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Let H be a two-dimensional real Hilbert space. We give a characterisation of
the extreme and the smooth points of the unit ball of the space of three-homoge-
neous polynomials on H in terms of the coefficients of the polynomial. We also
determine the smooth points of the unit ball of the predual of the space of
three-homogeneous polynomials. Q 2000 Academic Press

1. INTRODUCTION

In this paper we describe the geometry of the unit ball of the space of
three-homogeneous polynomials on a two-dimensional real Hilbert space.
In the last few years some work has been done in the geometry of spaces

w xof polynomials on low-dimensional spaces. Recently Choi and Kim 2
studied the two-homogeneous polynomials on a two-dimensional Hilbert
space and obtained characterisations of smooth and extreme polynomials
in terms of the coefficients of the polynomial. The geometry of spaces of

w xpolynomials has also been the subject of the papers by Boyd and Ryan 1 ,
w x w x w xRyan and Turett 7 , Sundaresan 8 , and the author 5 .

We start by presenting a general result about smooth polynomials in
finite dimensions. Then we deal with the three-homogeneous polynomials.
First we prove that the angle between any two unit vectors x and y at
which a three-homogeneous polynomial of unit norm P takes the value 1
is smaller than 2pr3. Then we move on to space of the three-homoge-
neous polynomials on a two-dimensional Hilbert space H and find a
characterisation of the extreme and smooth points of its unit ball by the
number of the points at which a polynomial takes the value 1. Using the
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form of the extreme polynomials thus found, we give a characterisation of
the smooth points of the unit ball of the predual of the space of three-
homogeneous polynomials.

2. NOTATION, TERMINOLOGY, AND GENERAL RESULTS

Ž .We say that P is an n-homogeneous polynomial on a real or complex
normed space X if there exists an n-linear form B on the product X n

Ž . Ž . Žn .such that P x s B x, . . . , x for every x in X. We denote by PP X the
space of all continuous n-homogeneous polynomials on X endowed with

5 5 � < Ž . < 5 5 4 Žn .the natural norm P s sup P x : x s 1 and by LL X the space ofs
continuous symmetric n-linear forms on X with the sup norm. According

w xto the polarization formula 3 for each P there exists a unique A in
Žn . Ž . Ž .LL X such that P x s A x, x, . . . , x . We haves

nn

5 5 5 5 5 5P F A F P ,
n!

so these two spaces are isomorphic. Furthermore if X is a Hilbert space
5 5 5 5 Žn .then P s A , so we have an isometry. PP X is always a dual space.

Žn .Indeed LL X is the dual of the n-fold symmetric projective tensors
n Žn .product. The space m X can be renormed such that PP X becomes itss

w x ndual 6 . Denote by x the tensor x m x m ??? m x. If u belongs to the
uncompleted n-fold symmetric tensor product, then u can be expressed as
a linear combination of tensors of the form x n. Define the norm

k k
n n5 5 < < 5 5u s inf l x : u s l x .Ý Ýx j j j j½ 5

js1 js1

ˆ nWe denote by m X the complemented tensor product endowed with thiss, p
n ˆ nŽ .norm. Then PP X is the dual space of m X, the duality being given bys, p

k ˆ nŽ . Ž .P u s Ý l P x . The unit ball of m X is the closed absolutelyjs1 j j s, p
� n 4convex hull of x : x g B . If X is finite dimensional then so is theX

n-fold tensor product, so its unit ball is the absolutely convex hull of that
set. For more details on polynomials and symmetric tensor products see
w x3, 4 .

A unit vector x in a normed space X is an extreme point of B if x isX
not the midpoint of a nontrivial segment lying in B . A unit vector x is aX
smooth point of B if there exists exactly one linear functional f in BX X *

Ž .such that f x s 1.
We are interested in finding the extreme and the smooth three-homoge-

neous polynomials on a two-dimensional real Hilbert space. We start with
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a general result about smooth n-homogeneous polynomials on a finite-
dimensional normed space.

Ž .PROPOSITION 1. Let X be a finite-dimensional complex or real normed
space and let P be a norm one n-homogeneous polynomial on X. The
polynomial P is a smooth point of B n if and only if for any two linearlyPPŽ X .

< Ž . < < Ž . <independent unit ¨ectors x and y in X we cannot ha¨e P x s P y s 1.

Proof. Let P be a smooth polynomial. Since X is finite dimensional,
nnŽ . < <there exists x in B such that P x s l with l s 1. Thus l x g m X isX s

Žn . Ž n . na norm one linear functional in PP X * s m X ** s m X whichs, p s, p
Ž .norms P. Suppose there is another y in B such that P y s m withX

n n n< < Ž .m s 1. Then m x P s 1 and since P is smooth, l x s m y ; hence x
and y are linearly dependent.

Conversely, suppose that the second assertion holds. Since X is finite
Ž . < <dimensional there is a unit vector x such that P x s m with m s 1.

nŽ .Then m x P s 1. We will show that this is the only norm one element u
Ž .n nof B such that u P s 1. Indeed let u g B . It can be written asm X m Xs, p s, p

k
n nu s l x q l x ,Ý k k

is1

< < < <with x elements of B , all of them independent of x and Ý l q l s 1.k X k
Ž . Ž . Ž .Then u P s lP x q Ýl P x . If one of the l ’s is nonzero, thenk k k

< Ž . < < < < < < Ž . <u P - l q Ý l s 1. Thus u P s 1 if and only if all the l ’s arek k
n nŽ .zero, so u s l x . Then u P s lm s 1 if and only if l s m so u s m x .

Hence P is smooth.

w xRemark 2. Sundaresan 8 obtained that a two-homogeneous polyno-
mial on an n-dimensional real Hilbert space is smooth if and only if just
one of the eigenvalues of the n = n symmetric matrix associated with P
has absolute value 1. This can be easily deduced from the proposition we
have just proved.

Let us note that the sufficient condition in the proposition above is
< <equivalent to P taking the value 1 on B only at the vectors l x for someX

x g B and ln s "1.X

COROLLARY 3. Let X be a finite-dimensional real normed space and let P
be a norm one n-homogeneous polynomial with n odd. Then P is smooth if

Ž .and only if there is only one ¨ector x in B such that P x s 1.X

Proof. According to the proposition P is smooth if and only if the
< < npoints in B where P takes the value 1 are of the form l x with l s "1X

for some unit vector x. Since n is odd, ln s "1 has only the solutions 1
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Ž . Ž .and y1. Suppose that P x s 1. Then P yx s y1, so there is just one
Ž .unit vector x such that P x s 1.

3. THREE-HOMOGENEOUS POLYNOMIALS ON A REAL
HILBERT SPACE

Let P be a three-homogeneous polynomial on a real Hilbert space H
and let A be its associated symmetric three-linear form. By the Riesz
representation theorem there exists a symmetric bounded bilinear map-

Ž . ² Ž . :ping B: H = H ª H such that A x, y, z s B x, y , z . Furthermore
5 5 5 5 5 5B s A s P . Let Q: H ª H be the two-homogeneous vector valued

Ž . Ž .polynomial defined by Q x s B x, x . Since we are working on a Hilbert
5 5 5 5 Ž w x.space, Q s B see 3 . Therefore if we start with a norm one polyno-

mial P we obtain a norm one vector valued polynomial Q such that
Ž . ² Ž . : Ž .P x s Q x , x . Thus if x is a unit vector then P x s 1 is equivalent

Ž . Ž . Ž .to Q x s x and P x s y1 to Q x s yx.
We are going to work on a two-dimensional real Hilbert space and we

shall classify the extreme and the smooth polynomials according to the
Ž .number of unit vectors where P x s 1. We shall see that we can have at

most three such distinct points.
Now let us consider a three-homogeneous polynomial P of unit norm on

a real Hilbert space H. We have:

PROPOSITION 4. Let P be a three-homogeneous polynomial of unit norm
on a real Hilbert space H. If there exist elements x and y of B such thatH
Ž . Ž . ² :P x s P y s 1 then x, y G y1r2 and so the angle between x and y is

at most 2pr3.

Ž . Ž . Ž . Ž .Proof. Since P x s P y s 1 we have Q x s x and Q y s y. Then

P x q y s A x q y , x q y , x q yŽ . Ž .
s P x q 3 A x , x , y q 3 A x , y , y q P yŽ . Ž . Ž . Ž .

² : ² :s P x q 3 Q x , y q 3 Q y , x q P yŽ . Ž . Ž . Ž .
² :s 2 q 6 x , y .

< Ž . < 5 5 3 Ž ² :.3r2At the same time P x q y F x q y s 2 q 2 x, y . Let a s
² :x, y . We must have

3r2< <2 q 6a F 2 q 2 a ,Ž .
so

4 q 24a q 36a2 F 8 q 24a q 24a2 q 8a3 ,
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which yields

23 28a y 12 a q 4 s 4 a y 1 2 a q 1 G 0.Ž . Ž .

² :Thus 2 a q 1 G 0; hence x, y G y1r2.

From now on we restrict our attention to a two-dimensional real Hilbert
space that we denote by H.

Ž3 .4. EXTREME POINTS OF THE UNIT BALL OF PP H

Let P be a three-homogeneous polynomial of unit norm on the two-
dimensional real Hilbert space H. There exists a unit vector w such that
Ž . � 4P w s 1. Consider an orthonormal basis e , e of H such that e s w.1 2 1

Ž . Ž . Ž . ² Ž . : ² :Since P e s 1 we have Q e s e , so A e , e , x s Q e , x s e , x1 1 1 1 1 1 1
Ž .for all x in H. Thus A e , e , e s 0 and the expression of the polynomial1 1 2

� 4P in the basis e , e is1 2

P x s x 3 q 3 A e , e , e x x 2 q P e x 3 .Ž . Ž . Ž .1 1 2 2 1 2 2 2

Ž . Ž .For the sake of simplicity let b s A e , e , e and c s P e . Of course1 2 2 2
< < < < 5 5b F 1 and c F 1 but the conditions P s 1 and P being extreme will
impose further restrictions on b and c.

w xWe will associate a function f : yp , p ª R with the polynomial P in
Ž .the following way: each unit norm x can be written cos a , sin a with

w xa g yp , p . Thus

P x s f a s cos3 a q 3b cos a sin2 a q c sin3 a .Ž . Ž .

Ž . Ž . Ž . Ž .Since P yx s yP x we have f a y p s yf a , so it is enough to
w xstudy the behaviour of f on 0, p .

5 5Let us show that P s 1 implies b F 1r2. Indeed

f 9 a s 3 sin a 2b cos2 a y cos2 a y b sin2 a q c sin a cos aŽ . Ž .
s 3 sin a g a .Ž .

< Ž . < 5 5 Ž .Since f a F P s 1 for all a and f 0 s 1, the function f must be
Ž .decreasing after zero, so the derivative f 9 a must be negative for a in an

w . Ž .interval 0, d . Since sin a G 0 for such a , we need to have g a F 0 in
Ž .this interval, so lim g a F 0. Thus 2b y 1 F 0; hence b F 1r2. Thea ª 0q

same condition can be obtained by studying the behaviour of f around p .
We will see that b s 1r2 is a very special case. In this case the

5 5condition P s 1 implies that c s 0. Indeed since b s 1r2 we have
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Ž . 2 Ž . Ž .f 9 a s 3 sin a c cos a y 1r2 sin a . As above f 9 a F 0 as a ª 0 , soq
Ž .y1r2 sin a q c cos a F 0 as a ª 0 ; hence c F 0. Since f p s y1 theq

Ž .function f must be decreasing before p , so we must have f 9 a F 0 as
a ª p . This gives y1r2 sin a q c cos a F 0 as a ª p ; hence c G 0.y

Ž . 3 2Thus c s 0, so P x s x q 3r2 x x .1 1 2

PROPOSITION 5. The three-homogeneous polynomial on the two-dimen-
sional real Hilbert space H gï en by

3
3 2P x s x q x xŽ . 1 1 22

is an extreme point of B 3 .PPŽ H .

Ž . 3 Ž . Ž .Proof. In this case f 9 a s y3r2 sin a - 0 on 0, p so y1 - f a
Ž . 5 5- 1 on 0, p ; hence P s 1.

Ž .If there exist three-homogeneous polynomials of unit norm P x si
Ž . 3 2 2 3 ŽP e x q 3a x x q 3b x x q c x , with i s 1, 2 such that P s P qi 1 1 i 1 2 i 1 2 i 2 1
. Ž . Ž .P r2 then P e s P e s 1 and consequently a s a s 0 and b F2 1 1 2 1 1 2 i

1r2. But b q b s 1, so b s b s 1r2. According to the remarks pre-1 2 1 2
ceding the proposition, c s 0, so P s P s P; hence P is extreme.i 1 2

Ž .From now on we concentrate on the case b - 1r2. In this case g 0 s
Ž . Ž .g p s 2b y 1 - 0, so for a / 0, p the condition f 9 a s 0 which is the

Ž . Ž . 2same as g a s 0 is equivalent to g a rsin a s 0, i.e.,

2b y 1 cot2 a q c cot a y b s 0.Ž .

Ž .Thus we can have at most two more points where g 9 a s 0 at which
points f and implicitly P could have extreme values. These extreme values

w xmust be in y1, 1 and this is where the restriction for b and c will come
from. This also shows that a three-homogeneous polynomial of unit norm
on a two-dimensional Hilbert space can take the value 1 at no more than
three unit vectors. Three situations could arise:

Ž . 2 Ž .1 There are no more solutions. In this case c q 4b 2b y 1 - 0
and since b - 1r2 we get that necessarily b ) 0.

Ž .We show that in this case P is not extreme. Since lim g a sa ª 0
Ž .lim g a s 2b y 1 - 0 and g is continuous, there is d ) 0 such thata ªp

Ž . w . Ž x Ž . w . Ž .g a - b y 1r2 - 0 on 0, d j p y d , p , f a ) 0 on 0, d , and f a
Ž x- 0 on p y d , p .

w x < Ž . < < Ž . <On d , p y d we have f a - 1 for all a , so f a F m - 1.
Choose an « ) 0 such that « - 1 y m and b y 1r2 q « - 0.

Ž . Ž . 3 Ž . Ž . 3 Ž . Ž .Let P x s P x q « x and P x s P x y « x . Thus f a s f a1 2 2 2 1
3 Ž . Ž . 3 w x < Ž .q « sin a and f a s f a y « sin a . On d , p y d , we have f a y2 i
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Ž . < 3 < Ž . < w .f a s « sin a F « - 1 y m, so f a - 1. If a g 0, d theni

f X a s f 9 a q 3« sin2 a cos aŽ . Ž .1

s 3 sin a g a q « sin a cos aŽ .Ž .
F 3 sin a b y 1r2 q « - 0;Ž .

Ž . Ž . w . Ž x Ž .hence y1 F f a F f 0 s 1 on 0, d . On p y d , p we have 1 G f a1 1 1
Ž . < Ž . < w x 5 5 5 5G f a G y1. Thus f a F 1 on 0, p . Thus P s 1. Likewise P1 1 2

Ž .s 1. Obviously P / P and P s P q P r2 which shows that P is not1 2 1 2
extreme.

Ž .2 The equation has one more solution, b. In this case b is
2 Ž .necessarily a double zero, so c q 4b 2b y 1 s 0 which gives b G 0. Of

Ž . Ž . Ž .course f 9 b s 0 but on 0, p we have f 9 a - 0 for a / b. We are in
the same position as above, so the polynomial P is not extreme.

Ž .3 The equation has two more distinct solutions, g and b with
w x w x0 - g - b - p . Then f is decreasing on 0, g and b , p and increasing

Ž . Ž . Ž .on g , b . Let m s f g and M s f b . Suppose b and c are chosen so
5 5 < < < <that P s 1. This forces m , M F 1.

Ž . < < < <a If m - 1 and M - 1 then as in the first case the polyno-
mial is not extreme.

Ž . Ž . Ž . Ž .b M s 1. Let x s cos b , sin b . Then P x s 1, so Q xb b b

s x . According to Proposition 4, we have b F 2pr3. If we go back to theb

definition of Q we see that in this case

Q x s x 2 q bx2 e q 2bx x q cx 2 e .Ž . Ž . Ž .1 2 1 1 2 2 2

Ž .Thus Q x s x gives

cos2 b q b sin2 b s cos b

2b cos b sin b q c sin2 b s sin b .

This system in b and c has the unique solution

cos b y cos2 b cos b
b s s2 1 q cos bsin b

sin2 b y 2 cos2 b q 2 cos3 b
c s ,3sin b

so the polynomial is uniquely determined and therefore extreme, provided
the values of b and c we have just found give that its norm is one. We will

5 5see that the condition b F 2pr3 is enough to get that P s 1.
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Ž . Ž . w x < Ž . <Now P e s P x s 1. On b , p we have f a F 1 since f is1 b

w xdecreasing there. Let us see what happens on 0, b .
Ž . Ž .Let x s cos a , sin a with a g 0, b . For each such x there is a

Ž .t g 0, 1 such that

te q 1 y t xŽ .1 b
x s .

5 5te q 1 y t xŽ .1 b

Ž .For t s 1r2 we obtain the point x s cos br2, sin br2 . Then1r2

33 ² :t q 3t 1 y t e , x q 1 y tŽ . Ž .1 b
P x sŽ . 3r22 ² :2 t q 2 t q 1 q 2 t 1 y t e , xŽ .Ž .1 b

3t 2 y 3t q 1 q 3t 1 y t cos bŽ .
s 3r222 t y 2 t q 1 q 2 t 1 y t cos bŽ .Ž .

u tŽ .
s .3r2¨ tŽ .

Ž . Ž . 2 2Let us observe that u t y u 1r2 s 3t y 3t q 1 q 3t cos b y 3t cos b
Ž .Ž 2 .y 1r4 y 3r4 cos b s 3 1 y cos b t y t q 1r4 G 0 for all t. At the

Ž . Ž . Ž .Ž 2 . Ž .3r2same time ¨ t y ¨ 1r2 s 2 1 y cos b t y t q 1r4 so ¨ t G
Ž .3r2 Ž .3r2 Ž .3r2 Ž .¨ 1r2 G 0 and consequently 1r¨ t F 1r¨ 1r2 . If u t G 0, then
Ž . Ž .P x G 0 G y1. If u t - 0 then

u t u t u 1r2Ž . Ž . Ž .
P x s G GŽ . 3r2 3r2 3r2¨ t ¨ 1r2 ¨ 1r2Ž . Ž . Ž .

2 q 6 cos b
s P x s G y1Ž .1r2 3r22 q 2 cos bŽ .

Ž xfor b g 0, 2pr3 by the proof of Proposition 4.
Thus for b and c above we obtain a norm one polynomial which is

extreme.
Ž . Ž . Ž .c m s y1. Since f a y p s yf a this case is equivalent

Ž .to b . The only difference is that in the expression for b and c the angle b
w .can take any value in y2pr3, 0 .

Ž .d m s y1 and M s 1. This case is implicitly contained in the
Ž .two above. Obviously the polynomial P is extreme. As in b this yields

Ž . Ž . 3P x s y1 which gives cos b s y1r2, so b s 2pr3 and P x s x y1r2 1
2 Ž .3 x x with the associated function f a s cos 3a and this is the only1 2
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norm one polynomial which takes the value 1 at three points which must
be equally spaced.

Ž . Ž .The cases b and c yield the following.

PROPOSITION 6. A three-homogeneous polynomial of unit norm on a
two-dimensional real Hilbert space that takes the ¨alue one at more than one
unit ¨ector is extreme.

Summarizing all the information contained in the analysis above we
obtain a characterisation of the extreme polynomials.

PROPOSITION 7. A three-homogeneous polynomial P of unit norm on a
two-dimensional real Hilbert space H is extreme if and only if there exists an

� 4orthonormal basis e , e of H relatï e to which P has one of the following1 2
forms.

Ž . Ž . 3 2i P x s x q 3r2 x x .1 1 2

Ž . Ž . 3 2 3ii P x s x q 3bx x q cx , where1 1 2 2

cos b
b s

1 q cos b

sin2 b y 2 cos2 b q 2 cos3 b
c s 3sin b

Ž . � 4with b g y2pr3, 2pr3 _ 0 .
Ž . Ž . 3 2iii P x s x y 3 x x .1 1 2

Ž . 3 3Let us note that for b s pr2 we obtain the polynomial P x s x q x1 2
Ž . 3 3and for b s ypr2 we obtain the polynomial P x s x y x .1 2

The coefficients b and c are continuous functions of b on
w xy2pr3, 2pr3 . This can be used to show that the set of extreme three-
homogeneous polynomials is a continuous image of a torus. Indeed let us

� 4fix a basis e , e and let P be an extreme polynomial. There exists a unit1 2
Ž .vector f such that P f s 1. If we write f s cos a e q sin a e and take1 1 1 1 2

Ž . Ž . w xf s cos a q pr2 e q sin a q pr2 e with a in yp , p then the ex-2 1 2
� 4 Ž . 3 2 3pression of P in the basis f , f is P y s y q 3by y q cy , where1 2 1 1 2 2

y s y f q y f and b and c are given by the expression above for a b in1 1 2 2
w xy2pr3, 2pr3 . This is the unique polynomial that takes the value 1 at the

Ž . Ž .points cos a e q sin a e and cos a q b e q sin a q b e if b / 0. If1 2 1 2
Žb s 0 then P takes the value 1 only at f . If b s "2pr3 then cos a y1

. Ž .b e q sin a y b e is the third point at which P is 1. The expression of1 2
� 4the polynomial in the basis e , e is given by the function1 2
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3u a , b s x cos a q x sin aŽ . Ž .1 2

2q 3b x cos a q x sin a yx sin a q x cos aŽ . Ž .1 2 1 2

3q c yx sin a q x cos a .Ž .1 2

Ž . Ž . Ž . Ž .Since b 2pr3 s b y2pr3 and c 2pr3 s c y2pr3 for all a g
w x Ž . Ž .yp , p the function u satisfies the relation u a , 2pr3 s u a , y2pr3 .

Ž . Ž . w xObviously u p , b s u yp , b for all b g y2pr3, 2pr3 . The function
w xu is continuous and the remarks above show that the image of yp , p =

w xy2pr3, 2pr3 under u is the set of extreme three-homogeneous polyno-
mials. However, the function u is not injective. It is easily seen that
Ž . Ž .u a , b s u a q b , yb and is the unique polynomial that takes the

Ž . Ž .value 1 at cos a e q sin a e and cos a q b e q sin a q b e . Thus we1 2 1 2
can conclude that the set of extreme three-homogeneous polynomials is

Ž .the continuous but not homeomorphic image of a torus and consequently
is connected and compact.

Remark 8. In fact, if we fix an orientation for H the number of
orthonormal bases relative to which a polynomial of unit norm can be

Ž . 3 2 3written as P x s x q 3bx x q cx is exactly the number of the points1 1 2 2
at which P is 1, so for each polynomial there exist one, two, or three such
bases.

Ž .The conditions in ii are equivalent to the relation

232 3c 1 y 2b s 4b y 3b q 1 ,Ž . Ž .

w xwith b g y1, 1r2 . Indeed it is easy to see that once there exists b g
w x Ž .y2pr3, 2pr3 such that b and c are given by the expressions in ii , they
satisfy the equation above. Conversely, if b and c satisfy the relation, then

Ž . Ž .writing cos b s br 1 y b we obtain that b and c have the form in ii .
Let us note that if b s y1 then c s 0. Thus Proposition 7 can be
reformulated as:

THEOREM 9. A three-homogeneous polynomial P of unit norm on a
two-dimensional real Hilbert space H is extreme if and only if for any

� 4 Ž . 3 2 3orthonormal basis e , e of H relatï e to which P x s x q 3bx x q cx ,1 2 1 1 2 2
the coefficients b and c satisfy one of the following conditions.

Ž .i b s 1r2 and c s 0.
Ž . 2Ž .3 Ž 3 .2 w .ii c 1 y 2b s 4b y 3b q 1 with b g y1, 1r2 .
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Ž3 .5. SMOOTH POINTS OF THE UNIT BALL OF PP H

Since we are working on a two-dimensional real Hilbert space and we
are interested in three-homogeneous polynomials, Corollary 3 gives that a
three-homogeneous polynomial of unit norm P is smooth if and only if
Ž .P x s 1 at just one point x in B . Thus we have:H

PROPOSITION 10. Let H be a two-dimensional real Hilbert space. The unit
Ž3 .sphere of PP H is the union of the set of its extreme points and the set of its

smooth points and these two sets ha¨e a non¨oid intersection.

Proof. Let P be a norm one polynomial. If P takes the value one at
just one point, then P is smooth. If P takes the value 1 at more than one
point then P is extreme according to Proposition 6.

Ž . 3 2If we consider P x s x q 3r2 x x this polynomial is an extreme1 1 2
polynomial that takes the value 1 at just one point, so it is both extreme
and smooth.

w xRemark 11. Choi and Kim 2 observed that a two-homogeneous poly-
nomial on a two-dimensional Hilbert space is either extreme or smooth so

Ž2 .the unit sphere of PP H is the union of the set of its extreme points and
the set of its smooth points. Although, as we have just proved, the result is
true for three-homogeneous polynomials as well, this is somewhat fortu-
itous. Indeed if we increase either the dimension of the space or the
degree of the polynomial, this is no longer valid. Consider for instance the

Ž . 2 2 2 3two-homogeneous polynomial P x s x q x q 1r2 x on R with its1 2 3
w x ŽHilbert space structure. This is neither extreme 5, 8 nor smooth Proposi-

. Ž . 4tion 1 . The same is true for the four-homogeneous polynomial P x s x1
4 2 Ž . Ž .q x on the Hilbert space R . It is not smooth since P e s P e s 12 1 2

Ž . Ž . 4 2 2 4and it is not extreme since P s P q P r2 with P x s x q 2 x x q x1 2 1 1 1 2 2
Ž . 4 2 2 4and P x s x y 2 x x q x .2 1 1 2 2

Since we have characterized the extreme polynomials by the number of
the points where they take the value 1, the analysis we have done also
gives a characterisation of smooth polynomials.

PROPOSITION 12. A three-homogeneous polynomial P of unit norm on a
two-dimensional Hilbert space H is a smooth point of B 3 if and only if forPPŽ H .

� 4 Ž . 3 2any orthonormal basis e , e of H relatï e to which P x s x q 3bx x q1 2 1 1 2
cx 3 the coefficients b and c satisfy one of the following conditions.2

Ž .i b s 1r2 and c s 0.
Ž . 2Ž .3 Ž 3 .2 w .ii c 1 y 2b / 4b y 3b q 1 with b g y1, 1r2 .

� 4Proof. As has been shown, there exists a basis e , e of H such that in1 2
Ž . 3 2 3that basis P can be written P x s x q 3bx x q cx . Once the polyno-1 1 2 2
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mial P has this form, according to the analysis carried out in the process
of describing the extreme polynomials, in the first situation the polynomial
Ž . 3 2P x s x q 3r2 x x is extreme but, according to the proof of Proposi-1 1 2

tion 5, e is the only point where P takes the value 1, so P is smooth. In1
Ž .the last situation the polynomial is not extreme Theorem 9 , so according

to Proposition 10, it is necessarily smooth.

6. THE GEOMETRY OF THE UNIT BALL OF m3 Hs, p

w xIn 7 Ryan and Turett showed that whenever X is a finite-dimensional
normed space the extreme points of the unit ball of mn X are exactly thes, p

points x n with x in the unit sphere S . Thus the extreme points of theH
unit ball of m3 H are the vectors x 3 with x in S . Using the analysisHs, p

done in order to find the three-homogeneous extreme polynomials we can
give a characterisation of the smooth points of the unit ball of m3 H.s, p

PROPOSITION 13. Let H be a two-dimensional real Hilbert space. A unit
¨ector u is a smooth point of the unit ball of m3 H if and only if u has ones, p

of the following forms.

Ž . 3 3a u s l x q m y with 0 F l, m F 1, l q m s 1 and x, y g S ,H
² :x, y G y1r2.

Ž . 3 3 3b u s l x q m y q n z with 0 F l, m, n F 1, l q m q n s 1 and
² : ² : ² :x, y, z g S , x, y s y, z s z, x s y1r2.H

Proof. Let u be an element of the unit ball of m3 H. It can be writtens, p

as a finite convex combination of vectors of the form x 3 with x g S . IfH
u s Ýl x 3 and P is a three-homogeneous polynomial of unit norm on Hi i

Ž . Ž .then P u s 1 if and only if P x s 1 for all x . But such a polynomiali i
can be one at no more than three points. Thus if u is smooth, then the
convex combination cannot contain more than three terms. According to

Ž . Ž .Proposition 4 for any two unit vectors x and y such that P x s P y s 1
² :we have x, y G y1r2.

If a smooth u is a convex combination of three unit vectors x, y, z then
² : ² : ² :necessarily x, y s y, z s z, x s y1r2. On the other hand if we

² : ² : ² :have three unit vectors x, y, z such that x, y s y, z s z, x s y1r2
there exists only one three-homogeneous polynomial of unit norm such

Ž . Ž . Ž .that P x s P y s P z s 1. If we choose a basis for H such that e s x1
Ž . 3 2 3 3 3then P x s x y 3 x x . Thus u s l x q m y q n z with 0 F l, m, n F1 1 2

1, l q m q n s 1 is a smooth point.
If a smooth u is a convex combination of two unit vectors x and y then

² :x, y G y1r2. Conversely, for any two unit vectors x and y such that
² :x, y G y1r2 there is a unique three-homogeneous polynomial of unit
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Ž . Ž . ² :norm such that P x s P y s 1. If x, y s cos b and we choose a basis
Ž . 3 2 3for H such that e s x then P x s x q 3bx x q cx with b and c as in1 1 1 2 2

Proposition 7. Hence u s l x 3 q m y3 with 0 F l, m F 1, l q m s 1 is a
smooth point.

No x 3 with x g B is a smooth point since there are many three-homo-H
Ž .geneous polynomials of unit norm such that P x s 1.
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