings of A are computably
equivalent and A is not TxtBC-learnable?

Acknowledgements

The second author’s research was partially supported by the State Grants of Kazakhstan ‘‘Best Teacher of Higher
Education" for 2006 and 2007. The third author was partially supported by the Grant RFBR-08-01-00336 and the Grant
for Leading Scientific Schools SS-4413 for 2006.

We are grateful to Frank Stephan and John Case for useful discussions.

References

[1] K. Ambos-Spies, S.A. Badaev, S.S Goncharov, On a question of Frank Stephan, in: Proceedings of 5th International Conference, TAMC 2008, Xi’an, China,
April 2008, in: Lecture Notes of Computer Science, vol. 4978, Springer-Verlag, 2008, pp. 423–432.

[2] S.A. Badaev, S.S. Goncharov, The theory of numberings: open problems, in: P.A. Cholak, S. Lempp, M. Lerman, R.A. Shore (Eds.), Computability Theory
and its Applications. Current Trends and Open Problems, in: Contemporary Mathematics, vol. 257, Amer. Math. Soc., Providence, 2000, pp. 23–38.

[3] S.A. Badaev, S.S. Goncharov, S.Yu. Podzorov, A. Sorbi, Algebraic properties of Rogers semilattices of arithmetical numberings, in: S.B. Cooper,
S.S. Goncharov (Eds.), Computability and Models, Kluwer/Plenum Publishers, New York, 2003, pp. 45–77.

[4] L. Blum, M. Blum, Toward a mathematical theory of inductive inference, Information and Control 28 (1975) 125–155.
[5] Yu.L. Ershov, Theory of Numberings, Nauka, Moscow, 1977.
[6] Yu.L. Ershov, Theory of numberings, in: Handbook of Computability Theory, North-Holland, Amsterdam, 1999, pp. 473–503.
[7] M. Fulk, 1985. A Study of Inductive Inference Machines. Ph.D. Thesis, SUNY/Buffalo.
[8] E.M. Gold, Language identification in the limit, Information and Control 10 (1967) 447–474.
[9] S.S. Goncharov, Autostability of models and Abelian groups, Algebra and Logic 19 (1) (1980) 13–27.

[10] S.S. Goncharov, S.A. Badaev, Families with one-element Rogers semilattice, Algebra and Logic 37 (1) (1980) 21–34.
[11] S. Jain, A. Sharma, Characterizing language identification by standardizing operations, Journal of Computer and System Sciences 49 (1) (1994) 96–107.
[12] S. Jain, A. Sharma, Characterizing language identification in terms of computable numberings, Annals of Pure and Applied Logic 84 (1) (1997) 51–72.
[13] S. Jain, D. Osherson, J.S. Royer, A. Sharma, Systems that Learn. An Introduction to Learning Theory, 2nd edn., MIT Press, Cambridge Massachusetts,

1999.
[14] M. Kummer, A learning-theoretic characterization of discrete families of recursive functions, Information Processing Letters 54 (1995) 205–211.
[15] A.I. Mal’cev, Positive and negative numberings, Soviet Math. Dokl. 160 (1965) 75–77.
[16] P.G. Odifreddi, Classical recursion theory. Vol. II, in: Studies in Logic and the Foundations of Mathematics, vol. 143, North-Holland, Amsterdam, 1999.
[17] G. Schäfer-Richter, 1984. Über Eingabeabhängigkeit und Komplexität von Inferenzstrategien. Ph.D. Thesis, RWTH Aachen.

	Inductive inference and computable numberings
	Introduction
	Preliminaries
	Computable numberings of computable TxtEX-learnable families
	A non-TxtEx-learnable class with only equivalent numberings
	A TxtBC-learnable class with nonequivalent numberings
	A non-TxtBC-learnable class with only 0'-equivalent numberings
	Conclusion
	Acknowledgements
	References

