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SUMMARY

Intact interleukin-10 receptor (IL-10R) signaling on
effector and T regulatory (Treg) cells are each inde-
pendently required to maintain immune tolerance.
Here we show that IL-10 sensing by innate immune
cells, independent of its effects on T cells, was crit-
ical for regulating mucosal homeostasis. Following
wild-type (WT) CD4+ T cell transfer, Rag2�/�Il10rb�/�

mice developed severe colitis in association with
profound defects in generation and function of Treg
cells. Moreover, loss of IL-10R signaling impaired
the generation and function of anti-inflammatory
intestinal and bone-marrow-derived macrophages
and their ability to secrete IL-10. Importantly, transfer
of WT but not Il10rb

�/�
anti-inflammatory macro-

phages ameliorated colitis induction by WT CD4+
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T cells in Rag2�/�Il10rb�/� mice. Similar alterations
in the generation and function of anti-inflammatory
macrophages were observed in IL-10R-deficient pa-
tients with very early onset inflammatory bowel dis-
ease. Collectively, our studies define innate immune
IL-10R signaling as a key factor regulating mucosal
immune homeostasis in mice and humans.

INTRODUCTION

Interleukin-10 (IL-10) is a key immunosuppressive cytokine that

is produced by a wide range of leukocytes, as well as nonhema-

topoietic cells (Shouval et al., 2014). Polymorphisms in the IL10

locus confer risk for ulcerative colitis and Crohn’s disease

(Franke et al., 2008; Franke et al., 2010), and mice and humans

deficient in either IL-10 or IL-10 receptor (IL-10R) exhibit severe

intestinal inflammation and marked proinflammatory cytokines
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secretion (Begue et al., 2011; Glocker et al., 2010; Glocker et al.,

2009; Kotlarz et al., 2012; Kühn et al., 1993; Moran et al., 2013;

Spencer et al., 1998). Thus, IL-10 has a central role in regulation

of intestinal mucosal homeostasis and prevention of inflamma-

tory bowel disease (IBD).

IL-10 mediates its anti-inflammatory effects through IL-10R-

dependent signals emanating from the cell surface. The IL-10R

is a heterotetramer that consists of two subunits of IL-10Ra

and two subunits of IL-10Rb (Moore et al., 2001). Whereas the

IL-10Ra subunit is unique to IL-10 signaling, the IL-10Rb subunit

is shared by other cytokine receptors, including IL-22, IL-26, and

interferon-l (IFN-l) (Moore et al., 2001). IL-10 downstream

signaling through the IL-10R inhibits the induction of proinflam-

matory cytokines by blocking NF-kB-dependent signals (Saraiva

and O’Garra, 2010).

Although the development of IBD is well established in mice

and in humans with IL-10R deficiency, the precise mechanisms

of IL-10R-dependent control of immune tolerance and intestinal

mucosal homeostasis are not well defined. In mice, intact IL-10R

signaling is important in T regulatory (Treg) cells for their sup-

pressive function including prevention of colitis, and in T effector

cells for preventing exaggerated T helper 17 (Th17) cell re-

sponses in mucosal compartments (Chaudhry et al., 2011;

Huber et al., 2011; Kamanaka et al., 2011; Murai et al., 2009).

While innate immune cell production of IL-10 is critical for main-

taining mucosal homeostasis (Liu et al., 2011; Murai et al., 2009),

a role for innate immune IL-10R signaling in the regulation of

intestinal immune tolerance has not been explored. Several

groups have demonstrated that IL-10 sensing by innate immune

cells is required for suppression of proinflammatory cytokines

secretion (Gu et al., 2008; Pils et al., 2010). Moreover, IL-10R-

deficient dendritic cells (DCs) secrete high quantities of proin-

flammatory cytokines after LPS stimulation (Girard-Madoux

et al., 2012). We hypothesized that innate immune IL-10R

signaling is required for maintenance of intestinal immune toler-

ance and prevention of IBD.

Here we demonstrate that IL-10R signaling in innate immune

cells was critical for regulatingmucosal homeostasis and preven-

tion of colitis. Loss of IL-10R-dependent signaling rendered

wild-type (WT) CD4+ T cells colitogenic and was associated with

markedly aberrant Treg cells generation and function. Impor-

tantly, we show that IL-10R-dependent signalsmodulated the dif-

ferentiation and function of bone-marrow-derived macrophages

(BMDM) and intestinal macrophages into either proinflammatory

macrophages or functionally competent anti-inflammatory mac-

rophages. Similarly, monocyte-derived macrophages from very

early onset IBD patients harboring loss of function mutations in

IL10RA and IL10RB also exhibited impaired differentiation and

function of pro- and anti-inflammatory macrophages. These re-

sults define a unique and nonredundant role for IL-10R signaling

in innate immune cell control of intestinal mucosal homeostasis.

RESULTS

IL-10 Regulates Intestinal Inflammation Independent of
T Cell-Specific IL-10R Signaling
We have recently reported that aberrant interactions between

innate immune cells devoid of the cytoskeletal regulator Wis-

kott-Aldrich syndrome protein (WASP) and WT CD4+ T cells
lead to colitis development (Nguyen et al., 2012a). In this model,

Was�/�Rag2�/� mice develop severe intestinal inflammation

followingWTCD4+ T cell transfer, characterized by reduced pro-

duction of IL-10; colitis development can be prevented by exog-

enous administration of IL-10Ig. To elucidate whether IL-10 acts

on innate or adaptive immune cells in this model, we transferred

Il10rb�/� CD4+ T cells intoWas�/�Rag2�/� mice, which resulted

in severe colitis in less than 2 weeks. We then assessed the

effects of exogenous IL-10 in preventing disease, and as de-

picted in Figure S1 available online, colitis was readily abrogated

by exogenous IL-10Ig administration, indicating that IL-10 can

prevent intestinal inflammation independent of its function on

either regulatory or effector CD4+ T cells. These data are consis-

tent with aberrant function of IL-10R signaling in innate immune

cells in the setting of WASP-deficiency.

Colitis Development in Il10rb–/– Mice Requires an
Adaptive Immune System
To assess directly the role of IL-10R-dependent signals in innate

immune cells in the control of mucosal homeostasis, we first

analyzed Il10rb�/� mice. Consistent with prior observations

(Spencer et al., 1998), Il10rb�/� mice (on the 129SvEv back-

ground) developed spontaneous colitis starting around 3months

of age, characterized by extensive bowel wall thickening, lamina

propria (LP) lymphoid cell infiltration, and presence of crypt

abscesses, in association with increased IFN-g+- and IL-17A+-

producing CD4+ T cells in the LP and mesenteric lymph node

(MLN) (Figure S2). In order to assess whether lymphocytes are

required for colitis development in Il10rb�/� mice we generated

Rag2�/�Il10rb�/�mice, which lack mature B and T lymphocytes.

Importantly, these mice are viable and do not develop clinical,

endoscopic, or microscopic signs of colitis (data not shown).

These data indicate that lymphocytes are essential for colitis

development in Il10rb�/� mice.

Il10rb–/– Innate Immune Cells Render WT CD4+ T Cells
Colitogenic
We next hypothesized that colitis development in Il10rb�/� mice,

although lymphocyte-dependent, is initiated by defects in the

innate immune compartment. To assess whether Il10rb�/� defi-

cient innate immune cells cause WT CD4+ T cells to become

colitogenic, we introduced unfractionated WT CD4+ T cells by

intraperitoneal (i.p.) injection into Rag2�/� and Rag2�/�Il10rb�/�

recipient mice. Rag2�/�Il10rb�/� mice developed severe colitis

following WT CD4+ T cell transfer within 3–4 weeks (Figures 1A

and 1B). Hematoxylin and eosin (H&E)-stained colonic sections

demonstrated significant hyperplasia and immune cell infiltration

of the LP, as well as occasional crypt abscesses (Figure 1C).

Because IL-10Rb is also expressed on nonhematopoietic cells

(Moore et al., 2001), we assessed whether loss of IL-10Rb

signaling in innate immune cells was sufficient to drive intestinal

inflammation by generating bone-marrow (BM) chimeric animals.

BM cells were isolated from either Rag2�/� or Rag2�/�Il10rb�/�

mice and transferred into lethally irradiated Rag2�/� or

Rag2�/�Il10rb�/� recipient mice, which after reconstitution

received unfractionated WT CD4+ T cells. Upon T cell transfer,

Rag2�/� mice reconstituted with Rag2�/�Il10rb�/� BM devel-

oped colitis within several weeks (Figures 1D and 1E). In contrast,

transfer of WT T cells into Rag2�/�Il10rb�/� mice reconstituted
Immunity 40, 706–719, May 15, 2014 ª2014 Elsevier Inc. 707
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Figure 1. Transfer of WT CD4+ T Cells into Rag2–/–Il10rb–/– Mice Induces Severe Colitis

Rag2�/� and Rag2�/�Il10rb�/� mice were injected i.p. with 1 3 106 WT CD4+ T cells.

(A) Mean % initial body weights ± SEM following transfer (n = 30 for each group).

(B) Representative endoscopic images and scores ± SEM of Rag2�/� and Rag2�/�Il10rb�/� mice at 5 weeks posttransfer.

(C) Representative H&E colonic section images (20X) and histological score ± SEM of Rag2�/� and Rag2�/�Il10rb�/� mice following transfer.

(D and E) BM chimeras were generated by transferring Rag2�/� or Rag2�/�Il10rb�/� BM cells into lethally irradiated Rag2�/� or Rag2�/�Il10rb�/� recipients, and

after 7 weeksWT CD4+ T cells were transferred into thesemice. Mean weights ± SEM following T cells transfer displayed in (D) and images of representative H&E

stained colonic sections (20X) andmean histological colitis scores ± SEM are displayed in (E). Scale bar represents 200 mm. The data are representative of two or

more independent experiments. Figures S1–S3 and S6 accompany.

Immunity

IL-10R Signaling Regulates Macrophage Function
with Rag2�/� BM did not lead to intestinal inflammation. Overall,

these findings demonstrate that Il10rb�/� innate immune cells

transmit a colitogenic signal to WT CD4+ T cells.

Exaggerated Proinflammatory Cytokine Responses in
Rag2–/–Il10rb–/– Mice following WT CD4+ T Cell Transfer
We next assessed the effects of innate immune IL-10R

deficiency on cytokine expression by analyzing Rag2�/� and

Rag2�/�Il10rb�/� mice following WT CD4+ T cell transfer. Prior
708 Immunity 40, 706–719, May 15, 2014 ª2014 Elsevier Inc.
to transfer, inflammatory cytokines were not elevated in the

LP of either Rag2�/� or Rag2�/�Il10rb�/� mice (data not shown).

Following WT CD4+ T cell transfer, the T helper 1 (Th1) cell-asso-

ciated cytokines tumor necrosis factor (TNF), IFN-g, IL-6, IL-12,

and IL-1b, but not IL-17A, were elevated in colonic explants and

tissue extracts from Rag2�/�Il10rb�/� compared to Rag2�/�

recipient mice (Figures S3A and S3B). Comparable frequencies

of IL-17A+ and IFN-g+ CD4+ T cells were detected by flow cytom-

etry in the LP of both Rag2�/� and Rag2�/�Il10rb�/� mice
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following WT T cell transfer; however, the absolute numbers of

CD4+ IFN-g+ T cells were significantly increased in LP of

Rag2�/�Il10rb�/� compared to Rag2�/� mice (Figures S3C and

S3D). Enhanced Th1 cell activity was reported in mice with

a conditional deletion in macrophages and granulocytes of

STAT3, a transcription factor downstream of IL-10 (Takeda

et al., 1999). Overall, our data also suggests that loss of IL-10R

signaling on innate immune cells is associated with exaggerated

proinflammatory cytokine responses.

Loss of Innate Immune IL-10Rb Signaling Impairs the
Function and Generation of WT Treg Cells In Vivo
We next hypothesized that colitis development in

Rag2�/�Il10rb�/� mice following T cell transfer results from IL-

10Rb deficiency in innate immune cells affecting the function of

either effector and/or regulatory T cell populations. Following

transfer of unfractionated WT CD4+ T cells the frequency

of FOXP3+ Treg cells was significantly reduced in the LP and

MLN of Rag2�/�Il10rb�/� mice versus Rag2�/� mice (Figure 2A).

Transfer of WT T naive cells (CD4+CD25�CD45RBhi) elicited

colitis in both Rag2�/� and Rag2�/�Il10rb�/� recipient mice;

however, Rag2�/�Il10rb�/� recipient mice lost significantly

more weight compared with Rag2�/� control group (Figures 2B

and 2C). We then assessed whether cotransfer of WT Treg cells

(CD4+CD25+CD45RBlo) with WT T naive cells at a ratio of 1:1

(standard ratio used in the T cell transfer model is 1:4) was pro-

tective against colitis development in Rag2�/�Il10rb�/� mice.

Despite the marked increase in the fraction of Treg cells, only

Rag2�/� recipient mice, but not Rag2�/�Il10rb�/� recipients,

were protected from colitis development (Figures 2B and 2C),

suggesting that IL-10Rb signaling on innate immune cells

regulates the suppressive function of WT Treg cells. Upon trans-

fer of WT CD4+ T naive cells, the generation of inducible Treg

cells was also severely impaired in the LP and MLN of

Rag2�/�Il10rb�/� recipient mice (Figure 2D).

To facilitate tracking of specific cell populations, additional

transfer experiments were performed utilizing Rag1�/�Il10rb�/�

recipient mice on the C57BL/6 background. Similar to

Rag2�/�Il10rb�/� mice on the 129SvEv background, these

mice rapidly lost weight following transfer of unfractionated WT

CD4+ T cells (Figure S4A and S4B). Moreover, transfer of sorted

CD4+CD45RBhiFOXP3neg cells into Rag1�/�Il10rb�/� mice led

to severe colitis, and, similar to Rag2�/�Il10rb�/� recipient

mice on the 129SvEv background, was accompanied by a

marked reduction in the generation of inducible FOXP3+ Treg

cells in the LP (Figures S4C–S4E). To assess further Treg cell

maintenance, CD4+CD45RBloFOXP3pos T cells were transferred

into either Rag1�/�Il10rb�/� or Rag1�/� mice. Treg cells transfer

did not, as expected, induce colitis in either Rag1�/�Il10rb�/� or

Rag1�/� mice (data not shown); in addition, the frequency

of Treg cells isolated from the LP and MLN was comparable be-

tween both recipient groups (Figure S4F). Collectively, our data

suggest that loss of innate immune IL-10Rb signaling impairs

the generation and function of WT Treg cells in vivo.

IL-10Rb-Dependent Signals Regulate Intestinal
Macrophage Differentiation
We next sought to investigate whether sensing of IL-10 by

intestinal macrophages is important for controlling mucosal
homeostasis. Nomenclature for intestinal macrophage subsets

is evolving rapidly (Bain et al., 2013; Rivollier et al., 2012;

Tamoutounour et al., 2012; Zigmond et al., 2012); for simplicity

we have followed the nomenclature described by Tamoutoun-

our et al., who showed that circulating monocytes migrate into

the LP and undergo a multistep differentiation process that pro-

gresses through four stages of development, including the

proinflammatory P2 stage and the anti-inflammatory P3 and

P4 stages. Throughout this manuscript, we refer to the P3

and P4 LP macrophage subsets in mice as anti-inflammatory

macrophages. To evaluate whether IL-10Rb-dependent signals

regulate this differentiation process we evaluated Il10rb�/� mice

at 5 weeks of age that lacked any clinical (data not shown),

endoscopic, or histologic signs of intestinal inflammation (Fig-

ure 3A). Initial evaluation by flow cytometry of precolitic mice

minimized identifying nonspecific effects that might be attrib-

utable to inflammation alone. LP cell analysis of precolitic

Il10rb�/� mice demonstrated a significant increase in proinflam-

matory macrophages and a concomitant decrease in anti-

inflammatory macrophages (Figures 3B and 3C). Moreover,

expression of Retnla (Fizz1), a classical marker of anti-inflam-

matory macrophages and also identified in CX3CR1hi intestinal

(presumably P4) macrophages (Zigmond et al., 2012), was

decreased in the anti-inflammatory macrophages population

of Il10rb�/� mice compared to WT (Figure 3D). Il10rb�/� anti-in-

flammatory macrophages also expressed less Il10 and Pdcd1l2

(programmed cell death 1 ligand 2, PD-L2) (Figure 3D).

Importantly, similar results, demonstrating a reduction of anti-

inflammatory macrophages, were observed in the LP of colitic

Il10rb�/� mice and Rag2�/�Il10rb�/� mice following T cell trans-

fer (Figure S5). Collectively, these results implicate a critical

role for IL-10Rb signaling in the differentiation of intestinal

macrophages.

Exogenous IL-10 Fails to Prevent Colitis in
Rag2–/–Il10rb–/– following T Cell Transfer
Because Il10rb�/� anti-inflammatory intestinal macrophages

produce less IL-10, we assessed whether reduced IL-10 con-

centrations might be responsible for colitis development in

Rag2�/�Il10rb�/� by treating recipient mice with exogenous IL-

10 following WT CD4+ T cell transfer. Rag2�/�Il10rb�/� mice

that received IL-10Ig treatment exhibited weight loss and signs

of intestinal inflammation, similar to isotype control treated

mice (Figures 3E and 3F), suggesting that IL-10 deficiency is

not solely responsible for the colitis development. Moreover,

as the CD4+ T cells in these experiments express an intact IL-

10R, this indicates that IL-10R signaling on CD4+ T cells is insuf-

ficient to prevent colitis development in this model and suggests

a nonredundant role for innate immune IL-10R signaling in regu-

lating mucosal homeostasis.

Il10rb–/– M1 BMDM Produce High Quantities of
ProinflammatoryCytokines andPromoteProliferation of
WT CD4+ T Cells
We next assessed whether BMDM, like their intestinal counter-

parts, were also dependent on IL-10R signaling for their differ-

entiation and function. Stimulation of BMDM in vitro with LPS

and IFN-g generates M1 proinflammatory macrophages, while

varying combinations of IL-4, IL-13, transforming growth
Immunity 40, 706–719, May 15, 2014 ª2014 Elsevier Inc. 709
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Figure 2. Il10rb–/– Innate Immune Cells Impair WT Treg Cells Suppression and Generation In Vivo

(A) Frequency of Treg cells in LP and MLN of Rag2�/� and Rag2�/�Il10rb�/� mice that were transferred with unfractionated WT CD4+ T cell transfer. Repre-

sentative flow cytometry plots of FOXP3+ cells among CD4+ T cells are followed by cumulative data in LP and MLN.

(B) Mean % initial body weights ± SEM following transfer of WT T naive (CD4+CD25�CD45RBhi) cells alone or in combination with Treg cells (CD4+CD25+

CD45RBlo) at a 1:1 ratio.

(C) Representative H&E images (20X) of colonic sections from Rag2�/� and Rag2�/�Il10rb�/�mice following transfer and mean histological colitis scores ± SEM.

Scale bar represents 200 mm.

(D) Representative flow cytometry plots of the generation of inducible Treg cells in vivo assessed by FOXP3+ expression among CD4+ T cells in LP and MLN,

4 weeks after CD45RBhi transfer, followed by cumulative data. Results are pooled from two independent experiments. Figures S4 and S6 accompany.
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Figure 3. Reduction in Anti-Inflammatory Intestinal Macrophages in Precolitic ll10rb–/– Mice

(A) Endoscopic and histological colonic (20X) images of WT and Il10rb�/� mice at 5 weeks of age.

(B and C) Representative flow cytometry plots of macrophage subsets in LP of 5-week-oldWT and Il10rb�/�mice, followed by quantification of the pro- and anti-

inflammatory populations. Proinflammatory population was defined as Ly6C+MHCII+ cells and anti-inflammatory as Ly6C�MHCII+.

(D) LP anti-inflammatory macrophages were sorted fromWT (n = 20) and Il10rb�/� (n = 14) 5-week-old mice and qRT-PCR was performed to quantify expression

of various anti-inflammatory transcripts. Results are representative of two independent experiments.

(E and F) Rag2�/�Il10rb�/� were injected with 1 mg of IL-10Ig or isotype one day prior to WT CD4+ T cell transfer, and then twice weekly. Mean weights ± SEM

shown in (E) and representative H&E colonic section images (20X) and histological scores ± SEM of both groups shown in (F). Scale bar represents 200 mm.

Results are pooled from two independent experiments. Figures S5 and S6 accompany.
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factor-b (TGF-b) and IL-10 generate M2 tolerogenic macro-

phages (Martinez et al., 2008). Parsa and colleagues recently

reported that stimulation of BMDM with IL-4, TGF-b, and IL-

10 yields macrophages with increased tolerogenic properties

that were defined as M2r macrophages (Parsa et al., 2012).

These M2r macrophages highly express programmed death-
ligand 1 (PD-L1) and PD-L2, secrete IL-10 and TGF-b, and,

when transferred into NOD mice, prevent diabetes (Parsa

et al., 2012).

We observed comparable expression of pro- and anti-inflam-

matory cytokines and costimulatory molecules between WT and

Il10rb�/� unstimulated (M0) BMDM (data not shown). However,
Immunity 40, 706–719, May 15, 2014 ª2014 Elsevier Inc. 711
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Figure 4. Il10rb–/– M1 BMDM Exhibit a Pronounced Proinflammatory Phenotype

(A) Mean fluorescence intensity (MFI) of MHCII and CD86 expression onM1WT and Il10rb�/�BMDM orWT BMDM cultured with an IL-10Ra blocking antibody in

M1 conditions.

(B) Cytokine mRNA expression determined by qRT-PCR of BMDM cultured for 24 hr in M1 conditions; fold change is relative to unstimulated (M0) WT BMDM.

(C) Cytokine concentrations determined by ELISA in supernatants of BMDM cultured for 48 hr under M1 conditions.

(D) Representative flow cytometry plots of CFSE-labeled WT CD4+CD25- T naive cells cultured without macrophages or in the presence of WT M1 BMDM,

Il10rb�/� M1 BMDM, or WT BMDM cultured with an IL-10Ra blocking antibody in M1 conditions.

(E) Il10rb�/� M1 BMDM were cultured with sorted T naive cells, in the presence of neutralizing antibodies to IL-6, IL-12p40, or TNF.

(F) WT T naive cells were cultured withWT or Il10rb�/�M1BMDM in the presence of varying concentrations of WT Treg cells. Representative flow cytometry plots

presented following cumulative data showing degree of proliferation normalized to conditions without Treg cells. All data are representative of two or more

independent experiments. Figure S6 accompanies.
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major histocompatibility complex class II (MHCII) glycoproteins,

CD86 and proinflammatory mediators were highly expressed

in Il10rb�/� BMDM cultured in M1 conditions, when compared

to WT M1 BMDM (Figures 4A–4C). Similarly, culture of

WT BMDM in M1 conditions with a blocking IL-10Ra antibody
712 Immunity 40, 706–719, May 15, 2014 ª2014 Elsevier Inc.
also led to a significant increase in expression of CD86 and

MHCII (Figure 4A). Il10rb�/� M1 BMDM produced significantly

more IL-10 (Figures 4B and 4C), suggesting that IL-10Rb-de-

pendent signaling in proinflammatory macrophages inhibits

IL-10 production. In addition, in a coculture system with WT
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CD4+CD25� T naive cells andM1BMDMserving as antigen-pre-

senting cells, when compared to WT M1 BMDM, Il10rb�/� M1

BMDM or WT BMDM cultured with anti-IL-10Ra antibody

under M1 conditions promoted increased proliferation of WT

T naive cells (Figure 4D). Addition of neutralizing antibodies

in this in vitro coculture system against IL-6, IL-12p40, or TNF

decreased the degree of T cell proliferation generated by

Il10rb�/� M1 BMDM (Figure 4E), suggesting that excessive

T cell proliferation is not caused by an excess of a single proin-

flammatory cytokine. Moreover, Il10rb�/� M1 BMDM impaired

the ability of WT Treg cells to suppress proliferation of T effector

cells (Figure 4F). To rule out the possibility that defective

signaling through cytokine receptors that also utilize IL-10Rb

(i.e., IL-22, IL-26, and IFN-l) might contribute to the observed

phenotypes of Il10rb�/�M1BMDM, we performed additional ex-

periments with BM obtained from Il10ra�/� mice that lack only

defective IL-10R signaling. Like Il10rb�/� M1 BMDM, Il10ra�/�

M1 BMDM when compared with WT M1 BMDM highly ex-

pressed CD86 and MHCII and, when cultured with WT CD4+

CD25� T naive cells, promoted increased T cell proliferation

(data not shown). Collectively, our data indicate that IL-10R

signaling regulates the function of inflammatory macrophages,

which in turn can modulate T cell responses.

IL-10R Signaling Promotes Tolerogenic Properties of
Anti-Inflammatory BMDM
Under M2r conditions, Il10rb�/� BMDM expressed significantly

less Arg1 and Retnla (Figure 5A), which are classical markers

of M2 anti-inflammatory macrophages (Martinez et al., 2008).

Similarly, incubation of WT BMDM with IL-4 and TGF-b, but

not including IL-10, also resulted in reduced Arg1 and Retnla

expression when compared to M2r conditions (Figure 5A),

implying that IL-10 is required for the induction of the anti-inflam-

matory program in BMDM. Sensing of IL-10 by WT BMDM

increased production of IL-10 (Figure 5A), indicating that IL-

10R-dependent signals positively regulate IL-10 production by

M2 macrophages. Baseline secretion of proinflammatory cyto-

kines was low and comparable between WT and Il10rb�/� M2r

BMDM (data not shown). However, restimulation with LPS of

established Il10rb�/� M2r cells, or WT BMDM cultured with

IL-4 and TGF-b, but not IL-10, led to a significant increase in

the expression of proinflammatory cytokines compared to WT

BMDM cultured under M2r conditions (Figure 5B). These data

suggest that IL-10R signaling in macrophages is required to

inhibit TLR4-dependent proinflammatory responses. In addition,

Il10rb�/� M2r BMDM, compared to WT M2r BMDM, promoted

less Treg cells generation when cocultured withWTCD4+CD25�

T naive cells (Figure 5C). This correlated with lower expression

on Il10rb�/� M2r BMDM of PD-L1 and PD-L2 molecules known

to promote Treg cells generation (Francisco et al., 2009; Zhang

et al., 2006) (Figure 5D). Finally, we assessed whether transfer

of WTM2r BMDMwould inhibit the T cell transfer-induced colitis

in Rag2�/�Il10rb�/� mice. Administration of WT M2r BMDM i.p.

1 day prior to WT CD4+ T cell transfer protected Rag2�/�

Il10rb�/� mice from intestinal inflammation, whereas transfer of

Il10rb�/� M2r BMDM was associated with rapid weight loss

and increased mortality among transferred mice within 2–

3 weeks (Figures 5E and 5F). Overall, our data suggests that

loss of IL-10Rb signaling impairs the generation and function of
anti-inflammatory macrophages and that restoration of aberrant

macrophage function can ameliorate colitis in Rag2�/�Il10rb�/�

mice.

Aberrant Generation and Function of Monocyte-Derived
Macrophages from IL-10R-Deficient Patients
We next sought to investigate whether patients with null muta-

tions in IL-10R genes also exhibit alterations in the generation

and function of macrophage subsets. Through our interNational

Early Onset Pediatric IBD Cohort Study (NEOPICS; www.

neopics.org), we obtained blood samples from seven rare pa-

tients with loss of function mutations in IL10RA and IL10RB

genes, all diagnosed with severe infantile IBD (Table S1). In hu-

mans, stimulation of CD14+ blood monocytes with granulocyte

macrophage-colony stimulating factor (GM-CSF) for 8 days gen-

erates M1 proinflammatory macrophages (Rey-Giraud et al.,

2012), while M-CSF treatment for 7 days followed by 24 hr cul-

ture with IL-4 generates M2 macrophages (Hedl and Abraham,

2012). Similar to murine Il10rb�/� M1 BMDM, human IL-10R-

deficient M1 macrophages highly expressed proinflammatory

cytokines when compared to controls (Figure 6A), whereas

IL10 expression among patients was variable (Figure 6A). Human

IL-10R-deficient M1macrophages also expressed elevated con-

centrations of CD86 and HLA-DR (Figure 6B) and augmented

proliferation of CD4+CD25� T naive cells from allogeneic control

subjects (Figure 6C), data that is consistent with the results

observed in murine IL-10R deficient M1 BMDM.

The generation and function of M2 macrophages was also

impaired in IL-10R-deficient patients, with lower expression of

several human M2 markers, whereas IL10 expression was vari-

able (Figure 7A). In addition, expression of CD86 and HLA-DR

was higher in IL-10R-deficient M2 macrophages (Figure 7B),

and when re-stimulated with LPS, these cells secreted signifi-

cantly more proinflammatory cytokines (Figure 7C), similar to

findings in murine Il10rb�/� anti-inflammatory BMDM. IL10

expression was significantly reduced in human IL10R-deficient

M2 macrophages following secondary LPS stimulation (Fig-

ure 7C), suggesting that in human anti-inflammatory macro-

phages IL-10R signaling is required for IL-10 production after

TLR-4 stimulation. Finally, as observed in mice, human IL-10R-

deficient M2 macrophages expressed lower concentrations of

PDL2 (Figure 7D) and promoted less generation of Treg cells

in vitro (Figure 7E). This human data and our murine data

described above indicate that IL-10R signaling modulates the

generation and function of pro- and anti-inflammatory macro-

phages across species. Collectively, based on our findings, we

propose a model depicting the role of IL-10R signaling on mac-

rophages in the regulation of intestinal immune homeostasis

(Figure S6).

DISCUSSION

Numerous murine studies have established a role for IL-10 and

downstream IL-10R signaling as major regulators of immune

tolerance in mucosal compartments (Shouval et al., 2014).

Recent studies in humans have identified causal loss-of-function

mutations of IL10 or either IL10RA or IL10RB in rare patients

presenting with very early onset IBD and have identified hemato-

poietic cells broadly as the responsible cells mediating this
Immunity 40, 706–719, May 15, 2014 ª2014 Elsevier Inc. 713

http://www.neopics.org
http://www.neopics.org


A B

C D

E F

Figure 5. Loss of IL-10Rb Signaling Impairs the Generation and Function of Anti-Inflammatory M2r BMDM

(A) qRT-PCR analysis of Arg1, Retnla (Fizz1), and Il10 transcripts produced by WT or Il10rb�/� BMDM cultured for 24 hr under different conditions.

(B) Proinflammatory cytokines mRNA expression by WT and Il10rb�/� BMDM cultured in different conditions for 24 hr and then restimulated for 4 hr with LPS.

(C) Representative flow cytometry plots and cumulative data of in vitro generation of FOXP3+ Treg cells amongCD4+ T cells in the presence ofWT or Il10rb�/�M2r

macrophages.

(D) Representative flow cyometry plots and cumulative MFI of PD-L1 and PD-L2 surface expression on WT and Il10rb–/– M2r BMDM.

(E) 13106WT or Il10rb�/�M2r BMDMor PBSwere injected i.p. intoRag2�/�Il10rb�/�mice one day prior toWTCD4+ T cell transfer. Figure depicts mean% initial

body weights ± SEM following transfer.

(F) Representative H&E stained colonic sections (20X) followed by histological scores ± SEM for treated groups. Scale bar represents 200 mm. Results are pooled

from two or more independent experiments. Figure S6 accompanies.
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phenotype (Engelhardt et al., 2013; Glocker et al., 2010; Glocker

et al., 2009; Kotlarz et al., 2012; Moran et al., 2013). More mech-

anistic studies exploring cell types dependent on IL-10R
714 Immunity 40, 706–719, May 15, 2014 ª2014 Elsevier Inc.
signaling have been limited to murine models and have concen-

trated largely on the regulation of mucosal T cell responses

(Chaudhry et al., 2011; Huber et al., 2011; Kamanaka et al.,
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Figure 6. Increased Proinflammatory Cytokine Production and CD4+

T Cell Proliferation by Human IL-10R-Deficient M1 Macrophages

(A) qRT-PCR analysis of proinflammatory cytokines among seven patients with

loss-of-function mutations in IL10R genes versus healthy controls. Each red

circle represents a unique patient, whereas each black rectangle represents an

individual healthy control subject in the same experiment. Cytokine expression

is normalized to corresponding healthy controls.

(B) Flow cytometry plots demonstrating high CD86 and HLA-DR expression

on M1 macrophages from an IL-10R-deficient patient, compared to healthy

control.

(C) Proliferation of CFSE-labeled CD4+CD25� T naive cells obtained from an

allogeneic healthy donor in the presence of IL-10R-deficient M1macrophages

from a patient compared to M1 macrophages obtained from a healthy control.

Surface marker expression and proliferation data are representative of five

patients. Table S1 and Figure S6 accompany.
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2011; Murai et al., 2009). Although IL-10 is known to control anti-

inflammatory responses in DCs and macrophages in peripheral

compartments (Bhattacharyya et al., 2004; Fiorentino et al.,

1991; Steinbrink et al., 1997), the role of IL-10R-dependent sig-

nals in the intestine has not been explored. Here, we demon-

strated that loss of IL-10R signaling on innate cells impairs their

crosstalk with T cells, leading to defective mucosal immune

regulation and severe intestinal inflammation.

Our data show that IL-10R signaling coordinates the differen-

tiation and function of pro- and anti-inflammatory macrophages

in both intestinal and peripheral immune compartments. IL-10R-

dependent signals suppress the generation of proinflammatory

LP P2 macrophages, facilitate the generation of tolerogenic

intestinal macrophages, and enhance their ability to secrete IL-

10. IL-10R-dependent signals also suppress proinflammatory

M1 macrophages derived from BM by inhibiting the secretion

of proinflammatory cytokines and the ability of these cells to

drive CD4+ T naive cell proliferation. Moreover, the differentiation

and function of anti-inflammatory BMDM also requires IL-10-

dependent signals, because the expression of M2 markers

and the ability of M2r macrophages to both suppress TLR-4-

mediated proinflammatory cytokine secretion and to generate

inducible Treg cells is reduced in IL-10R-deficient macrophages.

Importantly, mirroring our findings in the murine system, we

observed aberrant differentiation and function of pro- and anti-

inflammatory macrophages in seven IL-10R-deficient patients

who presented with infantile IBD, hence identifying IL-10R
signaling as a critical modulator of the development and func-

tion of pathogenic and tolerogenic macrophages in mice and

humans.

Amelioration of disease by the transfer of WT M2r BMDM, but

not Il10rb�/� M2r BMDM, in mice lacking IL-10R in innate im-

mune cells further suggests that IL-10R signaling on macro-

phages plays a key role in driving intestinal inflammation.

Medina-Contreras and colleagues have reported that transfer

of WT BMDM can ameliorate DSS-induced colitis in CX3CR1-

deficient mice (Medina-Contreras et al., 2011). Similarly and

consistent with our findings, Kayama and colleagues have

recently reported that transfer of sorted intestinal CX3CR1hi

macrophages alleviates colitis in Rag1�/� mice transferred

with CD45RBhi cells (Kayama et al., 2012). However, transfer of

CX3CR1hi macrophages obtained from mice with conditional

deletion of STAT3 in macrophages failed to rescue disease

(Kayama et al., 2012). These findings are also consistent with

recent data by Zigmond et al. showing that IL-10Ra deficiency

in CX3CR1+ macrophages results in spontaneous colitis (Zig-

mond et al., 2014).

Several aberrant macrophage-dependent immunoregulatory

mechanisms resulting from IL-10R-deficiency might promote

intestinal inflammation. Among anti-inflammatory cells, our

data indicate that Il10rb�/� mice exhibit a decrease in

generation of anti-inflammatory macrophage subsets and a

decrease in Il10 and Pdcd1l2 expression, which, in turn, might

result in decreased Treg cell generation observed in vitro and

in vivo. Diminished generation and function of M2r BMDM in

Il10rb�/� mice, with reduced PD-L1 and PD-L2 surface ex-

pression, IL-10 production, and Treg cell generation, further

support the intestinal findings. Murai and colleagues have re-

ported that IL-10 production by intestinal CD11b+ innate

immune cells, likely macrophages, is required for Treg cell

maintenance (Murai et al., 2009). In addition, CX3CR1+ macro-

phages promote the generation and expansion of Treg cells

(Denning et al., 2007; Hadis et al., 2011). Our data from

seven very early onset IBD patients harboring causal mutations

of IL10RA and IL10RB show aberrant generation of M2

macrophages, diminished IL10 expression, and decreased

generation of inducible Treg cells, and hence further validate

and add greater relevance to our findings in the murine system.

Colitis development in Rag2�/�Il10rb�/� mice cannot be

attributed solely to diminished IL-10 production by IL-10Rb-

deficient innate immune cells because exogenous administra-

tion of IL-10Ig did not protect these mice from intestinal

inflammation.

Elevated proinflammatory cytokine production and augmenta-

tion of CD4+ T cells proliferation in vitro in culture with Il10rb�/�

M1 BMDM support the hypothesis that loss of IL-10R signaling

might, independent of its role on anti-inflammatory macro-

phage function, lead to exaggerated intestinal inflammation.

Our work is consistent with studies employing LyzM-cre- or

Itgax-cre-mediated deletion of IL-10Ra predominantly in macro-

phages or DCs, respectively, that were associated with elevated

LPS-induced proinflammatory cytokines and effector T cell

responses in the skin (Girard-Madoux et al., 2012; Pils et al.,

2010). Moreover, recent studies have demonstrated that perito-

neal monocytes lacking IL-10Ra differentiate into a proinflam-

matory MHCIIhi macrophage subset (Nguyen et al., 2012b).
Immunity 40, 706–719, May 15, 2014 ª2014 Elsevier Inc. 715
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Figure 7. Impaired Generation and Function of Anti-Inflammatory Macrophages in Patients with Loss of IL-10R Signaling

(A) qRT-PCR analysis of M2 markers expressed in IL-4 stimulated monocyte-derived macrophages from IL-10R deficient patients versus healthy subjects.

(B) Surface expression of CD86 and HLA-DR by M2 macrophages generated from an IL-10R-deficient patient compared to healthy control.

(C) qRT-PCR analysis of various cytokines expressed by M2 macrophages following restimulation with LPS.

(D) PDL2 expression by M2 macrophages detected by qRT-PCR.

(E) Flow cytometry plot illustrating in vitro Treg cells generation from CD4+ T naive cells in the presence of M2 macrophages from an IL-10R-deficieint patient

compared to healthy control. Treg cell generation and flow cytometry data are representative of two patients. Table S1 and Figure S6 accompany.

Immunity

IL-10R Signaling Regulates Macrophage Function
Finally, IL-10-mediated signaling is known to suppress IL-1b

secretion (Guarda et al., 2011), and in turn, IL-1b-dependent sig-

nals drive effector T cell responses and colitis development

(Coccia et al., 2012).

One limitation of Il10rb�/� mice as a model for studying the

IL-10 pathway is that signaling by IL-22, IL-26, and IFN-l also

utilizes the IL-10Rb chain as a coreceptor. Nonetheless, we

speculate that the contribution of these later cytokines to colitis

development in Il10rb�/� and Rag2�/�Il10rb�/� is minimal, since

they are almost exclusively expressed on nonhematopoietic

cells (Lasfar et al., 2011; Sabat, 2010). Moreover, in vitro exper-

iments utilizing Il10ra�/� M1 BMDM or administration of neutral-

izing IL-10Ra antibodies mimicked the phenotype observed in

Il10rb�/� BMDM studies. Finally, to date, the clinical presenta-

tion of patients with mutations in either the IL10RA or IL10RB

genes appear indistinguishable (Shouval et al., 2014), and

in vitro studies with macrophages from IL10RA- and IL10RB-

deficient patients appear similar. Nonetheless, a role for IL-

10Rb signals downstream of other cytokines cannot be
716 Immunity 40, 706–719, May 15, 2014 ª2014 Elsevier Inc.
excluded; because cytokines such as IL-22 are known to

contribute to mucosal homeostasis (Zenewicz et al., 2013),

more specific approaches targeting IL-10Ra in specific innate

immune cells are warranted. Indeed, the study by Zigmond

et al., employing Cx3cr1-cre-mediated targeting of IL-10Ra,

suggests that defective IL-10Ra-signaling largely limited to this

anti-inflammatory macrophage subset results in spontaneous

colitis (Zigmond et al., 2014).

In conclusion, our data define a critical role for IL-10R signaling

in innate immune populations in maintaining mucosal immune

tolerance and preventing IBD. Our murine studies indicate that

IL-10R-dependent signals suppress proinflammatory macro-

phage function as well as enhance tolerogenic macrophages

properties, both in peripheral compartments and in the intestine.

Data from several very early onset IBD patients harboring muta-

tions in IL10R genes also strengthen these findings and define

IL-10R as a key regulator of macrophages differentiation and

function in humans as well. Targeted therapies delivering IL-10

to innate immune cells or modulating IL-10R-dependent signals
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in these cells might provide a future direction of drug develop-

ment for carefully selected IBD patients.

EXPERIMENTAL PROCEDURES

Mice

WT, Il10rb�/� (obtained from Genentech), Rag2�/�, Rag2�/�Il10rb�/�, and
Was�/�Rag2�/� mice, all on 129 SvEv background, as well as WT, Il10ra�/�,
Il10rb�/� (courtesy of Thaddeus Stappenbeck, Washington University),

Rag1�/�, Rag1�/�Il10rb�/�, and FOXP3-GFP on the C57BL/6 background

were maintained in specific pathogen-free animal facility at Boston Children’s

Hospital. Experiments were conducted after approval from the Animal Re-

sources at Children’s Hospital and according to regulations of the Institutional

Animal Care and Use Committees (IACUC).

Induction of Colitis in Transfer Experiments

In unfractionated CD4+ T cell transfer experiments, cells from peripheral lymph

nodes, MLNs and spleens from WT mice were enriched for CD4+ cells with a

negative selection kit (Miltenyi Biotec). The purity of CD4+ cells was >95%.

Rag2�/� and Rag2�/�Il10rb�/� or Rag1�/� and Rag1�/�Il10rb�/� mice were

adoptively transferred with 1 3 106 WT CD4+ T cells by i.p. injection. In

some experiments, Il10rb�/� CD4+ T cells were isolated and transferred to

Was�/�Rag2�/� mice. For T naive and Treg cells adoptive transfer experi-

ments, WT CD4+ cells were enriched by negative selection as described

above and further sorted by BD FACSAria II SORP (BD Biosciences). T naive

cells were defined as CD4+CD25�CD45RBhi and Treg cells as CD4+CD25+

CD45RBlo. Post-sort purity was typically >98%. Age-matched Rag2�/� mice

or Rag2�/�Il10rb�/� mice were injected i.p. with 1–2 3 105 WT T naive cells

with or without Treg cells at a 1:1 ratio. Similarly, CD4+CD45RBhiFOXP3neg

or CD4+CD45RBloFOXP3pos cells were obtained from FOXP3-GFP re-

porter mice and used for adoptive transfer experiments into Rag1�/� and

Rag1�/�Il10rb�/� mice.

Isolation of LP Cells

Colons underwent epithelial layer stripping with agitation in 10 mM EDTA at

37�C twice before digestion in collagenase VIII. Following that specimens

were enrichedwith a 40%and 90%Percoll (GEHealthcare) gradient to remove

epithelial cells. In some experiments, LP macrophages were sorted. Gating

strategy was based on Bain et al. who showed that distinct macrophages sub-

sets can be isolated without using CX3CR1-GFP reporter mice (Bain et al.,

2013). We performed some modifications to this method: following initial

gating on live CD45+ cells, we gated on CD11b+CD64+CD103� cells, then

based on SSC and FSC (Bain et al., 2013), and finally on Ly6C and MHCII.

Generation of BMDM

BM was flushed from femur and tibia bones and cultured with DMEM, 20%

FBS, penicillin 100 IU/ml, streptomycin 100 mg/ml and 30% L cell-conditioned

medium, at 37�C in 5% CO2. Media was supplemented every 2–3 days.

Following 6–7 days, nonadherent cells were aspirated and adherent macro-

phages were removed by washing plate with ice-cold PBS and scraping. For

generation of M1 macrophages, BMDM were stimulated for 24 hr with

100 ng/mL of LPS (Sigma-Aldrich) and 20 ng/mL IFN-g (Peprotech). To

generate M2r macrophages, BMDM were cultured for 24 hr with 20 ng/mL

IL-4, 20 ng/mL human TGF-b1, and 20 ng/mL IL-10 (all from peprotech). In

some experiments, WT BMDM were cultured with 10 mg/mL of anti-IL-10Ra

blocking antibody (BioLegend) in M1 conditions.

Generation of Human Monocyte-Derived Macrophages

Blood was collected in EDTA tubes from patients with loss-of-function IL10R

mutations and control subjects (either a healthy parent or an unrelated healthy

donor) in accordance with the local Institutional Review Board and the Decla-

ration of Helsinki. Blood samples were shipped at room temperature overnight

to our laboratory at Boston Children’s Hospital and upon arrival PBMCs were

isolated by Ficoll-Paque PLUS (GE Healthcare) gradient, according to manu-

facturer’s instructions. Monocytes were sorted with CD14 positive selection

kit (Miltenyi Biotec) and cultured in RPMI 1640 supplemented with 20%

FCS and antibiotics. To generate M1 macrophages, we supplemented media
with 100 ng/mL GM-CSF for 8 days (Rey-Giraud et al., 2012) and for M2

macrophages media with 50 ng/mL of M-CSF for 7 days and an additional

day with 20 ng/mL of IL-4 (Hedl and Abraham, 2012).

Quantitative RT-PCR

RNA was extracted from whole colons or from cells with TRIzol� reagent (In-

vitrogen) according to the manufacturer’s instructions. Complementary DNA

was reverse transcribed from 1 mg total RNA with iScript Select cDNA Synthe-

sis Kit (Bio-Rad). Analyses of transcripts were performed with iQ SYBR Green

on a CFX96 Real-Time System (Bio-Rad). Cytokine transcripts were normal-

ized against hypoxanthine-guanine phosphoribosyltransferase (HPRT), and

normalized fold change was calculated with the DDCt method against mean

control DCt (Rag2�/� for Rag2�/�Il10rb�/�; WT for Il10rb�/� in BMDM experi-

ments or macrophages from a healthy paired subject in experiments with

monocytes derived macrophages from IL10R-deficient patients). For human

M1 and M2 macrophages generation experiments, genes associated with

each lineage were chosen as reported byMartinez et al. (Martinez et al., 2006).

In Vitro CD4+ T Naive Proliferation and Treg Generation

To assess proliferation, we cultured 5 mM CFSE-labeled 1 3 105 WT CD4+

CD25� T naive cells with 2 mg/mL soluble aCD3 and either 2.5 3 104 WT or

Il10rb�/� M1 BMDM, for 4 days. Proliferation was determined by percent of

CFSE dilution. For Treg cells generation assays, 1 3 105 WT CD4+CD25�

sorted T naive cells were cultured with 2 mg/mL soluble aCD3 (eBioscience),

2 ng/mL human TGF-b1 (Peprotech) and either 2.5 3 104 WT or Il10rb�/�

M2r BMDM, for 5 days. Similar experiments were performed with human M1

or M2 macrophages from IL-10R-deficient patients versus healthy controls.

In these experiments CD4+ T naive cells were isolated from an unrelated

healthy subject. In some proliferation experiments, blocking antibodies

against IL-6, IL-12p40, and TNF (BioLegend, 10 mg/mL) were added to the

culture on day 0 and day 2.

Sequencing of IL10R Genes

Patients 1–3 were sequenced as reported elsewhere, while sequencing of pa-

tients 4–7 was performed atMuise laboratory at The Hospital for Sick Children,

Toronto. Genomic DNA was purified from whole blood with the Puregene

Blood Kit (QIAGEN). IL10RA and IL10RB were amplified with intronic primers

flanking each exon. Purified PCR products were sequenced with the ABI3730

DNA analyzer (Applied Biosystems). IL10RA variant is numbered according to

GeneBank accession number NM_001588. IL10RB variant is numbered ac-

cording to GeneBank accession number NM_00628. Numbering of amino

acid residues in IL10RA and IL10RB refers to their position in the immature pro-

tein that includes the signal peptide.

In some cases, RNA was isolated from whole blood by the PAXgene Blood

RNA kit (QIAGEN) according to the manufacture instructions. cDNA was

synthesized with SuperScript III Reverse Transcriptase (Life Technologies).

Primers for full-length IL10RA (For: TCA GTC CCA GCC CAA GGG TA; Rev:

TGC AGG TCC AAG TTC TTC AGC TCT) and full-length IL10RB (For: TCG

TGT GCT TGG AGG AAG CC; Rev: TAA GTC CAG GGT CTG GGA GTT

CTA) were designed and synthesized at The Centre for Applied Genomics,

Toronto. PCR was performed according to standard protocol and sequenced

by ABI 3730 DNA analyzer (Applied Biosystems).

Statistical Analysis

Differences between groups were determined by unpaired two-tailed t test

with GraphPad. Significance was defined if p value was less than 0.05 as

following: * p < 0.05; ** p < 0.01; *** p < 0.001.
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