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Rep68 protein of adeno-associated virus type 2 interacts with 14-3-3
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Abstract

Rep78/68 proteins of adeno-associated virus type 2 (AAV-2) are involved in many aspects of the viral life cycle, including replication,

gene expression, and site-specific integration. To understand the molecular mechanisms of the actions of Rep proteins, we searched for

Rep68-interacting cellular proteins by utilizing a one-step affinity purification technique and identified two members of 14-3-3 proteins (14-

3-3 q and g). We found that phosphorylation of 535Ser at the carboxy terminus of Rep68 was critical for its association with 14-3-3. The

association of 14-3-3 proteins to Rep68 resulted in reduction of the affinity of Rep68 for DNA. Furthermore, genome DNA replication of a

recombinant mutant virus carrying a phosphorylation-deficient Rep68 (Ser535Ala) was more efficient than that of the wild-type virus. These

results suggest that phosphorylation of Rep68 and subsequent association with 14-3-3 proteins regulates Rep-mediated functions during the

AAV life cycle.

D 2004 Elsevier Inc. All rights reserved.
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Introduction

Adeno-associated virus type 2 (AAV-2) is a nonpatho-

genic human parvovirus. For efficient AAV DNA replica-

tion and gene expression, co-infection of a helper virus such

as an adenovirus or a herpesvirus is required. In the absence

of a helper virus, AAV establishes latent infection by

integrating the viral genome into a specific site on chromo-

some 19 (AAVS1); although, a low level of helper-indepen-

dent AAV replication does take place in cells exposed to

genotoxic stress (Leonard and Berns, 1994; Muzyczka,

1992).

AAV contains a linear single-stranded DNA genome of

approximately 4.7 kb flanked by palindromic inverted

terminal repeats (ITRs), which serve as the viral origin of
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replication. The AAV genome consists of two major open

reading frames, rep and cap. The cap gene encodes three

viral structural proteins: VP1, VP2, and VP3. The rep gene

encodes four nonstructural proteins: Rep78, Rep68, Rep52,

and Rep40, which are produced by alternative promoter

utilization and differential splicing (Leonard and Berns,

1994; Muzyczka, 1992).

Rep78 and its C-terminal spliced version, Rep68, regu-

late many aspects of the viral life cycle, including DNA

replication (Ni et al., 1998; Wang and Srivastava, 1998),

gene expression (Horer et al., 1995; Kyostio et al., 1994;

Pereira et al., 1997), and site-specific integration (Linden et

al., 1996a,1996b; Samulski et al., 1991; Weitzman et al.,

1994; Young et al., 2000). They are multifunctional proteins

with various activities, including sequence-specific DNA

binding (McCarty et al., 1994a,1994b; Ryan et al., 1996),

site- and strand-specific endonuclease (Brister and

Muzyczka, 2000; Walker et al., 1997a), helicase (Walker

et al., 1997b), and ATPase activities (Im and Muzyczka,

1990, 1992; Wonderling et al., 1995; Wu et al., 1999; Zhou
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et al., 1999). Rep52 and Rep40, N-terminal truncated forms

of Rep78 and Rep68, respectively, do not exert sequence-

specific DNA binding but have been shown to have ATP-

dependent helicase activities and to be involved in the

accumulation and encapsidation of single-stranded genomes

(Chejanovsky and Carter, 1989; King et al., 2001).

AAV has also been shown to have antiproliferative

effects on various types of cells. In many cases, this

property has been mapped to the larger Rep proteins, and

they have been shown to inhibit transformation by viral and

cellular oncogenes, viral and cellular DNA synthesis, and

transcription from a variety of promoters (Batchu et al.,

2001; Hermanns et al., 1997; Kube et al., 1997; Saudan et

al., 2000).

Collectively, the Rep proteins of AAV are pleiotropic

effectors of the viral life cycle and cellular events. It has

been shown that Rep proteins functionally interact with

host cellular proteins (Costello et al., 1997; Di Pasquale

and Stacey, 1998; Pereira and Muzyczka, 1997; Weger et

al., 1999). In this study, we searched for cellular proteins

that interact with the Rep68 protein. We employed latex

beads onto which various biologically active components,

such as chemical compounds (Shimizu et al., 2000),

nucleic acids (Handa, 1992; Wada et al., 1996), and

proteins (Hatakeyama et al., 1997), can be covalently

immobilized. We immobilized the Rep68 protein onto latex

beads and, through a one-step affinity chromatography,

purified two proteins from HeLa cell nuclear extracts

identified as members of the 14-3-3 protein family. We

found that 14-3-3 proteins specifically associate with
Fig. 1. Identification of Rep68 interactors as members of the 14-3-3 family of prote

activated latex beads (SG-N-EOTS) were coupled with His-Rep68. Ts of inset sh

Rep68-immobilized latex beads. Purified recombinant His-Rep68 protein (lane 1).

and His-Rep68-immobilized latex beads (lane 4). Filled and open arrows s

Immunoblotting. Nuclear extracts (NE) and the eluted fraction from beads alone (R

anti-pan-14-3-3 (top), anti-14-3-3 q (middle), and anti-14-3-3 g (bottom) antibodi
Rep68 but not with Rep78, and that this association is

dependent on phosphorylation of serine 535 at the carboxy

terminus of Rep68. The association of 14-3-3 reduced the

affinity of Rep68 for ITR and AAVS1. A mutant virus in

which 535Ser in Rep68 is changed to Ala showed a higher

level of viral DNA replication than wild type, which is

likely due to the lack of phosphorylation at position 535 of

the mutant Rep68 and its subsequent inability to associate

with 14-3-3 proteins. Taken together, these results suggest

that the activity of AAV Rep68 is regulated through

phosphorylation and interaction with 14-3-3 proteins.
Results

Identification of members of 14-3-3 proteins as Rep68

interactors by affinity chromatography using

Rep68-immobilized latex beads

To search for factors interacting with Rep68 protein, we

utilized a one-step affinity purification procedure involving

high-performance latex beads onto which recombinant

Rep68 protein was immobilized. We produced recombinant

Hisx6-tagged Rep68 protein (His-Rep68) in insect cells and

purified the protein by nickel column chromatography to

near homogeneity (data not shown). We then immobilized

the His-Rep68 protein onto latex beads. The amino, thiol,

and imidazole groups of the polypeptides are expected to

directly react with the carbon atoms on the tosyl group at the

end of the spacer arms of the SG-N-EOTs beads (Fig. 1A).
ins. (A) Schematic representation of Rep68-immobilized latex beads. Tosyl-

ows a tosyl group of the latex beads. (B) Affinity purification using His-

Nuclear extracts of HeLa cells (lane 2). Purified fractions of control (lane 3)

how His-Rep68 and Rep-interacting cellular proteins, respectively. (C)

ep�) and His-Rep68-immobilized beads (Rep+) were immunoblotted with

es.



Fig. 2. Determination of the 14-3-3-binding domain within the Rep protein.

(A) Specific interaction of 14-3-3 with the Rep68 but not with the Rep78

protein. Purified recombinant His-Rep68 (2 Ag) and His-Rep78 (1 Ag)
proteins expressed in insect cells were incubated with bacterially expressed

and purified His-Flag-14-3-3 q (1 Ag) or His-Flag-14-3-3 g (1 Ag), and
subjected to Flag affinity resin precipitation. Ten percent input (I) and

elution (E) fractions were separated by SDS-PAGE and were immuno-

blotted with anti-His (top) and anti-Flag (bottom) antibodies. (B) Schematic

representation of His-Rep proteins tested for binding to 14-3-3. The coding

regions are represented by boxes, and introns are shown as carats. Their

abilities to interact with 14-3-3 proteins are also summarized on the right.

(C) Co-precipitation assay in vitro. Wild-type and deletion mutants of His-

Rep68 (2 Ag) were expressed in insect cells, purified, and tested for co-

precipitation with His-Flag-14-3-3 g (1 Ag). Ten percent input (I), 10%

flow-through (FT), 10% wash (W), and elution fractions (E) were analyzed

by SDS-PAGE and were immunoblotted with anti-His antibody. Filled

arrows indicate Rep proteins.
Fig. 3. 535Ser in the C-terminal region of Rep68 is critical for interaction

with 14-3-3 proteins. (A) Phosphorylation-dependent interaction of Rep68

and 14-3-3. Purified His-Rep68 protein (2 Ag) expressed in E. coli (lanes 1

and 2) or in insect cells (lanes 3–7) were incubated with His-Flag-14-3-3 g

(1 Ag) and subjected to Flag affinity resin purification. Before incubation

with 14-3-3 g, Rep68 proteins expressed in insect cells were untreated (lane

4) or treated with 0.02, 0.2, and 2 units of alkaline phosphatase (CIAP)

(lanes 5–7). Input and elution fractions were then immunoblotted by anti-

Rep (top) or anti-Flag (bottom) antibodies. (B) Amino acid sequence of the

C-terminal region of Rep68 protein. Wild-type and each substitution

mutants with serine and/or tyrosine residues substituted to alanine are

indicated. (C) Interaction of Rep68 substitution mutants with 14-3-3 in

vitro. Purified wild-type and mutant His-Rep68 proteins (2 Ag) expressed in
insect cells were tested for interaction with His-Flag-14-3-3 g (1 Ag). Ten
percent input (I) and elution (E) fractions separated by SDS-PAGE were

immunoblotted with anti-Rep antibody.
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Our previous findings showed that the imidazole groups of

tagged histidine residues (Hisx6) were highly reactive, and

His-tagged proteins could be immobilized onto the SG-N-

EOTs beads efficiently, even at 4jC (Hatakeyama et al.,

1997). Using this system, we could immobilize approxi-

mately 20 Ag of the recombinant His-Rep68 protein onto 1

mg of the latex beads (data not shown).

The His-Rep68-carrying beads were incubated with

HeLa cell nuclear extracts, and proteins specifically bound
to the beads were eluted by a high-salt buffer and analyzed

by SDS-PAGE. As shown in Fig. 1B, two proteins of

approximately 32 and 30 kDa in size were eluted from the

His-Rep68-carrying beads (lane 4, open arrowheads), but

not from the control beads (lane 3). In lane 4, His-Rep68 (68

kDa) was also found in the eluate (filled arrowhead), as

revealed by immunoblotting using an anti-Rep antibody

(data not shown). These were probably derived from non-

covalently associated His-Rep68 protein on the beads,

because Rep68 forms multimeric complexes (Smith et al.,

1997).

The 32- and 30-kDa Rep binding proteins were iden-

tified as the 14-3-3 isoform q and 14-3-3 isoform g,

respectively, by tryptic digestion and microsequencing of

HPLC-fractionated peptides (data not shown). The identi-

ties of the purified proteins were confirmed by immuno-

blot analyses. As shown in Fig. 1C, both the 32- and 30-
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kDa proteins reacted with a polyclonal anti-pan-14-3-3

antibody (H8, broadly reactive with the 14-3-3 protein

family members: top panel). The 32- and 30-kDa bands

were found reactive to the antibodies specific to 14-3-3 q
(T-16: middle panel) and 14-3-3 g (C-16: bottom panel),

respectively.

14-3-3 Proteins interact with Rep68, but not with Rep78, in

vitro

To demonstrate a direct interaction between Rep proteins

and 14-3-3 proteins, Hisx6-Flag dual tagged 14-3-3 q and

14-3-3 g fusion proteins (His-Flag-14-3-3 q and His-Flag-

14-3-3 g) were expressed in Escherichia coli and used for in
Fig. 4. Localization of the Rep68 phosphorylation site at 535Ser by mass spec

endopeptidase and analyzed by the mass spectrometer connected directly to a cap

(Mr.) of 652.11 was assigned to the number of electrostatic charge unit z = 5 of t

another peak shows a shift corresponding to 1 mol of phosphate (Mr. 668.12). T

3256.59 and 3336.58, respectively. (B) His-Rep68 protein was digested with Asp-

phosphopeptide candidate was identified and subsequently sequenced by mass sp

assigned to the C-terminal peptide DRLARGHSL (inset). N-terminal and C-termin

and y series, respectively, and their calculated masses are shown adjacent to the am

of C-Ca bond, were detected. Additionally, the ion signals corresponding to pep

(indicted with -Pi) were detected.
vitro binding assay. In addition to His-Rep68, we also

produced the other larger Rep protein, Rep78 (His-

Rep78), in insect cells to examine its interaction with 14-

3-3 proteins. Each fusion protein was first purified by nickel

column chromatography through their Histidine-tag. Then

His-Rep68 or His-Rep78 was mixed with either His-Flag

14-3-3 q or g and co-immunoprecipitation was carried out

using anti-Flag antibody affinity resin. The precipitates were

analyzed by immunoblotting with anti-His-Tag antibody to

detect His-tagged proteins, that is, His-Flag 14-3-3 q and g,

His-Rep68, and His-Rep78. As shown in Fig. 2A, His-

Rep68 protein co-precipitated with His-Flag-14-3-3 q (lane

2) and g (lane 6), whereas His-Rep78 did not (lanes 4 and

8). The results indicate that Rep68 protein, but not Rep78
trometry. (A) Recombinant His-Rep68 protein was digested with Lys-C

illary HPLC system (LC/MS). A peak corresponding to a molecular mass

he C-terminal peptide RVRESVAQPSTSDAEASINYADRLARGHSL, and

he inset shows unmodified and phosphorylated peptides of its parent ion,

N endopeptidase and analyzed by mass spectrometry. A Mr. 1104.8[P + H]

ectrometry/mass spectrometry (MS/MS). The resulting mass spectrum was

al peptide sequence ions by cleavage of the amide bonds are indicated with b

ino acid sequence. a7, seventh N-terminal peptide sequence ions by cleavage

tide fragments that have lost the phosphate group H3PO4 by h-elimination



Fig. 5. Interaction of Rep and 14-3-3 proteins in vivo. Ternary complex

formation of Rep68, 14-3-3 q, and 14-3-3 g. Baculoviruses expressing wild-
type His-Rep68 or the S535A mutant and those expressing Flag-14-3-3 q
and HA-His-14-3-3 g were co-infected to insect cells and purified by Flag

affinity resin. Ten percent input (I) and elution (E) fractions were analyzed

by immunoblotting with anti-Flag (Flag-14-3-3 q) and anti-His (HA-His-

14-3-3 g and His-Rep) antibodies. 68, q, g, and S535A represent His-

Rep68, Flag-14-3-3 q, HA-His-14-3-3 g, and the S535A mutant,

respectively.
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protein, directly associates with both 14-3-3 q and 14-3-3 g

proteins.

Rep68 interacts with 14-3-3 proteins through its C-terminal

region

To identify the Rep68 domain involved in interactions

with 14-3-3 proteins, a series of truncated His-Rep fusion

proteins were expressed in insect cells (Fig. 2B), and their

ability to bind 14-3-3 proteins was examined. The purified

His-tagged Rep68 fragments were incubated with His-

Flag-14-3-3 g, and co-immunoprecipitation with anti-Flag

antibody resin was carried out, followed by immunoblot-

ting with anti-His (Fig. 2C). All the N-terminally deleted

mutants (dl 1–102, dl 1–172) and the naturally occurring

smaller Rep40 protein could bind to His-Flag 14-3-3 g,

whereas C-terminal truncated mutants (dl 371–536, dl

523–536) could not. Similar results were obtained using

14-3-3 q instead of g (data not shown). As mentioned

above, Rep68 is a C-terminally spliced version of Rep78

in which amino acids 530–621 are absent and are replaced

by the amino acid sequence LARGHSL. Thus, our results

suggest that these unique C-terminal residues of Rep68

(523–536), which are also found in Rep40 but not in

Rep78/52, are necessary for interaction between Rep68

and 14-3-3 proteins.

535Ser in the C terminus of Rep68 is critical for interaction

with 14-3-3 proteins

In contrast to the results using His-Rep68 expressed in

insect cells, our attempt to co-precipitate His-Rep68

protein produced in E. coli with recombinant 14-3-3

proteins was unsuccessful (Fig. 3A, lanes 1 and 2).

Because 14-3-3 proteins bind preferentially to phosphor-

ylated proteins (Fu et al., 2000; Yaffe et al., 1997), we

tested whether the interaction of Rep68 with 14-3-3

proteins is dependent upon phosphorylation of Rep68.

As shown in Fig. 3A (lanes 3–7), when insect cell-

derived His-Rep68 protein was treated with an increasing

amount of alkaline phosphatase, its association with 14-3-

3 proteins was abrogated. Similar results were obtained

using 14-3-3 q (data not shown). These results suggest

that the Rep68 protein expressed in insect cells is

phosphorylated and that phosphorylation is essential for

interaction with 14-3-3 proteins.

To investigate the importance of phosphorylation of

Rep68 in its association with 14-3-3 proteins, we generated

a full-length mutant Rep68 protein in which 523Ser and/or
526Tyr or535Ser in the C-terminal region (amino acids 523–

536) was substituted by Ala (Fig. 3B). These were

expressed in insect cells, purified, and subjected to co-

precipitation assays using His-Flag 14-3-3 proteins. Among

these mutant Rep68 proteins, only the S535A mutant lacked

the ability to interact with 14-3-3 g (Fig. 3C) and with 14-3-

3 q (data not shown). These results indicate that phosphor-
ylation at 535Ser of Rep68 is critical for interaction with 14-

3-3 proteins.

535Ser of Rep68 is phosphorylated

As the results above suggest that the 535Ser residue of the

C-terminal region of Rep68 is most likely phosphorylated,

we investigated the site of phosphorylation of His-Rep68

protein expressed in insect cells using a multidimensional

mass spectrometer. His-Rep68 protein was digested with

Lys-C endopeptidase and the fragments were resolved with

a mass spectrometer directly connected to a capillary HPLC

system (LC/MS). As shown in Fig. 4A, unphosphorylated

and phosphorylated peptides corresponding to the C-termi-

nal region of Rep68 were detected. The mass value of the

major peak observed at m/z 652.11 (the number of electro-

static charge units z = 5) was in complete agreement with

the calculated mass value for the unphosphorylated peptide

fragment RVRESVAQPSTSDAEASINYADRLARGHSL of

His-Rep68. The mass value of the minor peak (m/z 668.12, z

= 5) was close to the value of the monophosphopeptide of

the C-terminal region (calculated value m/z 668.13, z = 5).

This indicates that the C-terminal region of Rep68 is

partially phosphorylated at a single site.

To identify the phosphorylated amino acid residue in the

C-terminal region, His-Rep68 was digested using a different

Asp-N endopeptidase. The mass signal corresponding to the

C-terminal peptide DRLARGHSL with mono-phosphoryla-

tion (m/z 1104.8, z = 1) was detected. This C-terminal

peptide fragment contains only one potential phosphoryla-

tion site (535Ser). Moreover, the phosphorylated peptide was

analyzed with mass spectrometry/mass spectrometry (MS/

MS) (Fig. 4B). A fragment ion (m/z 1006.8, z = 1) notably

observed in the MS/MS spectrum was likely formed by the

loss of H3PO4 from the parent ion. These results indicate

that the phosphorylation site positioned near the C terminus
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was most likely to be 535Ser. Sequencing of the Lys-C

endopeptidase-digested C-terminal peptide also yielded sim-

ilar results (data not shown). These data clearly indicated

that 535Ser of Rep68 is phosphorylated.

Rep68 and 14-3-3 form ternary complexes in vivo

Previous reports have shown that 14-3-3 proteins form

homo- and hetero-dimers (Fu et al., 2000; Jones et al.,

1995). We therefore examined whether 14-3-3 q and 14-3-3

g form ternary complexes with Rep68. For this purpose, we

expressed Flag-14-3-3 q and HA-His-14-3-3 g together with

His-Rep68 or the His-tagged S535A mutant in insect cells
Fig. 6. DNA-binding activities of Rep68 alone and Rep68/14-3-3 q complex. (A) C

2) or His-Rep68/Flag-14-3-3 q complex (lanes 3 and 4) were purified from insect c

mobility shift assay. The purified His-Rep68 (lanes 2–4) and His-Rep68/Flag-14-
32P-labeled ITR probe. The amounts of Rep68 protein used are indicated for b

indicated amounts of nonradiolabeled AAVS1 were included in each reaction contai

ng of Flag-14-3-3 q (lanes 7–11), and 0.02 ng of 32P-labeled AAVS1 probe. (D) Li

each band corresponding to both free DNA and DNA–Rep68 complex was measu
using co-infection of baculoviruses directed to express these

proteins. After precipitation of Flag-14-3-3 q by anti-Flag

affinity resin, the eluate was tested by immunoblotting using

anti-His antibody to detect His-tagged 14-3-3 g, Rep68, and

S535A proteins. As shown in Fig. 5, wild-type His-Rep68

and HA-His-14-3-3 g proteins were co-purified with Flag-

14-3-3 q, indicating that they form a ternary complex in

insect cells. When 535Ser of the His-Rep68 protein was

mutated to Ala, the mutant His-Rep68 did not participate to

the complex formation with Flag-14-3-3 q and HA-His-14-

3-3 g. These results indicate that Rep68 and 14-3-3 form

ternary complexes, and suggest that such ternary complexes

could be formed in vivo.
o-purification of Rep68 and 14-3-3 q. Recombinant His-Rep68 (lanes 1 and

ells, and aliquots were analyzed by SDS-PAGE and silver staining. (B) Gel

3-3 q complex (lanes 5–7) were analyzed by gel mobility shift assay using

oth protein preparations. (C) Competitive gel mobility shift analysis. The

ning 3 ng His-Rep68 protein (lanes 2–6), or 3 ng His-Rep68 protein and 1.5

neweaver–Burk plot of the gel-shift assay shown in C. The radioactivity in

red by STORM and plotted, and the calculated values of KD were indicated.



Fig. 7. Replication of AAV-WT DNA and AAV-S535A DNA. (A) HeLa

cells were transfected either with wild-type AAV (AAV-WT) DNA or a

mutant AAV DNA having S535A substitution in the Rep68 gene (AAV-

S535A), and then infected with Ad5 at MOI of 10. The viral DNA of AAV-

WT and AAV-S535Awere extracted at 72 h post-infection, and analyzed by

Southern blotting with 32P-labeled AAV DNA as a probe. AAV DNA

species are indicated: D, dimer replicative form (RF); M, monomer RF; S,

single strands. (B) Quantitative-PCR analysis to measure extent of DNA

replication. The viral DNA in AAV-WT and AAV-S535A samples were

quantified using quantitative PCR method by comparing with known

amount of purified AAV genome as the DNA standards. The each sample

value is shown as the relative value to that of AAV-WT, which was set to 1.

Data shown are the means F SD of three experiments.
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The binding of 14-3-3 proteins to Rep68 reduces the affinity

of Rep68 for DNA

To evaluate the functional significance of the associa-

tion between 14-3-3 proteins and Rep68, we asked wheth-

er the DNA-binding activity of Rep68 could be modified

upon its binding to 14-3-3 proteins. We purified His-Rep68

alone or His-Rep68 in complex with Flag-14-3-3 q co-

expressed in insect cells (Fig. 6A). To avoid inclusion of

Flag-14-3-3 q-unbound His-Rep68 fraction into the His-

Rep68/Flag-14-3-3 q complex, we sequentially purified the

complex with anti-His Tag and anti-Flag antibodies. Then

gel mobility shift analysis was carried out using 32P-

labeled hairpin ITR DNA as a probe with increasing

amount of the purified His-Rep68 or His-Rep68/Flag-14-

3-3 q complex. The mobility patterns of the DNA–protein

complexes were similar between His-Rep68 alone (Fig.

6B, lanes 2–4) and His-Rep68/Flag-14-3-3 q (Fig. 6B,

lanes 5–7), both having a single shifted band that in-

creased in intensity with increasing amount of added

proteins. However, at equivalent amounts of His-Rep68,

much less DNA–protein complexes were formed in the

His-Rep68/Flag-14-3-3 q–DNA reaction.

To further analyze these differences quantitatively, an

apparent dissociation rate of His-Rep68 alone and His-

Rep68/Flag-14-3-3 q from DNA were calculated by mea-

suring the radioactivity of protein-bound and -unbound

probes in the presence of various amount of unlabeled

competitor DNA (Figs. 6C and D). We used the oligonu-

cleotides AAVS1 DNA as a probe for efficient competition.

The gel-shift assay of the Rep68 and AAVS1 DNA showed

two bands with different intensity (Fig. 6C, lanes 2–4) that

seemed to be derived from different multimers of Rep

proteins bound to the probe. When higher amount of

Rep68 was added to the reaction, six mobility shifted

bands could be detected (data not shown). The similar

results showing five to six bands upon gel-shift assay were

also observed by others (Costello et al., 1997; McCarty et

al., 1994b). Only the single band with much lower

intensity was visible in His-Rep68/Flag-14-3-3 q–DNA
reaction (Fig. 6C, lanes 7 and 8), and presence of the

competitor DNA mostly abolished the signal (Fig. 6C,

lanes 3–6, 8–11). Fig. 6D shows the Lineweaver–Burk

plot of the results shown in Fig. 6C. Equilibrium constant

(KD) of His-Rep68–DNA interaction and His-Rep68/Flag-

14-3-3 q–DNA interaction were 5.5 � 10�9 and 1.4 �
10�8 M, respectively, and His-Rep68/Flag-14-3-3 q had

about 2.5-fold lower affinity to AAVS1 DNA than His-

Rep68 alone. Two groups reported the apparent binding

constant of Rep68 to the hairpin ITR, 9 � 10�10 M

(Chiorini et al., 1994) and 6.3 � 10�9 M (McCarty et

al., 1994b) and to its truncated linear ITR lacking second-

ary structures, 8 � 10�10 M (Chiorini et al., 1994) and 2
� 10�8 M (McCarty et al., 1994b). The affinity to Rep68

to our 47-bp AAVS1 DNA fragment appears comparable to

that seen in the previous studies. Our results indicate that
the binding of Rep68 to DNA was lowered by association

with 14-3-3 proteins.

Mutation of Rep68 535Ser to Ala increased AAV DNA

replication

As the first step toward understanding the role of 535Ser

phosphorylation of Rep68 and the association between

Rep68 and 14-3-3 proteins in vivo, we examined the level

of DNA replication of wild-type AAV (AAV-WT) and a

mutant AAV having a S535A substitution in the Rep68

protein (AAV-S535A). Cells were transfected with either

AAV-WT or AAV-S535A DNA, followed by infection with

adenovirus type 5. Then, low molecular weight DNA was

isolated and the AAV genomic DNA was detected by

Southern blotting and quantitative-PCR (Fig. 7). By South-

ern blot analysis, double-stranded dimer replicative form

(RF) (D), monomer RF (M), and progeny single-stranded

DNA (S) were detected in both AAV-WT-transfected and

AAV-S535A-transfected cells (Fig. 7A). Interestingly, the

level of DNA replication of AAV-WT was less than that of

AAV-S535A irrespective of their replicative forms. The

experiment was repeated six times and a higher level of

DNA replication was consistently observed in the mutant

AAV. When the amount of replicated AAV DNA was

measured by quantitative-PCR, the amount of mutant

AAV DNA was 3.1-fold over that of the wild-type (Fig.

7B). Thus, our results suggest that the association of 14-3-3

proteins to Rep68 negatively regulates AAV DNA replica-
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tion, and that such control may involve the reduction in

DNA binding activity of Rep68 upon its association with

14-3-3 proteins. Mutating 535Ser of Rep68 to Ala prevents

binding of Rep68 to 14-3-3 proteins, and thus allows

increased levels of AAV DNA replication in the mutant

virus.
Discussion

In the present study, we employed a novel affinity

purification system involving latex beads onto which

recombinant Rep68 was attached and purified two factors

from HeLa cell nuclear extracts that interact with AAV

Rep68. The factors were identified as members of the 14-

3-3 family of proteins (14-3-3 q and 14-3-3 g). The 14-3-3

proteins constitute a family of homo- and heterodimeric

molecules and are highly conserved throughout eukaryotes.

In mammals, at least seven distinct isoforms (h, y, q, g, u,
j, and ~) have been identified to date (Fu et al., 2000; van

Hemert et al., 2001). Despite the fact that several other

isoforms are expressed in HeLa cells, we only obtained q
and g isoforms in our affinity-purified fractions. It remains

to be determined whether Rep68 also interacts with the

other isoforms. The 14-3-3 proteins are present in relative-

ly high abundance in cells and have been shown to

associate with multiple cellular proteins having various

functions. To date, more than 100 proteins, including

several viral proteins, have been identified as 14-3-3-

associated proteins. By binding to these target proteins,

14-3-3 proteins modify their activities and/or subcellular

localization, and therefore numerous functions, such as

mitogenesis, cell cycle control, apoptosis, and signal trans-

duction, have been ascribed to 14-3-3 proteins (Fu et al.,

2000; van Hemert et al., 2001).

The interaction between 14-3-3 proteins and their targets

often requires phosphorylation of a serine residue, and

phosphoserine-containing consensus motifs in 14-3-3 target

proteins have been identified (Yaffe et al., 1997). Previous

studies have demonstrated that all four Rep proteins are

phosphorylated at serine residue(s) in AAV-infected and

adenovirus co-infected cell cultures; however, the phosphor-

ylated residue(s) have not yet been identified (Collaco et al.,

1997). Our finding that phosphatase treatment of Rep68

abolished the binding of Rep68 to 14-3-3 proteins suggests

that phosphorylation of Rep68 regulates the binding. Al-

though there are no known consensus 14-3-3 binding motifs

in the Rep protein, the unique C-terminal region of Rep68/

40, LARGHSL, is similar to the atypical 14-3-3 binding

motif, GHpSL, of the platelet glycoprotein (GP) Ib alpha

(Bodnar et al., 1999). Our mutational and mass spectrometry

analyses showed that at least the C-terminal 535Ser of Rep68

is phosphorylated and that the 14-3-3 proteins specifically

interact with Rep68 via phosphorylated 535Ser.

In contrast to the direct interaction between Rep68 and

14-3-3 proteins, we did not detect an interaction between
Rep78 and 14-3-3 proteins. This observation is consistent

with the finding that 14-3-3 proteins associate with Rep68

through a unique C-terminal seven-amino-acid stretch

shared by Rep68 and Rep40. No function or interacting

proteins specific to this region have not been identified.

Rep40 also harbors 14-3-3 binding site and interacts with

14-3-3 proteins (Fig. 2). Previous studies showed that the

small Rep proteins, Rep52 and Rep40, increase the accu-

mulation of single-strand AAV-2 genomes and are necessary

for the efficient packaging of AAV-2 DNA (Chejanovsky

and Carter, 1989; King et al., 2001). However, our mutant

AAV-S535A, which also altered in Rep40’s 14-3-3 binding

site, did not show any change in the ratio of single-stranded

and double-stranded replicated viral DNA. Thus, the role of

14-3-3 binding to Rep40 is currently unknown. On the other

hand, the unique C-terminal region of Rep78, which is

hydrophobic and contains a zinc finger motif, is known to

be a binding target of protein kinase A and its homologues

(Di Pasquale and Stacey, 1998). This region has been shown

to be responsible for some functional differences between

Rep78 and Rep68, such as cell cycle regulation (Saudan et

al., 2000). Previous studies have suggested that Rep78 and

Rep68 are differentially phosphorylated during the AAV life

cycle (Collaco et al., 1997). We showed that the 535Ser

residue in the unique C-terminal region of Rep68 is phos-

phorylated, and that this phosphorylation is necessary for

the binding of 14-3-3 proteins to Rep68. These observations

may provide a clue to understand the unique role of Rep68,

not shared with other Reps, in the AAV life cycle and

cellular processes.

To evaluate the functional consequences of the interac-

tion between Rep68 and 14-3-3 proteins, we examined the

effects of 14-3-3 proteins on the DNA binding activity of

Rep68. In gel-shift assays, DNA–protein complex that

appeared in the Rep68/14-3-3–DNA reaction showed a

similar mobility as that of a Rep68–DNA complex, but

14-3-3-bound Rep68 had a much reduced ability to initiate

binding to both the ITR and AAVS1 probes as compared

with Rep68 alone. The apparent binding affinity of Rep68

for AAVS1 (KD of 5.5 � 10�9 M) is 2.5 times higher than

that of a Rep68/14-3-3 q complex (KD of 1.4 � 10�8 M).

Similarly, it has been shown that 14-3-3 proteins could

influence the DNA binding affinity of the target proteins,

either positively (p53, Waterman et al., 1998) or negatively

(topoisomerase IIa, Kurz et al., 2000). The mechanism by

which 14-3-3 proteins down-regulate the DNA binding of

Rep68 is yet to be determined.

A mutant AAV encoding a Rep68 that lacks the 14-3-3

binding ability yielded more viral DNA than wild-type

AAV in a DNA replication assay. Considering that 535Ser-

phosphorylated and 14-3-3-bound Rep68 protein had de-

creased DNA binding activity, loading and unloading of

Rep68 on ITR and AAVS1 is potentially regulated by its

phosphorylation status and subsequent binding to 14-3-3

proteins during the AAV life cycle. This change in Rep68

DNA binding activity may also be involved in the regu-
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lation of AAV DNA replication. Besides the AAV DNA

replication, we also observed that the extent of the viral

capsid proteins produced in the AAV-S535A mutant were

higher that of the wild type (data not shown). Similarly,

preliminary results examining the mutant viral particle

production showed the higher rate than seen in the wild

type (data not shown). These results strongly support the

idea that 14-3-3 proteins are functionally involved in

regulating the Rep68 protein’s role during the viral life

cycle. Another possible consequence of the association

between Rep68 and 14-3-3 proteins is the alteration of

the nuclear-cytoplasmic trafficking of Rep68, as suggested

for other cellular proteins that bind to 14-3-3 proteins (Fu

et al., 2000; van Hemert et al., 2001). When HeLa cells

co-infected with AAV and adenovirus were fractionated

into cytoplasmic and nuclear fractions, Rep78 was under-

represented in the cytoplasm but Rep68 was more preva-

lent (Im and Muzyczka, 1992). These results suggest a role

for 14-3-3 proteins in modifying the subcellular localiza-

tion of Rep68. Therefore, regulation of AAV DNA repli-

cation may also involve the control of Rep68-nuclear

accumulation. Why is AAV DNA replication down-regu-

lated by the binding of 14-3-3 to Rep68? Recently, it has

been shown that Rep78 down-regulates adenovirus repli-

cation through PKA/PrKX binding (Di Pasquale and

Chiorini, 2003). Rep68 may exert a regulatory effect over

the helper virus replication through interaction with 14-3-3

proteins, and such interactions could be one of the con-

trolling mechanisms for AAV to co-exist with the helper

virus. We are currently examining whether the binding of

14-3-3 proteins to Rep68 is required for AAV replication

fitness during adenovirus co-infection.
Materials and methods

Plasmids

The DNA fragments containing open reading frames of

Rep68 and Rep78 from AAV-2 were obtained by PCR from

pAV2 (Laughlin et al., 1983). The resultant PCR fragments

were cloned into pBluescriptII SK+ to generate pBS-Rep68

and pBS-Rep78, respectively.

For expression in E. coli, the inserts were subcloned into

the pET14b vector (Novagen). For expression in insect

cells, pBS-Rep68 and pBS-Rep78 were subcloned into the

baculovirus expression vector pFASTBAC HTc (Gibco

BRL). The resultant construct would express either Rep68

or Rep78 tagged with six histidine (His) at the amino

terminus. The N-terminal truncation mutant of Rep68 dl

1–102 Rep was generated by inserting a NcoI–NotI frag-

ment (nucleotides 305–1611) of pBS-Rep68 into the

pFASTBAC HTc. DNA fragments encoding dl 1–172

Rep and dl 1–224 Rep (Rep40) were amplified by PCR

using pBS-Rep68 as the template, and inserted into the

pFASTBAC HTb. The C-terminal truncated Rep68 mutant
dl 371–536 Rep and dl 523–536 Rep mutant were con-

structed by inserting the SpeI–SalI fragment (nucleotides

1–1108) and the SpeI–HindIII fragment (nucleotides 1–

1562) of pBS-Rep68 into the pFASTBAC HTc.

All the point mutants of Rep68 were constructed by

substituting the AatII–NotI fragment (nucleotides 1548–

1611) of pBS-Rep68 with double-stranded oligonucleotides.

The respective Rep68 coding region was transferred using

the SpeI–NotI site pFASTBAC HTc.

The cDNA fragments encoding 14-3-3 q and 14-3-3 g

were obtained by PCR from a HeLa cell cDNA library. The

PCR products were cloned into the pBSII SK+ plasmid

(pBS-14-3-3 q and pBS-14-3-3 g).

DNA fragments containing 14-3-3 q and g were excised

from pBS-14-3-3 q and g subcloned into pET14b modified

to contain His-Flag sequences. The Flag-14-3-3 q fusion

gene was generated by PCR amplification of pBS-14-3-3 q.
HA-His-14-3-3 g fusion was constructed by introducing the

14-3-3 g encoding fragment into the HA-His-carrying

vector pBSII SK+. The DNA fragments containing Flag-

14-3-3 q and HA-His-14-3-3 g were then subcloned into the

pFASTBAC1 (Gibco BRL), respectively.

The mutant AAV having the Rep68 substitution mutation

(pAV1-S535A), whose nucleotide sequence of 535Ser (tcg)

was altered to Ala (gcg), was generated by PCR-based

mutagenesis using pAV1 (Laughlin et al., 1983) as the

template. KOD polymerase (TOYOBO) was used for all

the PCR reaction according to manufacturer’s instructions.

All the sequences of the PCR-amplified DNA were verified

by dideoxynucleotide sequencing analysis.

Expression and preparation of recombinant proteins

Expression of recombinant His-Rep68, His-Rep78, their

derivatives, and Flag-14-3-3 q, and HA-His-14-3-3 g in

insect cells (Sf9) was performed as described (Ishizu et al.,

2001) using the pFASTBAC vectors and the BAC-TO-BAC

system (Gibco BRL). The recombinant baculoviruses were

used to infect SF9 cells at a MOI of 5–10 (Hoque et al.,

1999). For co-infection, ratio of recombinant baculovirus to

express His-Rep68 or His-Rep78 and Flag-14-3-3 q or HA-
His-14-3-3 g were 1:1 and wild-type His-Rep68 or the

S535A mutant, Flag-14-3-3 q and HA-His-14-3-3 g were

5:1:10. His-Rep68, His-Flag-14-3-3 q, and His-Flag-14-3-3

g were expressed from pET14b-based plasmids in the E.

coli BL21 strain (or that carrying the pLysS plasmid for His-

Rep68). All the recombinant proteins used in this study

were tagged at their amino terminus.

The His-fusion proteins expressed in Sf9 and E. coli

were purified by nickel chelate chromatography according

to the manufacturer’s instructions (Qiagen). The complex

of His-Rep68 and Flag-14-3-3 q used for gel-shift assay

was prepared by two-step purification using anti-Flag M2

affinity gel (Sigma) with peptide elution and nickel chro-

matography from lysates of co-infected insect cells with

baculovirus expressing His-Rep68 and Flag-14-3-3 q.
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Immobilization of Rep68 on the latex beads

The latex beads introduced with tosyl ( p-toluene sul-

fonyl) groups for coupling polypeptides (SG-N-EOTs

beads) were prepared as described previously (Hatakeyama

et al., 1997). SG-N-EOTs (1 mg) beads were mixed with

20 Ag of purified His-Rep68 in the immobilization buffer

(10 mM HEPES-NaOH [pH7.9], 10% glycerol, 50 mM

KCl, 1 mM EDTA). The coupling reaction was carried out

at 4jC for 24 h in the dark. The latex beads were

collected by centrifugation at 15,000 rpm for 5 min and

washed three times with immobilization buffer. Remaining

active esters were blocked by incubation in masking buffer

(0.5 M Tris–HCl [pH8.0], 10% glycerol, 1 mM EDTA) at

4jC, for 12 h in the dark. The resulting beads were stored

at 4jC. All manipulations were carried out on ice or at

4jC.

Affinity purification of Rep68-binding proteins

Nuclear extracts of the HeLa were prepared as described

(Dignam et al., 1983). The Rep68-carrying latex beads (1

mg) were equilibrated 3 times with binding buffer (20 mM

HEPES–NaOH [pH 7.9], 100 mM KCl, 20% glycerol, 0.2

mM EDTA, 0.5 mM DTT, 0.1% NP-40, 0.5 mM PMSF).

The HeLa nuclear extract (about 450 Ag of protein) in

binding buffer was added to the latex beads and rotated at

4jC for 3 h. The binding reaction was terminated by

centrifugation at 15,000 rpm for 5 min at 4jC to separate

the latex beads from the supernatant. The latex beads were

washed three times with binding buffer and then soaked

twice in elution buffer (20 mM HEPES–NaOH [pH 7.9], 1

M KCl, 20% glycerol). Proteins were dissolved in SDS

sample buffer, separated on a 10% SDS-PAGE, and visual-

ized by silver staining.

Immunoprecipitation and immunoblotting

In vitro and in vivo binding assays of the Rep protein and

the 14-3-3 protein were performed using anti-Flag M2

affinity gel according to the manufacturer’s instructions

with minor modifications. Briefly, 1–3 Ag of purified His-

Flag-tagged 14-3-3 q or 14-3-3 g was incubated with

purified 1–3 Ag of full-length or mutant Rep proteins for

2 h at 4jC for the in vitro binding assay. For in vivo binding

assays, cell lysates were prepared from Sf9 cells co-infected

with baculoviruses expressing the Rep and 14-3-3 proteins.

Lysates were applied to the anti-Flag and incubated for 2 h at

4jC. After washing the resin with binding buffer (100 mM

NaCl, 1 mM EDTA, 20 mM Tris–HCl [pH 7.9], 0.5%

NP-40), bound proteins were eluted with SDS sample dye

or excess Flag peptide and subjected to SDS-PAGE fol-

lowed by immunoblotting using anti-Rep (Progen), anti-14-

3-3 h (H-8), anti-14-3-3 q (T�16), anti-14-3-3 g (C�16)

(Santa Cruz Biotechnology), anti-Flag, or anti-His (Sigma)

antibodies.
For dephosphorylation, recombinant His-Rep68 protein

purified from insect cells was treated with 0.02–2 units of

calf intestinal alkaline phosphatase (Takara) for 30 min at

37jC before incubation with the 14-3-3 protein.

Mass spectrometry

About 20 Ag of baculovirus-expressed and purified His-

Rep68 was precipitated by acetone and digested with the

Lys-C endopeptidase (Wako) for 4–12 h at 37jC in

guanidine–HCl buffer or with Asp-N endopeptidase

(Roche) for 5 h at 37jC in urea buffer. The resulting

peptides were subsequently frozen and stored at �20jC.
The digested peptides were purified on a reverse-phase

column (Symmetry C18 5 Am, 0.32 � 150 mm, Waters,

MA) using a capillary HPLC system (CapLC System,

Waters). HPLC was carried out at a flow rate of 5 Al/
min with a linear gradient of 5–45% CH3CN in 0.1%

formic acid over 80 min. The isolated peptides in the

eluate were identified by mass measurements with a Q-

TOF mass spectrometer (Micromass, UK) equipped with

an electrospray interface (ESI) connected directly to the

HPLC system.

Gel-shift assay and data evaluation

Plasmid pAV2 digested with BglII and HinfI, releasing a

155-bp fragment containing the AAV ITR sequence, was

blunt ended by the Klenow fragment and then subcloned

into SmaI-digested pBS SK+ plasmid (pBS-155ITR). pBS-

155ITR was then digested with BssHII and the AAV ITR

(nucleotides 18–103) was gel purified. The ITR probe used

in this study lacks the first G residue of the first of the four

GCTC repeats in the Rep binding sites (RBS). Approxi-

mately 20 ng of the fragment was labeled using Klenow

fragment and [a-32P]dCTP, followed by boiling and quick-

chilling to allow formation of the hairpin ITR conformation.

The secondary structure conformation of ITR was checked

by nondenaturing polyacrylamide gel electrophoresis.

AAVS1, fragment encompassing Rep recognition sequence

(Weitzman et al., 1994), was generated by annealing of two

oligonucleotides 5V-AATTCGGCGGTTGGGGCTCGGCG
CTCGCTCGCTCGCTGGGCGGGCGG -3V, and 3V-G
CCGCCAACCCCGAGCCGCGAGCGAGCGAGCGACC-

CGCCCGCCCTAG-5V, and gel purified. Partial restriction

enzyme sites, BamHI and EcoRI, are underlined. Purified

fragment was 5Vend-labeled using T4 polynucleotide kinase

and [g-32P]ATP. Gel-shift assays were carried out as fol-

lows. The reaction mixtures containing 10 mM HEPES–

KOH (pH 7.9), 5% glycerol, 50 mM KCl, 0.1 mM EDTA,

0.05% NP-40, 100 ng poly (dI–dC), 10 Ag bovine serum

albumin (BSA), the indicated amounts of purified His-

Rep68 or His-Rep68/Flag-14-3-3 q complex in a 10-Al final
l final volume were incubated on ice 30 min. Approximately

0.1 ng of hairpin ITR or 0.02 ng of AAVSI-labeled DNAwas

then added and the reaction continued for a further 30 min
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on ice. In competition experiments, indicated amounts of

unlabeled AAVSI were added at this point. The reaction

mixtures were separated by 4% or 6% nondenaturing

polyacrylamide gel electrophoresis containing 0.5� TBE

at 4jC for 1.5 h. The amounts of protein-bound and free

reactants were quantified by measuring the radioactivity

using STORM (Amersham Biosciences). The equilibrium

dissociation constant (KD) of Rep68 for its DNA binding

sites was calculated by Lineweaver–Burk plot analysis as

described previously (Suzuki et al., 1998).

Cell culture, transfection, and virus infection

HeLa cells were grown in monolayers at 37jC in 5%

CO2 in Eagle’s minimal essential medium supplemented

with antibiotics, glutamine, and 10% fetal calf serum. Semi-

confluent HeLa cells were transfected with pAV1 or pAV1-

S535A by effectene reagent (Qiagen), and then infected

with adenovirus type 5 at a MOI of 10.

Southern blotting and quantitative PCR

Cells were harvested 72 h post-infection, and then viral

DNA was extracted by a modified Hirt procedure (Hirt,

1967). The extracted DNAs were electrophoresed on a 1.2%

agarose gel and transferred to a nylon membrane by

capillary blotting in 0.4 M NaOH buffer. The filters were

hybridized in hybridization buffer (5� SSC, 0.5% SDS, 100

Ag of salmon sperm DNA) at 65jC for 12 h with an

[a-32P]dCTP-labeled probe generated by random priming

using 1.8 kb Pst1 fragment of pBS-Rep78 used as the

template. The filters were washed subsequently 2� SSC–

0.1% SDS, 1� SSC–0.1% SDS, and 0.1� SSC–0.1% SDS

at 65jC for 10 min, and then analyzed by STORM and

autoradiography.

The viral DNAwas added to a quantitative PCR solution

containing 1� SYBR Green master mix (Qiagen), 0.25

pmol/Al of forward and reverse primer as described (Di

Pasquale and Chiorini, 2003). The amplified DNA was

detected using iCycler (Bio-Rad). The thermoprogram was

set to a 15-min denaturation at 95jC, and 50 times cycling

reaction of 15 s at 94jC, 15 s 57jC, and 30 s 72jC. Known
amount of purified AAV genome was used as the DNA

standards.
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