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Abstract 

Zedberger's algorithm provides a method to compute recurrence and differential equations from gwen hypergeometrlc 
series representations, and an adaptlon of Almqmst and Zellberger computes recurrence and differential equations for 
hyperexponential integrals. Further versions of this algorithm allow the computation of recurrence and differential equations 
from Rodngues type formulas and from generating functions In particular, these algorithms can be used to compute the 
differential/difference and recurrence equations for the classical continuous and discrete orthogonal polynommls from their 
hypergeometnc representations, and from their Rodngues representations and generating functions 

In recent work, we used an exphclt formula for the recurrence equation of famd~es of classical continuous and discrete 
orthogonal polynomials, in terms of the coefficients of their dlfferenhal/d~fference equations, to gwe an algorithm to identify 
the polynomial system from a given recurrence equation. 

In this article we extend these results by presenting a collection of algorithms with which any of the conversions 
between the differential/difference equation, the hypergeometnc representation, and the recurrence equation is possible 

The mare techmque is again to use exphclt formulas for structural identities of the given polynomial systems (~) 1998 
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1. Structural formulas for classical orthogonal polynomials 

A f a m i l y  

y ( x ) : p . ( x ) = k . x " + . . .  (n C ~ 0 : =  {0, 1,2 . . . .  }, k . : ~ 0 )  
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of polynomials of  degree exactly n is a family of  classical continuous orthogonal polynomials if it 
is the solution of  a differential equation of  the type 

a ( x ) y " ( x )  + r ( x ) y ' ( x )  + 2 . y ( x ) =  0. (2) 

where o-(x)= axZ+ bx + c is a polynomial of  at most second order and "c(x)= d x +  e is a polynomial 
of first order. Since one demands that p,,(x) has exact degree n, by equating the highest coefficients 
of x" in (2) one gets 

2. = - (an(n - 1) + d n ) .  (3) 

Similarly a family p . ( x )  of polynomials of  degree exactly n, given by (1), is a family of discrete 
classical orthogonal polynomials If it is the solution of  a difference equation of  the type 

a(x)A  V'y(x) + ~ (x )Ay (x )  + 2 . y ( x ) =  0, (4) 

where 

A y ( x )  = y (x  + 1 ) - y ( x )  and ~ v ( x )  = y (x )  - y (x  - 1 ) 

denote the forward and backward difference operators, respectively, and o - ( x ) = a x 2 +  bx + c and 
z(x) = d x  + e are again polynomials of  at most second and of  first order, respectively. Again, (3) 
follows. 

Since A g r = A - V', (4) can also be written in the equivalent form 

(~(x)  + ~(x ) )Ay(x )  - ~r (xWy(x )  + 2 . y ( x )  = O, 

and replacing x by x + 1 we arrive at 

( cr(x + 1 ) + z(x + 1) )A2y(x ) + ~(x + 1 )Ay(x  ) + 2 . y ( x  + 1 ) = 0. (5) 

It can be shown (see e.g. [14] or [16]) that for 2 , ¢ 2 , .  (nero) any solution p . ( x )  of either (2) or 
(4)  satisfies a recurrence equation 

p , + l ( x ) = ( A . x  + B , ) p , ( x ) - C , p , - l ( X )  ( n E N o .  p_ j  - -O )  (6) 

or equivalently 

x p , ( x )  = a .p ,+ l (x )  + b . p . ( x )  + c , p , _ l ( X )  (7) 

with 

1 B, C, 
a. = - -  b. - c. = - - .  (8) 

A." A . '  A .  

In [14] (compare [16]. Eqs. (5) and (10)) we showed that the coefficients A . , B . ,  and C. are given 
by the explicit formulas 

k.+ i 
A . -  k , , '  

2bn(an + d - a) - e ( - d  + 2a) k.+l 
Bn = 

(d + 2 a n ) ( d  - 2a ÷ 2an) k. ' 
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C. = - ( ( a n  + d - 2 a ) n ( 4 c a  - b z) + 4a2c - ab 2 + ae 2 - 4 a c d  + db  2 - bed  + d2c)  

(an + d - 2a)n  k.+l 

(d  - 2a + 2an)Z(2an - 3a + d ) ( 2 a n  - a + d )  k. i 

in the continuous case. and by the formulas 

kn+ ! 
A l l  - -  

kn " 

n (d  + 2 b ) ( d  + a n - a ) + e ( d -  2a)  k.+l 
B n  z - -  

(2an - 2a + d ) ( d  + 2an)  k.  

C. = - ( ( a n d  - d b  - ad  + a2n 2 - 2a2n + 4ca + a 2 ÷ 2ea - b z) 

×(n - 1 ) (d  + an - a )  - d b e  + d2c + ae 2) 

(an + d - 2a)n  k.+l 
x 

(d  - a + 2 a n ) ( d  + 2an - 3a ) (2an  - 2a + d )  z k ._l  

m the discrete case, in terms of  the coefficients a , b . c , d  and e of the given differential/difference 
equation. 

Orthogonal polynomials satisfy further structure equations. One of those is given by the derivaUve/ 
difference rules (see, e.g., [14]) 

~ ( x ) p ' . ( x )  = ~ . p . + l ( x )  + f l . p . ( x )  + ~,,.p._~(x) (n E N := {1.2,3 . . . .  }), (9) 

and 

a ( x ) V ' p . ( x )  = c~.p.+l(x) + f l . p . ( x )  + 7 . P . - i ( x )  (n E N) ,  (1o) 

o r  

( a ( x )  + z ( x ) ) A p . ( x )  = S , , p . + l ( x )  + T . p . ( x )  + R . p . _ l ( x )  (n ¢ N). 

respectively. Here 

S . = ~ . .  T , , = [ 3 . - ) o . ,  R . = 7 . .  

In [14] we showed that the coefficients ~.,fl., and 7. are given by the explicit formulas 

k. 
o : ,  t = an kn+ ] ' 

n(an  + d - a ) ( 2 e a  - d b )  
l~11 z 

(d  + 2 a n ) ( d  - 2a + 2 a n ) '  

(lJ) 

(12) 

7,, = ( (n  - 1 ) ( a n  + d - a ) ( 4 c a  - b 2 ) ÷ ae 2 + d2c - b e d )  

(an + d - a ) ( a n  + d - 2a)n  kn 
x 

( d -  2 a +  2 a n ) 2 ( 2 a n -  3 a + d ) ( 2 a n - a + d )  kn i 
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in the continuous case, and by the formulas 

kn 
a n ~ an_+ltc n 

n(d + an - a ) (2and  - ad - db + 2ea - 2a2n + 2a2n 2) 

(2an - 2a + d ) ( d  + 2an) 

7n ---- ((n -- 1)(d + an - a ) (and  - db - ad + aZn 2 - 2a2n + 4ca + a 2 + 2ea - b 2) 

- d b e  + d2c + ae 2) 

(d + an - a) (an + d - 2a)n k, 
X 

(d - a + 2an ) (d  + 2an - 3a)(2an - 2a + d)  2 k,_l 

in the discrete case, respectively. 
Now, we develop further structural identities. Taking the derivative in (2), we get 

0 = tr(x)p~'(x)  + (v(x)  + ~'(x))p'~'(x) + (2. + ~'(x))p' . (x)  

= (ax 2 + bx + c )p" ' ( x )  + ((d + 2a )x  + (e + b ) ) p " ( x )  + (2. + d)p' . (x) ,  

hence y ( x ) : =  p'.(x) satisfies a differential equation 

(a'x 2 + b'x + c ' ) y " ( x )  + (d' x + e ' )y ' (x )  + 2'., y ( x ) =  0 

of the same type as (2) with 

a ' = a ,  b ' = b ,  c ' = c ,  d ' = d + 2 a ,  a n d e ' = e + b .  (13) 

From this we deduce that the equation 

xp'.(x) = a. p'.+,(x) + ~. p'.(x) + ~. p ._ , ( x ) ,  (14) 

namely a recurrence equation for p'.(x), is valid, and from (13) it follows that 

* = a . ( a , b , c , d  + 2a, e + b), fl* b . (a ,b , c , d  + 2a, e + b), a n 

V* = c . (a ,b , c , d  + 2a, e + b), 

where a . (a ,b , c , d , e ) ,  b . ( a ,b , c , d , e ) ,  and c . (a ,b , c , d , e ) ,  are given by (8) and the explicit formulas 
for A . , B .  and C.. 

Similarly in the discrete case, applying A to (4), we get for y ( x ) : =  A p . ( x )  

0 = (cr(x + 1) - Atr(x))AV'y(x)  + (r(x ÷ 1) ÷ Atr(x) )Ay(x)  + (2. + A z ( x ) ) y ( x )  

= (ax 2 + bx + c)A V'y(x) + ((d + 2a )x  + d + e + a + b )Ay (x )  + (2. + d)y (x ) ,  

hence y(x):----Ap.(x) satisfies a difference equation 

(a'x 2 + b'x + c ' )AV'y(x)  + (d'x + e ' )Ay (x )  + 2'.y(x) = 0 
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of the same type as (4) with 

a ' : a ,  b '=b ,  c ' = c ,  d ' : d + 2 a ,  a n d e ' = d + e + a + b .  (15) 

From this we deduce that the equation 

xApn(x) * * * -~ a n Apn+l(x) Jr [3 n Apn(x) + ~, Ap,-l(X),  (16) 

namely a recurrence equation for Apn(X), is valid, and from (15) it follows that 

, 
~n =an(a,b,c ,d  + 2a, d + e + a + b), ,B*=bn(a,b,c,d + 2a, d + e + a + b), 

and 

7, =c , (a ,b , c ,d  + 2a, d + e + a + b), 

where a,(a,b,c ,d ,e) ,  bn( a, b, c, d, e ), and cn(a,b,c,d,e), are given by (8) and the explicit formulas 
for An,Bn and C,. 

To obtain a derivative rule for y(x) := p'n(x), we take the derivative of (9) to get 

X /t t a( )pn (x) + a'(x)p'n(x) = ~,pn+,(X) + /~np'n(X) + 7np'n_,(X). 

Applying (14) to replace xp'n(x ) results in a derivative rule of the form 

~r(x)p'~'(x) = a'np'n+ , (X) + b'nP'n(X) + c'np'n_,(X). (17) 

Similarly in the discrete case a difference rule of the form 

~r(x)A ~7pn(x ) = a'nAp,+,(x ) + b',Apn(x) + c'nApn_,(x) (18) 

can be obtained for y(x) := Ay(x). 
Finally we substitute (17) in the differential equation. This gives 

a',p'n+ , (x) + b'np'n(x ) + c'np'n_ ~ (X) + V(x)p'n(X ) + 2np,(x)= 0, 

and replacing Xp'n(X) by (14), again, we obtain an equation of the type 

pn(x) =~tnPtn+,(X) -k- bnp',(x) + ~np'n_,(x), (19) 

in the continuous case, and a similar procedure gives 

pn(x) = ?l, Ap,+~ (x) + bnAp,(x) + '~nAp,-l(x) (20) 

in the discrete case. Note that in the discrete case also corresponding equations concerning ~7 are 
valid. 

We note in passing that our development shows by simple algebraic arguments that whenever 
p,(x) is a polynomial system of degree exactly n, satisfying a differential/difference equation of 
type (2)/(4), a recurrence equation of type (6) and a derivative/difference rule of type (9)/(10), 
the system p',+l(X) (Apn+l(x)) is again such a system. This has nothing to do with orthogonality. 
Indeed, in our further development it will become rather important that in the continuous case the 
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powers x n and in the discrete case the f a l l ing  f a c t o r i a l s  

x ~ - : = x ( x  - 1 ) - . . ( x - n + l ) - - ( x - n + l ) . = ( - 1 ) n ( - x ) .  

which by no means become orthogonal families, have these properties. 
* fin,)'., ' *  * b'n, ' and fi.,/~..cn, we can follow the above instructions, To deduce the coefficients a . ,  an, c., 

or we apply the following method: Substituting 

i t t  n - - 2  p . ( x ) = k ,  xn + k ' x n - I  + •n x + . . .  

in the differential/difference equation and equating the coefficients of  x n determines 2n, while equating 
the coefficients of  x "-l and x n-2 gives k~, and k", respecUvely, in terms of kn. These values can be 
substituted in pn(x) .  Next, we substitute p . ( x )  in the proposed equation, and equate again the three 
highest coefficients successively to get the three unknowns in terms of a, b, c, d,  e ,n ,  k ._~ ,k . ,  and k.+~ 
by linear algebra• 

These computations can be easily carried out by a computer algebra system, e.g. by Maple. With 
a few seconds of  computation time, we get 

Theorem 1. For  the so lu t ions  o f ( 2 )  a n d  (4), the re lat ions  (14), (17), (19), a n d  (16), (18), (20), 
respect ive ly ,  are valid. The  coef f ic ients  ~.*, P."*, 7.*, a n,' b n,' cn; a n d  fin, b. ,  Cn' are given by  

. =  n k~ 

~n n~-I "kn+l' 

~ .  = - 2 b n ( a n  + d - a)  + d ( b  - e )  

(d  + 2an)  (d  - 2a + 2an)  

. ( ( n -  1 ) ( a n + d - a ) ( 4 c a - b 2 ) + a e 2 + d 2 c - b e d ) n ( a n + d - a )  k .  

7n = (d  - 2a + 2an)Z(2an - 3a + d ) ( 2 a n  - a + d )  k n - l '  

, an(n  - 1) kn 

a n =  n +  1 "kn+l' 

(n - 1 ) (an + d )  (2ea  - d b )  
b'.= 

(d  + 2 a n ) ( d  - 2a + 2an)  

, ( ( n - 1 ) ( a n + d - a ) ( 4 c a - b Z ) + a e 2 + d Z c - b e d ) ( a n + d ) ( a n + d - a ) n  
C .  ~-- 

k,, 
(d  - 2a + 2an)2(2an - 3a + d ) ( 2 a n  - a + d )  

1 kn 
Cl n ~ n 

n +  1 k.+l 

2ea - d b  7_ 
o.  = ( d + 2an)  ( d - 2a + 2 a n ) '  

k n _ l  

((n - 1)(an + d - a ) ( 4 c a  - b z) + ae 2 + d2 c - b e d ) a n  kn 
Cn 

(d  - 2a + 2an)Z(2an - 3a + d ) ( 2 a n  - a + d )  kn-1 



W KoepJ, D SchmersaulJournal oJ Computattonal and Applied Mathemattcs 90 (1998) 57-94 63 

in the  c o n t i n u o u s  case ,  a n d  

, n kn 

n +  1 k ,+ l '  

~ = - n ( d  + 2a  ÷ 2b)(d  ÷ an - a )  - d ( e  - a - b )  

( 2 a n  - 2a  + d ) ( d  + 2 a n )  

~ = - - ( ( n  -- 1 ) ( d  + an  - a ) ( a n d  - d b  - a d  + a2n 2 - -  2a2n  ÷ 4ca  + a 2 ÷ 2ea  -- b 2) 

- d b e  + d 2 c  ÷ ae  2) 

( d  ÷ an - a ) n  k .  

( d  - a + 2 a n ) ( d  + 2an  - 3 a ) ( 2 a n  - 2a + d) 2 kn-1 

, a n ( n  - 1 ) k .  

a , , =  n + l  ' k .+j '  

(n - l ) ( an  + d ) ( 2 a n d  - a d  - d b  + 2ea  - 2a2n + 2a2n 2) 

b'. = ( 2 a n  - 2a + d ) ( d  + 2 a n )  

c;~ = ( (n  -- 1 ) ( d  + an  - a )  ( a n d  - d b  - a d  + a2n 2 --  2a2n + 4ca  + a 2 + 2ea  - b 2) 

- d b e  + d 2 c  + ae  2) 

× 
( d  + an  - a ) ( a n  + d ) n  k .  

( d  - a + 2 a n ) ( d  ÷ 2an  - 3 a ) ( 2 a n  - 2a  + d)  2 k n _  1 ' 

1 k. 

n + 1 kn+l' 

~ = - 2 a n ( d  + an - a )  - d b  + a d  - d 2 ÷ 2ea  

( 2 a n  -- 2a  + d )  ( d  + 2 a n )  

cn = ( ( n -  1 

- d b e  + d2c + ae  2) 

)< 

) ( d  + an  - a ) ( a n d  - d b  - a d  + a2n 2 - -  2a2n + 4ca  + a 2 ÷ 2ea  -- b 2) 

an 

( d  - a + 2 a n ) ( d  + 2 a n  - 3 a ) ( 2 a n  - 2 a  + d)  2 

in the  d i s c re t e  case. 

k. 
k._l 

Note that (19) gives an immediate formula for the antiderivative of a continuous orthogonal 
polynomial in terms of its neighbors, so that definite integrals can easily be computed, whereas (20) 
gives an ammediate formula for the antidifference of a discrete orthogonal polynomial in terms of 
its neighbors, so that definite sums can easily be computed• 
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As a direct consequence of Theorem 1 we have the following representations. The definition of 
the continuous and discrete families will be given in Section 3 and Section 5. 

Corollary 1. The classical continuous orthogonal polynomials have the following antiderivative 
representations: 

1 
H,(x) dx - 2(n ÷ 1~---3 H~+l(x) 

(see e.g. [24], (5.5.10)), 

fL¢~)(x)dx = L¢~)(x) ¢~) - L . + l ( x  ) 

(see e.g. [25], VI (1.14)), 

f 2(n + 1 + ~) B(~) 
B~)(x)dx= (n + l)(2n + ~ + l)(2n + ~ ÷ 2) "+l(x) 

÷ 4 
(2n + ~)(2n + ~ ÷ 2) Bh~)(x) ( 

+ 2n (~) 
(n + ~)(2n + ~)(2n + ~ + 1) B"-l(x)' 

f 1 Cn~+l (x) 1 C~(x)dx-  2(n + ~) 2(n + ~) C"~-'(x) 

(see e.g. [25], V (7.15)), 

f Pn<"~)(x) dx ---- 
2 ( n + ~ + / ~ + l )  

(2n + ~ +/? + 1 ) (2n + c~ +/~ + 2)1,+)~)(x ) o ( ~  

2(~ - fl) 
( 2 n + ~ + f l ) ( 2 n + ~ + f l + 2 ) l  ~,~)(x ) D (  

+ 

2(n + ~)(n + fl) )P,~'~)(x), 
(n + c~ + fl)(2n + ~ + fl)(2n + 7 + j? + 1 

(see [12], Theorem 6). 
The classical discrete orthogonal polynomials have the following antidifference representations: 

n + 1 c"+l(x)" 

~ k(~P)(x,N) = '-(p)'%+1 tx, N )  - pk~P) (x ,N) ,  

• m(~,',a)(x) _~ # _(~,,~),.~., _ l t m~;,,U)(x), 
" " " (p--1)(n+l)m"+l~'~)  #--  1 

X 
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1 1 (n - N ) (n  + N)  t ._l(x,N),  
~ - ~ " t n ( x ' N ) - 2 ( Z n + l ) t " + l ( x ' N ) - 2 t " ( x ' N ) +  2 ( 2 n +  1) 

~-'~ h~'/~)(x,N)= n + ~ + [3 + 1 (~.t~) 
(2n + ~ + [3 + 1)(2n + ~ + [3 + 2) h"+~ 

(x,N) 

2n 2 + 2n + 2n~ + 2n[3 + ~ - ~N + [3N + ~[3 + [3 + [32 
(2n + ~ + [3) (2n + ~ + [3 + 2) 

h~'~)(x,N) 

(n + ~)(n + [3)(n - N ) ( n  + cz + fl + N)  (~,~) 
+ (n+~-~-  ~) ( -2~-q- - - -~- )~n-+  ~ + [3 + l )  h._, (x,N). 

Proof. Using the representations for ft., b. and ~. of Theorem 1 with the particular values for 
a,b ,c ,d ,e  and k. of the families (see, e.g., [1, 19]) give the results. [] 

Note that the representations for ft., /~. and 6. of Theorem 1, if applied to P . (x )=x"  or P.(x)=x-", 
respectively, yield the simple results 

f xn dx = 1 xn+l ' 
n + l  

1 _ _ X  n+l ' 
Z x ~ - - - n +  l 

X 

respectively. The latter is equivalent to the well-known identity 

~ - - ~ . ( n + k )  1 ~ o  l ~ k._ - 1 kn+l Ik=m+n 
k = ~  (k+n)" -=-~ .k=.  ( n + l ) !  - -k=~ 

~ = 0  = 

_ _ 1  m)n+ 1 ( n + m + l )  
(n + 1)! (n + = m 

The polynomial system 

( l + ~ / n  C¢ n ,F~( - n  ~ )  K~'~)(x) = x + • • 
1 - x - n  -l+-~ 

 o(n ) 
" 2  ~ , (21) 

which was given in [14], is not orthogonal (on the lattice Z), but Theorem 1 is still applicable, and 
we get 

1 
Z Ky (x) = (. + 1) +1 ~.A) 
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On the other hand, by the hypergeometric representation (compare Section 5), one sees also easily 
that KC.~'l~l(x) are translated Charher polynomials 

K~./J)(x)=(_l). I-I'll - x  . (22) c. /3 

2. Connection coefficients 

In this section we would like to consider the problem to determine connection coefficients between 
different polynomial systems. Here we assume that P,,(x)=knxn+ ... (n E [~0) denotes a family of  
polynomials of  degree exactly n and Qm(x)=/Cmxm+ "'" (n E N0) denotes a family of  polynomials 
of  degree exactly m. Then for any n E N0 a relation of  the type 

P~(x) = ~ Cm(n) Qm(x), (23) 
m=0 

is valid, and the coefficients Cm(n) (nE No, m = 0  . . . . .  n) are called the connection coefficients 
between the systems P~(x) and Qm(x). For simplicity we assume that Cm(n) are defined for all 
integers n, m and that Cm(n)= 0 outside the above n × m-region. 

The connection coefficients between many of the classical orthogonal polynomial systems had been 
determined by different kinds of  methods (see, e.g., [24, 10, 20]) until Askey and Gasper [6] used 
recurrence equaUons to prove the positivity of  the connection coefficients between certain instances 
of  the Jacobi polynomials. In a series of  papers [21, 22, 3], Ronveaux et al. recently used such a 
method more systematically. Here we will present an algorithmic approach different from theirs. 

Hence, the main idea is to determine recurrence equations for Cm(n). Since C,,(n) depends on two 
parameters m and n, many mixed recurrence equations are valid as we shall see. The most Interesting 
recurrence equations are those which leave one of  the parameters fixed. We will determine those 
recurrence equations, hence pure recurrence equations with respect to m and n. The success of  this 
method will heavily depend on whether or not these recurrence equations are of lowest order, i.e., 
whether or not no recurrence equations of  lower order for Cm(n) are valid. In cases when the order 
of  the resulting recurrence equation is one, it defines a hypergeometric term which can be given 
explicitly In terms of  shifted factorials (or Pochhammer symbols) (a)~ = a(a + 1) . . .  (a + k -  1) 
= F(a + k)/F(a) using the initial value Cn(n)=k,/[c,. We will see that there are many instances for 
this situation. 

Note that without loss of  generality we could assume that k~ =/~m -- 1, i.e., that P,(x) and Qm(x) 
are monic systems with connection coefficients C'm(n), because if P,(x) and Qm(x) have leading 
coefficients k, and /Cm, respectively, then their connection coefficients Cm(n) are given by 

kn Gin(n). Cm(n)-- ~m 

In the last section we have already solved a rather special connection problem: (19)/(20) ex- 
presses the connection between the polynomial systems P , (x )=  p,(x) and Qm(x)= p'+l(x) or Qm(x) 
=Apm+~(x), respectively. In this case the connection coefficients turn out to be rather simple: 
almost all of  them (namely all with m < n - 2) are zero. 
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Now, we consider the generic case. We assume that Pn(X) is a polynomial system given by (2)/(4) 
with t r (x) - -ax2+ bx + c, and z (x ) - -dx  + e, and that Q~(x) is a polynomial system given by (2)/(4) 
with c?(x) = ~Tx 2 +/~x + ~, and ~(x) = dx + Y. 

We know then that both P,(x) and Qm(x) satisfy a recurrence equation (7) whose coefficients 
an(a,b,c,d,e), bn(a,b,c,d,e), and c,(a,b,c,d,e)  were given explicitly in the last section. Note that 
we will denote all coefficients connected with Qm(x) by dashes. Hence we have 

XPn(X) = a.P~+l(x) + b.P~(x) + c.P~_l(x), 

xQm(x) = amQm+l(x) + bmQm(x) + cmQm-l(x), 

all of  an, b., c., ~im,/~m, ?m given explicitly. 
In three steps, we will now derive three independent recurrence equations for Cm(n). First we con- 

sider the term xP.(x) (see, e.g., [22]). Using the defining equation of Cm(n), and the two recurrence 
equations for P~(x) and Qm(x), we get 

xP~(x) = a.P,,,+l(x) + bnP.(x) + cnP~_l(x) 
n 

= Z(anCm(n + 1 )Qm(x) + bnCm(n)Qm(x) + CnCm(n -- 1 )Qm(x)) 
m=O 

= ~ Cm(n)XQm(x) 
m=0 

= ~_. Cm(n)(rmQm+l(x) + [~mQm(x) + cmQm-l(x)). 
m=O 

By appropriate index shifts, we can equate the coefficient of  Qm(x) to get the "cross rule" 

a.Cm(n + 1) + b.Cm(n) + c.Cm(n - 1)=~m--ICm--I(n) + bmCm(n) + g~m+jCm+l(n). (247 

To deduce a second cross rule in terms of the same variables Cm(n+l),Cm(n),Cm(n-1), Cm-l(n) 
and C,.+l(n), we examine the term xP.'(x) (or xAP~(x) in the discrete case). Using both recurrence 
equations for the derivatives/differences 

XPn'(X)= * ' * ' °* ' ~,, P~+,(X) + 1t. ~ (x)  + ,'. P._,(x) .  

t -* t -* t ~7" .-,t 
xQm(x)  = ~mQm+l(X) + 11mQ~(x) + ?m~m-~(X) 

(or analogously 

• AP.+~(x) + 11" AP,,(x) + 7* AP~_1(x), xAP,,,(x ) = :¢. 

xAQm(x) = -* -* -* AQm_l(x) em AQm+l(X) + 11m AQm(x) + 7m 

m the discrete case), we get 

• / * t * / xP.'(x) = ~. P.+l(x) + 11. P.(x)  + ~. ~_~(x)  

n 

= Z(O~*n Cm(n q- 1 ) O'm(X) + 11" Cm(n) Q'm(X) + 7* Cm(n -- 1 ) Q'm(X)) 
m--O 
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= Cm(n)xQm(X ) 
m=O 

= Cm(n)(O~mQm+l(X ) --I- tim Qtm(X) + 7mQm-l(X))" 
m : O  

Again, by appropriate index shifts, we can equate the coefficient of  Qm(x) to get the cross rule 

ct. Cm(n+ 1)q-fl~ Cm(n)+ 7, Cm(n- 1)=~m_lCm-l(n)+flmCm(n)+)m+lCm+l(n) (25) 

(and the same result in the discrete case). In a similar way the cross rule 

d, Cm(n + 1) + bnCm(n) ~- ~,Cm(n - 1)=•m_lCm_l(n) 4- ~mCm(n ) "-~ ~m+lCm+l(n) (26) 

can be obtained. It turns out, however, that this relation is linearly dependent from (24) and (25), 
and hence does not yield new information. 

Now, we specialize a little. First, we consider the continuous case. To obtain reasonably simple 
results, we assume furthermore that 6 ( x ) =  a(x). We consider the term a(x)P,'(x). Then, using both 
derivative rules 

cT(x)Pnt(x) = an Pn+l(x) -~ fin/On(X) + ~n Pn-I(X), 

6(X) Q~.(x) = ~mQm+l(X) q- flmQm(x) + ~mQm-l(X), 

we get 

~r(x)5'(x) = ~.5+~(x) + 3 .~ (x )  + 7°~_~(x) 

I1 

= Z(O~n Cm(n q- 1 ) Ore(x) q- fin Gin(n) Om(x) + }'n Cm(n - 1 ) Ore(x)) 
m=O 

:- ~ Gin(n) ¢7(X) O'm(X) 
m=O 

: ~ Cm(n)(~mQm+l(X) q- flmQm(x) -Jr ~mQm_l(x)). 
m=O 

Again, by appropriate index shifts, this results in the cross rule 

~, Cm(n + 1) + fl, Cm(n) + ?', Cm(n -1 )=~m-1  Cm-l(n) + flm Cm(n) + ~m+j Cm+l(n). (27) 

To obtain a pure recurrence equation with respect to m, from the three cross rules (24), (25), 
and (27) by linear algebra we ehminate the variables Cm(n+ 1) and Cm(n- 1), and to obtain a 
pure recurrence equation with respect to n, we eliminate the variables Cm-t(n) and Cm+~(n). For 
simplicity we consider the monic case. 
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Theorem 2. L e t  P . ( x )  be a mon ic  p o l y n o m i a l  s y s t e m  9iven by  the di f ferent ial  equat ion  (2) with 

a ( x )  = a x  2 + bx + c, and  v ( x ) = - d x  + e, a n d  let Q, . (x )  be  a m o n i c  p o l y n o m i a l  s y s t e m  9iven by  (2) 
with ~ ( x ) =  or(x), and  ~ ( x ) - - d x  +~.  Then  the relation (23) is valid, Cm(n) sa t i s fy ing  the recurrence  

e q u a n o n  

- ( m  - n ) ( a m  ÷ d - a 4. a n ) ( d  4. 2am)(d 4. a 4- 2am)(d + 3a 4- 2 a m )  

x(d  + 2am + 2a) 2 Cm(n) + ( - d b n  4 + 2 d a m  2 b + d b d  + 2 d a m b  + 2d  Yn a 

+ d 4 ~ + 2d  d b m  - mb  42 - e 42 - 4a2m2e - m2ab 4 + bn da  - 2e da  

- 4aZme - 4 e d a m  + 2m2a 2 ~ + 2Ya 2 n ~ - 2YaZn - m a b d  + 2 m 4 Y a  

4. 2m Ya 2 - bn 2 4 a ) ( d  4, 2am 4. 2a)(m 4, 1 ) ( 4  4. a Jr 2 a m ) ( d  4. 3 a 4- 2 a m )  

x Cm+l (n )  -- ( d  4. 2 a m ) ( m  4, 1 ) ( - a m  - 2a 4, an - 4 4. d ) ( a m  4. an 4, a 4. d )  

×(ab2m 2 - 4a2m2c - 8 aZmc -4- 2arab 2 - 4 a d m c  4, mb  2 4 - 4 a d c  - a~ 2 4. ab 2 - c 42 

4- b ~ 4  - 4a2c 4. b2 4)(m 4- 2 ) C m + z ( n ) = O  

with respect  to m, wi th initial values C,(n)=  1 ,C ,+ l (n ) -  0. Fur thermore ,  the recurrence  equat ion  

- ( d  + 2an) z (d  - a + 2 a n ) ( d  + 2an + 2a)(d + a + 2 a n ) ( - m  + n + 2) 

×(4 -4- am 4- a 4, a n ) C m ( n  -4- 2) 4- (d  - a 4- 2 a n ) ( d  4, a 4, 2 a n ) ( n  4. 2)(d 4- 2an)  

×(-2Yad - bdZn - 2ma2e + 2mZa2e + 2a2en - 4Ya2n 2 + 2 d b d  - 2dea  

4, m b d a  - bd  2 4. 2 e d a  - 4 Yadn 4- 2edan  - a bdn  2 - b d n a  + 2aZ en 2 - mZ abd  

- 4 ya2n - drnbd + 2 d a n b  + 2danZb + 2 d d b n  + 2 d m  ea 

- ed  2 4, d d e ) C , , ( n  4. 1 ) 4- ( d  4- 2an 4- 2a)(n 4- 2)(n 4. 1 ) (an  - am 4. d - d )  

×(an  4- am - a -t- d ) (  be d  - ae  2 - d2 c - 4 a c n d  - 4aZ cn 2 4- abZn 2 4. nbZ d ) Cm( n ) = 0 

with respec t  to n is valid. 

Proof. Using the explicit representations given m the last section in combinauon with (24), (25), 
and (27), and elimination of C m ( n + l )  and C m ( n - 1 ) ,  or C, ,_ l (n )  and Cm+l(n), respectively, yield 
the results. [] 

Note that the recurrence equation given in Theorem 2 reduces to two terms, and hence can be rep- 
resented by hypergeometric terms, for the connection between Laguerre polynomials (P,(x)=U,~(x), 
Q, , (x )  = L ~ ) ( x ) ) ,  and between the Gegenbauer polynomials (P,(x) -- C,~(x), Qm(x)  = C~m(X)). We will 
consider these and more cases by another method in Section 4. 

Now, let us switch to the discrete case. There are two possibilities to obtain a relation similar to 
(27). Replacing the derivative by V', the same argument gives (27), again, valid for o (x )=  6(x) .  If 
a ( x )  + r ( x )  = 6 ( x )  + ~(x),  we can replace the derivative by A, and adopt the above argument to get 
the relation 

SnCm(n4"l)4" TnCm(n)4"RnCm(n-l)=Sm_lCm_,(n)4. f'mCm(n)4.km+,Cm+,(n). (28) 

Hence we get 
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T h e o r e m  3. Le t  P.(x) be a monic polynomial  sys tem given by the difference equation (4)  with 

a (x )  = ax 2 + bx + c, and r(x)  = dx + e, and let Qm(x) be a monic polynomial  sys tem given by (4)  

with 6(x  ) = a(x  ), and ?(x ) = dx  + ~ Then the relation (23)  is valid, Cm( n ) satisfying the recurrence 

equation 

(d  + 2am + 2a )  2 (d  + 3a + 2 a m ) ( d  + a + 2 a m ) ( d  + 2 a m ) ( - m  + n) 

x (an  - a + d + a m ) C m ( n ) -  (d  + 2am + 2 a ) ( d  + 3a + 2 a m ) ( d  + a + 2 a m ) ( m  + 1) 

x ( - a d d  + an 2 d 2 -~ 2 ead - 2a 2 Ym 2 + b d2m - 2na3m 2 - 2a3nm - a2n d 

+ aen 2 d - an d 2 - 2~adm + 4ea2m + badm 2 + 2a3m 2 n 2 + adbm 

+ 2a2m dn 2 - 4a  3 m 3 - 2adam 2 - 4a  2 dm 3 + dn d 2 - 2a2m 2 d - a2m d - dZma 

- 2a" Ym + 2a3mn 2 + and d - 2a3m 2 - 2a  z Yn 2 - d2d - dbd  - 2a3m 4 - 2aamd 

+ 2dmand  + 2a2mZnd + 4a2em 2 + 4aemd - 2aYnd + 2a2ndm - 2a2m dn 

- 3am dd  - dm2ad - 2dbmd - 2am2bd - 2ambd - 5 dm2a 2 + 2ya2n 

- dod - d2md + e d  2 q- dbn d + a n2bd - a n b d )  Cm+j(n) q- (m + 1 ) 

x ( d  + 2 a m ) ( d  + am + a + a n ) ( m  + 2)(4aacm 2 + 2 a  2 em 2 - bdZm - b2am 2 

+ 2yadm - badm 2 + 4 d c a m  + 2a 2 d + 4a3m - 2adbm + 4a3m 3 

- db"m + ad2m 2 + 2a 2 dm 3 + 6 a2md + 2d2ma + 4a  2 6m + 6 a3m 2 

+ 4 dca - 2b2am + 8 aZcm + 2a 2 ~ - b2a + a3m 4 + a 3 + 4a2c - d b  2 - bad + d2c 

+ ad 2 - b d  2 + a~ 2 - d b ~  + 2~ad + 6dm2a 2) 

× ( - a m  - 2a - d + an + d)C,,+2(n) = 0 

wzth respect to m, with initial values C . ( n ) =  1, C.+l(n)=-O. Furthermore, the recurrence equation 

(d + 2an + 2 a ) ( n  + 2 ) ( - n 2 a b  2 - d2bn - dbe  + 2a2n2e + 4nZaZc 

+ 2dn3a 2 + d~'an 2 - dbZn + a3n 4 + d2c + ae 2 - danZb + 2dane + 4dcna)  

× ( n  + 1 )(an - a + d + a m ) ( - a m  - d + an + d)  Cm(n) - (d + 2an) 

× ( d -  a + 2 a n ) ( d  + a + 2an ) (n  + 2 ) ( - 2 e a r l -  2na3m 2 + ed d 

+ 2a3nm + amd 2 - amZd 2 + d2n d - 2eaam + anZd d - 2a3m2n 2 

- 2a2m dn 2 - d2bn - a2m2d - andb + 2a 2 nZe + 2a3mn 2 + 3a2nd 

+ 7 a2nZd + and d + 2ead - d m d  2 + 4dn3a 2 - 4a 2 6n 2 

- 6d 2 + 2aZne + d 2 d q- 2dZan 2 + 2dbd  + 2a3n 4 + ad 2 - bd 2 

- danZb + a2md + 2dane + 4a3n 3 + 2a3n 2 - 2dmand  - 2aZm2nd 

+ 2a2em 2 + 2aem d - 4aYnd - 2aYd + 2a2ndm 

- 2a2m d n -  amdd  - d b m d  - am2b d + ambd - 4 6a2n 
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+ 2dbn  d + 2anZb d + 2anb d + 3and  2) Cm(n + 1 ) 

+ (d  + 2an)  2 (d  + 2an + 2 a ) ( d  - a + 2 a n ) ( d  + a + 2 a n ) ( - m  + n + 2) 

x ( d  + am + a + a n ) C m ( n  + 2 ) = 0  

with respec t  to n is valid. 

N e x t  let # ( x )  + ~(x)  = ~r(x) + ~(x),  hence  ~=  a, b =  b + f ,  ~= c + ,q, d =  d - f ,  4= e - y f o r  s o m e  

cons tants  f , ,q .  Then  the re lauon  (23) is valid, Cm(n) sat is fy in9 the recurrence  equat ion  

( - d  + f - 2 a m ) ( - d  + f -  2am - 2 a ) Z ( - d  + f -  a - 2 a m ) ( - d  + f - 3a - 2 a m )  

x ( - m  + n ) ( a n  - a + d + a m ) C , , ( n )  - ( - d  + f - 2am - 2 a ) ( - d  + f -  a -  2 a m )  

x ( - d  + f - 3a - 2 a m ) ( m  + 1)(2eaZm - 2a3m2n - d 3 + 2a29m + 2ead  - ad  z 

- bd  2 + d2bn + d2an 2 + aZnZd - 2a2n2e + 2aZne - a2nd + danZb - a n d b  

- 2 d a n e  - 2 a e f  - d a n 2 f  + 2a3mZn 2 + 2 a n m d  2 - 2a3m e - amZbd 

- a m b d  - 7aZm2d - 3aZmd - 3amZd 2 - 4 a m d  2 + f 3 m  - 4a3m 3 - 2a3m 4 

- a m f b  - 2 a 2 m f n  2 + 2a2nZdm + 2 a Z f m n  - 2a3mn + 2a3n2m - m d  3 

+ f b a n  + 2 d y a n  + 2aZm2nd + d3n + 2a2em 2 + a2n f - dbn  f - dZn f 

- a 2 n 2 f  - a n Z b f  - 29a2n + 2gaZn 2 - 2 m f a n d  + m f d  2 + 3 f a d  - 2 f Z a  

-- 2 f Z d  + 2 f d  2 + 4 a m 2 f d  + 2 d e a m  + dZq + 5 a Z m f  + 9aZmZf  - md2b 

- f e d  - f q d  - m f 2 d  Jr 8 a m f d  + f 2 e  - 2 a e m f  + 2 a d y m  - 2a f , qm  

- 4a2dm 3 + 4 a 2 f m  3 + d f b  + f 2 b m  - 3 a m 2 f  2 + 2a2m2q - a m 2 f b  - 6 f 2 a m  

+ f 3 ) C m + l ( n )  - ( - d  + f - 2 a m ) ( m  + 1)(4eagm q- 8a2em - 2b2am 

q- 4a2qm q- 2 e a d  + 4 d c a  - d b  2 q- d2c + ad  2 - bd  2 - b2a q- ae 2 + 2a2e 

+ 2a2d + 4a2c + a 3 - d b e  - bad  - 2 a e f  + 6a3m 2 + 4agm - am2bd 

- 2 a m b d  + 6a2m2d + 6a2md + amZd 2 + 2 a m d  2 + 4a3m 3 + a3m 4 

- bZam 2 + 4aZcm 2 - 2 a m f b  + 2aZem 2 - m f d  2 - 3 f a d  + f 2a  + f 2 d  - f d  2 

- 3 a m 2 f d  + 2 d e a m  + d2g - 6 a 2 m f  - 6 a 2 m Z f  - md2b + 2dga  - f e d  

- 2 f .qa  - f y d  + m f 2 d  - 6 a m f d  + f Z e  - 2 a e m f  + ag 2 + 4 a d c m  + 2ad.qm 

- 4 a f c m  - 2 a f y m  + f Z c  - 2 d f c  - 2ae9  + dbg  + f b e  - f b q  + 2a2dm 3 

-- 2 a 2 f m  3 -- db2m + f b Z m  + f 2 b m  + a m 2 f  2 + 2a2m2y + f Z b  - a m Z f b  - a f b  

+ 2 f 2 a m  - 2 a 2 f  + f b  2 q- 2a29 - 4 a f c ) ( m  + 2 ) ( - d  + f - am - an - a )  

× ( - a m  - 2a + f + an )Cm+2(n)=  0 
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with respect to m, with initial values C n ( n ) = l , C . + l ( n )  = O. Furthermore,  the recurrence 

equation 

(n + 2)(d + 2an + 2a)(2dn3a 2 + a3n 4 + d2c + ae 2 - dbe  - db2n - dZbn 

- nZab z + d2an 2 + 2a2n2e + 4n2a2c - danZb + 4dcna + 2dane)  

x(n + 1)(an - a + d + a m ) ( - a m  + f + an)Cm(n) - (d - a ÷ 2an ) (d  + a + 2an) 

x(d + 2an) (n  + 2 ) ( - 2 e a Z m  - 2a3mZn + d 3 + 4dn3a 2 - 2ead + 2a3n 4 

÷ ad z ÷ bd 2 + 4a3n 3 + 2a3n 2 + d2bn + 3dean 2 + 4and 2 + 7aZn2d 

- 2a2n2e - 2a2ne + 3a2nd + dan2b + andb - 2dane + 2 a e f  - d a n 2 f  

- 2a3m2n z - 2anmd 2 - am2bd + ambd  - a2m2d + a2md - amZd 2 

+ 2 a 2 m f n  2 - 2a2n2dm + 2 a 2 f m n  + 2a3mn + 2a3n2m - m d  3 - 2 f b a n  

- d f a n  ÷ 4dgan - 2aZm2nd + d3n + 2a2em 2 - 2 d b n f  - d Z n f  - 2anZb f  

+ 49a2n + 49a2n 2 + 2 m f a n d  + m f d  2 + m f b d  - f d  2 + 2deam + d29 

- md2b + 2dga - f e d  + a m f d  - 2 a e m f  - 2 d f b ) C m ( n  + 1 ) - (d - a + 2an) 

x(d + a + 2an ) (d  + 2an)2(d + 2an + 2 a ) ( - m  + n + 2 ) ( - d  + f -  am - an - a) 

×Cm(n + 2 ) = 0  

with respect to n is valid. [] 

Note that the recurrence equation for g (x )=  a(x) given in Theorem 3 reduces to two terms, and 
hence can be represented by hypergeometric terms, for the connection between Charlier polynomials 
(P.(x) = e~)(x), Qm(x) = c~')(x)), between Meixner polynomials (Pn(x) = m~"U)(x), Qm(x) = m~'")(x)), 
and between Krawtchouk polynomials (P~(x) = k~P*(x,N), Q m ( x ) =  k~mP)(x,M)). We will consider these 
and more cases by another method in Section 6. 

3. Hypergeometric representations: continuous case 

~ ( ~  l~) ~ ~  ~C~) ~ ~ ( ~ )  Note that by P . '  ( x ) , C . ( x ) , L .  ( x ) ,H~(x ) ,B~  (x)  we denote the monic Jacobi,  Gegenbauer, 

Layuerre ,  Hermi t e  and Bessel  polynomials .  Their non-monic counterparts have the standardizations 
(see, [1], (22.3). and [2]; A1-Salam denotes the Bessel polynomials by Y~V)(x)) 

system 

We get 

P~(~'/~)(x) C~(x) U.~)(x) Hn(x)  B~) (x )  

1 (2n+:~+~)  (:~),, 2" (--  1 )" 2"  c.+=+l),, 
~ 7  ,, n ~ n t n I 2"  
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Theorem 4. Let  P~(x) be a monic polynomial system given by the differential equation (2) with 
a(x) =ax  e + bx + c, and z ( x ) = d x  + e. Then the power series coefficients Cm(n) given by 

P,(x) = ~ Cm(n)x" (29) 
m-O 

satisfy the recurrence equation 

( m  - n)(an + d - a + am)Cm(n) + (m + 1)(bin + e)Cm+l(n) 

+ c(m + 1 )(m + 2)Cm+2(n) = O. (30) 

In partwular, i f  c : O, then the recurrence equation 

(m - n)(an + d - a + am)Cm(n) + (m + 1 )(bin + e)Cm+l(n) = 0 

is valid, and we have the hypergeometric representation 

- - n ,  a a 
2F~ _e - - ~ X  , (31) 

b 

( ~ ) . ( ~ - ) .  
P . ( x ) -  (~_~ ~)°~)° 

valid for  a ¢ O, or 

n 

valid J or a = O, b ¢ O, 

, F ,  ~ - -~ x , 

or finally 

(. P.(x)= ~Fo _ - e X  . 

(32) 

(33) 

valid Jor a = 0, b = 0. 
Therefore, the classical continuous orthogonal polynomials and their monic counterparts have 

the following hypergeometric power series representations: 

( / x) p,,~,.iJ)(x ) --_ n + ~ 2FI 
n 7 + 1  

( - n , - n - ~  2 ) (~+ +~)(x~)~ ~n ~ ~ 

= ( - 1 ) "  n + f l  2F1 
n f l + l  

/ ~ )(~/~ ~ ~  ~x~) = 2 n + n  + f i  2 F l \ - - Z n - - ~ - - f l  
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~~ . ( - n / 2 , - n / 2  + l/2 1 )  
C , ( x ) = x  2Fi - n - ~ +  l ~ ' 

( O~ )n 2 n X n 

C~(x) = n! 
- n / 2 , - n / 2  + 1/2 

2El k - n - ~ + l  

- - n  x ~ X n 2Fo ~ _ - , [~.~)(x)=(1 + ~ ) . ( - 1 ) " , F 1  1 + ~  

Ll~)(x)= n + ~ 1F1 x -- 2Fo - 
n 1 ~ - ' 

H . ( x ) = 2 n x , , 2 F o ( - n / 2 , - n / 2 + l / 2  1 )  

" (x)--  (n + ~ + 1). 2F° - - 2  - 2 n - ~  ' 

Bt.~)(x) = 2Fo ( -n ,  n + _ ~ + 1 

These results are all parttcular cases o f  the recurrence equation (30) 

ProoL Substituting the power series (29) into the differential equation, and equating the coefficients 
yield the recurrence equation (30). 

For c = 0 this recurrence equation degenerates to a two-term recurrence equation, and hence es- 
tabhshes the hypergeometric representations (31)-(33),  using the lmtial value Cn(n)= 1. 

A shift in the x-variable then generates the representations for the Jacobi polynomials. The two 
points of  development xl = 1 and x2 = - 1  correspond to the zeros of  ~r(x). 

Note that some of the hypergeometric representations correspond to each other by changmg the 
direction of  summation. 

The other representations follow by substituting the particular parameters a, b, c, d, and e into the 
recurrence equation (30), and using the initial value Cn(n)=k.  (or Cn(n)= 1 m the monic case). 

[] 

We would like to mention that the recurrence equation (30) cames the complete information about 
the hypergeometric representations given in the theorem. 

The method described results in four different hypergeometric representations for the Jacobi poly- 
nomials. Many more hypergeometric representations exist, but the algorithmic procedure presented 
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finds power series representations only. For example, the representation (see, e.g., [1] (22.5.45)) 

("+. ')  Jx+' 
cannot be discovered by this method. 

The method was able to find hypergeometric series representations with point of development 
x0 = 0 for the Gegenbauer polynomials which are specific Jacobi polynomials, but failed in the Jacobi 
case, though. One might ask whether such a representation exists. This question can be completely 
answered by an algorithm of Petkovgek [18]. Petkov~ek's algorithm finds all hypergeometric term 
solutions of holonomic recurrence equations, i.e., homogeneous linear recurrence equations with 
polynomial coefficients. Using the recurrence equation (30), an application of Petkovgek's algorithm 
proves that the Jacobi polynomials do not generally have a hypergeometric series representation at 
the origin. 

Note that the method of the last section, although more complicated, does also give the recurrence 
equation (30), and hence the above results. 

4. Power representations 

Whereas in the last section we considered the specific connection coefficient problem for 
Q m ( x ) - - x  m, in this section the opposite problem, having P,(x) =x",  is studied. 

In many applications, one wants to develop a given polynomial in terms of a given orthogonal 
polynomial system. In this case handy formulas for the powers x" are very welcome. 

Theorem 5. Let Q,,(x) be a monic polynomial system 91ven by the differential equation (2) with 
#(x) = ~x 2 + bx + ~, and ~(x) = dx + 4. Then the coefficients Cm(n) o f  the power representations 

x n Cm(n)Om(x) 
m=0 

satisfy the recurrence equation 

(n - m ) ( d +  2t/m)(d + 3~/+ 2dm)(d + ff + 2~/m)(d + 2~/m + 2a)2Cm(n) 

+ (aTy + bd + 2aTbm + 2t/m2/~ + 2~imb + 2~/n - aTbn)(a7 + 2~/m + 2t/) 

x (m + 1 )(d + 3t /+  2am)(d + ~/+ 2am)Cm+~(n) -- (m + 2)(--4ti2ym 2 

if- a/92m 2 q- 2tlbam - 4a~md - 8a2cm q- mb2d -- tTe 2 -- d2c  -31- b c d  - 4ff2~ 

- 4~/?d + a b  2 -q-- b 2 d ) ( a m  ~- a n  -}- a -~- d)(m + 1)(d + 2ffm)G+2(n) = 0. ( 3 4 )  

I f  Y = O, then the recurrence equation 

( n - m ) ( d +  2 ~ m ) ( d + f  + 2 f fm)Cm(n)+(m+ 1)(bm+O)( f fm+na+d)Cm+~(n)=O (35) 
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is valid, and we 9et (6b # O) 

(b)n ( ~)n (_n) m (~)m (K+d~ (4~b ) \ 2d ,]m m. 
Cm(n): (a)n (~)m m' 7 7 V -  • 0 6 )  

\ a ]m 

Therefore, the followin9 representations for the powers in terms o f  the classical continuous orthog- 
onal polynomials are valid: 

(1 - x ) " = 2 " F ( c c + n +  1) ~ ( ~ + f l + 2 m +  1)F(~+ ]3+m + 1)(_n)mP(m~,~)(X) 
m=0 F(o t+m+ l ) F ( ~ + f l + n + m + 2 )  

(see e.9. [20], 136, Eq. (2), or [17], Section 5.2.4; note the essential misprint in this formula[), 

n 1)m( ~ (1 + / ~ + 2 m +  
m=0 F ( f l + m +  1 ) F ( ~ + [ 3 + n + m + 2 )  ~ ;mm , l, 

tn/2] (_n/2)k(_n/2 + l /2 )k (_n_~)k  ( ~)~ ~ 

k=0 

(Ln/2] denotin9 the laroest inteoer smaller or equal to n/2) 

n! ~ ( -n /2  - 0(2 + 1)k(--n -- 
(~)"2--------~ k=o (--n/2 Y ~ / ~  ~)k(--1)kC"~-Ek(X) 

X n 

n! [~/~2j n + o~- 2k 
= 2-~ ~.a "-k)--'~£1-'~k C~n-Zk(X~ ) 

k=0 

(see e.9. [20], 144, Eq. (36), or [17], Section 5.3.4), 

xn=(1 +~) ,  
m=0 ( 1  m! (-1)mL(~)(x)' 

x" = (1 + o~),, (1 + ~)m 
m=0 m=0 

(see e.9. [20], 118, Eq. (2), or [17], Section 5.5.4), 

Ln/zJ ( -n /2)k ( -n /2  + 
xn= Y]~ k! 1/2)k/t"-2k(x)' 

k=0 

Ln/ZJ n[ Ln/ZJ (--n/2)k(--n/2 + 1/2)k ~ 1 X n E k!2n_Zk H,,-zk(X) = ~ ~ k[(n - 2k)! 
k=0 = 

H.-2k(x) 



W. Koepf, D SehmersaulJournal of Computattonal and Applied Mathemattcs 90 (1998) 57-94 77 

(see e.9. [20], 110, Eq. (4), or [17], Section 5.6.4), 

( - 2 ) ~  z..., + (-n)m(c~/2 + 1)m(~/2 + 3/2)m2mB(')(X),m xn 
(~ + 2). m=0 (n + 2 + or)ram! 

( - 2 ) "  @ (-n)m(O~ ÷ 1)m(~/2 + 3/2)m x n 
(~ + 2)n ~ (n + 2 + ~)m(~/2 + 1/2)mm! Bm)(x) ~-~ 

m=0 

= (__2)n ~L~(2 m + ~ + 1)(-n)mF(o~ ÷ m + 1) B~)(x ) 
m!F(n + m + ~ + 2) m=0 

(see [2], (7.5); note the essential misprint in this formula!; compare [20], 150, Eq. (7)). 

Proof. In Section 2 it was shown how one obtains three essentially different cross rules for the 
connection coefficients between P,(x) and Qm(x). We modify this method here. For Qm(x), we have 
the differential equation 

6(x)O~(x) + ~(x)Otm(X) + ).mOrn(x) = 0 

with 6(x) -- gtx 2 + bx + ~, and the derivative rule 

6(x)Q'm(X) = ~mQm+l(x) ÷ ~mQm(x) + ~mQm-l(x), 

and it is easily seen that our current P.(x)=x n satisfies any of  the derivative rules 

6(x)P~'(x)--~nP~+l(x) + bnP.(x) + ?nP,_l(x). (37) 

Hence in our situation, we get the two cross rules (24) with a. = 1, b, - -c ,  = 0 

Cm(n ÷ 1 ) = am-1Cm-l(n) ÷ bmCm(n) ÷ Cm+l Cm+l(n) (38)  

and (26) with fin = 1/(n + 1 ), /~, = ~, -- 0 

l~Cm(n + 1)=Ctm--lCm--l(n) + ~mCm(n) + ~m+~C,,+~(n) (39) 
n + l  

which we had deduced in Section 2. Using the derivative rule (37), we obtain the third cross rule 

anCm(n + 1) + [~nCm(n) + cnCm(n - 1)=~m--JCm-t(n) + flmfm(n) ÷ 7m+Ifm+l(n). (40) 

To receive the recurrence equation (34), we use Theorem 1 writing the cross rules in terms 
of  ~i,/~, ~, d, and Y, only. Then by linear algebra we eliminate the variables Cm(n + 1 ) and Cm(n - 1 ) 
to obtain a pure recurrence equation with respect to m. (Similarly by elimination of  the variables 
Cm_~(n) and Cm+l(n) a pure recurrence equation with respect to n is obtained.) A shift by one gives 
(34). 

If ~ =  0, then the recurrence equation has still three terms, unfortunately. But since for ~ =  0 
in neither of the three cross rules (38)- (40)  the variable Cm(n-  1) does occur, we can do a 
similar elimination, this time eliminating the variables Cm(n + 1) and Cm-l(n), leading to the first 
order recurrence equation (35). Hence the hypergeometric representation (36) follows. The power 
representations for the Jacobi, Laguerre and Bessel polynomials are special cases thereof. 
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In the case of Hermite and Gegenbauer polynomials, (34) contains only the two terms Cm(n) and 
Cm+2(n), which leads to the desired representations. 

Note that, again, the recurrence equation (35) carries the complete information about the hyper- 
geometric type representations given in the theorem. 

As an immediate consequence of the above theorem, we get the following connection coefficient 
results. 

C o r o l l a r y  2. The following connection relations between the classical orthogonal polynomials are 
valid: 

. F ( n + f i + l ) F ( n + m + ~ + f l + l )  
P,(~'/J)(x)= ( 2 m + 7 + f l + l ) F ~ f l  + 1 )  F ( n + ~ + f l + l )  

ra=O 

r(m + ~ + ~ + 1 ) (~ - 7),-m p~;,,l~)(x ) 
× F ( n + m + 7 + f l + 2 )  --(n---~. 

(see e g. [4], (13)), 

. F ( n + ~ +  1) F ( n + m + ~ + f l +  1) 
Pn(~'~)(x) = ( - - 1 ) n - m ( 2 m + ~ + 6 + l ) - ~ + - - ~ - + l )  F ( n + ~ + f l + l )  

m=O 

F ( m + ~ + 3 + l )  ([~--(~).--m (~3) , 
X r ( n + m + -~ ~- -~ T 2 ) [n - - ~v. P~m ' ( x ) 

(see e.g. [6], (2.8)), 

b/2J 
C~(x)= F(fl) (n - 2k + f l )r(k  + ~ - fl)r(n - k + ~) /I i )  Cn-2h(X) 

m=o 

(see e.g. [5], (3.42)), 

LT(x)  = ~ (~ -/b.-,. (/~) 
m=O ( n ~ ' l  Lm (X) 

(see e.g. [20], l l9, Eq. (2)), 

B ( ~ ) ( x ) = ( - 1 ) n ( ~ -  fl), £ (--n)m(fl+ l)m(fl/2 + 3/2)m(n+~W1)m m (fl) X 
(fl + 2), ( n + 2 + f l ) ~ ( f l / 2 + l / 2 ) m ( f l - ~ + l - - n ) - ~ m !  ( - 1 )  B m (  ) 

m=0 
n 

= Z (--1)m(2m + fl + 1). ( - n L r ( f l  + m + 1)(n + o~ + 1 ) , . r ( B  - = + 1)B~)(x) ' 
m=0 m!F(n + m + fl + 2 ) F ( m  - n + f l  - ct + 1 )  

(see [2], (8.2); note the essenttal misprint in this formula!). 

Proof. We want to find the coefficients Cm(n) in the relation (23) 

P.(x)-- £ C~(n)Q~(x). 
m=0 
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Combming 

P.(x)= ~ Aj(n)x ~ and x J = ~ Bm(J)Om(x) 
JEg mCg 

yields the representation 

P.(x) = ~ ~ Aj(n)B,.(j)Qm(x), 
jEZ m e g  

and interchanging the order of summation gives 

Cm(n) = Z A,(n)Bm(j). 
jGg 

Similarly, if (as in the Gegenbauer case) 

P,(x) = ~_~ Aj(n)x "-2' and x; = ~ Bm(j)Qj-2m(X) 
leg mE~ 

then one gets 

Din(n) = ~ Aj(n)Bm_l(n - 2j)  
jEZ 

with 

P.(x) = ~ Dm(n)Q._zm(X). 
m=O 

Since the summand F(j,m,n):=Aj(n)Bm(j) turns out to be a hypergeometric term with respect to 
(j,m,n), i.e., the term ratios F(j  + 1,m,n)/F(j,m,n), F(j ,m + 1,n)/F(j,m,n), and F(j,m,n + 1)/ 
F(j,m,n) are rational functions, Zeilberger's algorithm ([26, 11], see, e.g., [9]) applies and finds 
recurrence equations for Cm(n) with respect to m and n. 

In all cases considered, Zeilberger's algorithm finds recurrence equations of first order with respect 
to m (as well as for n). The given representations follow then from the initial value C . ( n ) =  
k./7,.. [] 

For some applications, it is important to know the rate of  change in the direction of the parameters 
of the orthogonal systems, given in terms of  the system itself. By a limiting process, these parameter 
derivative representations can be obtained from the results of  Corollary 2. 

Corollary 3. The following representations for the parameter derivatives of the classical orthogonal 
polynomials are valid: 

I~ ") .-1 1 
~-~P. 'v (x)=~- '~ ~ + f l + l + m + n  

m : 0  

x (P.~'~)(x)+ ~+fl+n-ml + 2 m  
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(see [7], Theorem 3), 

~ '~) (x )  = 
m=O 

~ P.~'~(x ) = 

(see [7], Theorem 

+ Pb~(x) = 

2n_m (2m+~+/~] o ~ + f i + l + 2 m  ( f l + m + l ) n - m  ~,~,,) . m " . . . . .  pt  ,p (~'~ 
n_m(2n+~+l~) ~ + f l + l + m + n ( a + f l + m + l ) n _ m  m .~), 

\ n / 

n - 1  l 

Z 
m = O  ~ + f l + l + m + n  

x (P.(~'~(x) + ( -  1)"-m + fl + 1 + 2m (~ + m + 1 )n--m ~'fl)(X)) 
n - m ( o~ + fl + m + 1)n_m e~m 

3), 
n--]  ( 2 m + c e + f l )  

( - 2 )  "-m a + f l + l + Z m  ( a + m +  1). m . 
", m , . . . . . .  -,,, /6t~,/J)/- x 

m=O n - - m  ( 2 n + ~ + l ~ ) o ~ + f l + l + m + n ( o ~ + f l + m + l ) n _ m  m .~), 
\ n / 

. - I (  2(1 + m )  2 ) C ~ ( x )  
C ~ ( x ) = y ~  ( 2 ~ + m ) ( 2 ~ + l + 2 m )  + 2 ~ + m + n  

m=O 

"- '  2(1 + ( - 1 ) " - m ) ( ~  + m) 
+ Z c:.(x) 

m=O 

(see [12], Theorem 10), 

n - I  

~_~a ~,~(x) = ~ 2m_.+ , (~)mn! (1 + ( -  1 ) . -m)(~ + m) ~m(X) 
m=O (~).m! (2~ + m + n)(n -- m) 

/n/2J n! n - 2k + ~ -~ 

= Y~ (c¢ + n - 2k)2k4k(n -- 2k)! k-(n--- k + ; )  Cn-2k(x)' 
k = l  

.-1 1 L~)(x)  
L ~ ' ( x ) = Y ~  n m 

m=O 

(see [12], Theorem 10), 

n-- I  1)._m 
L(~)(x)=Z (--- n' ~ . . .  r ( : O . v .  ~ L / i.h, ) ,  

n - -  m m !  
m 

m=o 

n - 1  1 

B~(x)-- Z ~ + n + m + l  
m=O 

x B ~ ( x ) + ( -  ( n - m )  ( e + m + l ) ~ _ m m !  B~(x)  ' 

°-' ( - 2 1  "-m n! ~ ( x ) .  
/~n~(x) = Z (n -- m)(c¢ + n + m + 1) (~ + 2m + 2)2n-2m-lm! 

m=O 
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Proof. Given the connection relation 

Pfft(X) -~- ~ Cm(n; 0~, fl)P~(x), 
m=0 

we build the difference quotient 

C.(n; c~fl) -- .-1 Cm(n; ~,fl) o 
= ~ ---~ 1P~t~(x) + ~ ~ -  ~ "PPm(x) 

m=O 

so that with /J ---+ 

~__~p~(x)=limC.(n;~,fl)- lp~(x) "-' C ~ n ~  ts--.~ ~ - ~  + ~ lim fl)P.~(x) 
m=O / ~  

since the systems P~(x) are continuous with respect to ~. This gives the results. [] 

(41) 

Note that for monic polynomials (and moreover if k. does not depend on ~ as in the Laguerre 
case) the first limit in (41) equals zero. Hence the parameter derivative representations are simplest 
in such a case. 

5. Hypergeometric representations: discrete case 

By h~'~)(x,N) and Q.(x;~,/~,N) we denote two commonly used standardizations of the Hahn 
polynomials (see [19], and [23]), and by m~r'")(x), k~.P)(x,N) and c~")(x) the Meixner, Krawtchouk 
and Charlier polynomials are denoted, respectively. They have the standardizations 

system h~'~)(x,N) Q.(x;~,fl, U) m~'')(x) k~P)(x,N) c~l')(x) K~,~)(x) 

k. (~+a+Zn). ((~+/s+"+'),,-N),,(=+, ),, (1 -- ~)" ., ± (-- ~,)" ~" 

The polynomials t.(x,N):=h~°.°)(x,N) are the discrete Chebyshev polynomials. The polynomials 
K~'~)(x) given in (21), are not orthogonal (see, however, (22)), but satisfy the difference equation 

A ~7y(x) + (~x + [3)Ay(x) + 2.y(x) = 0. 

The monic counterparts of the discrete systems will be denoted by h7'/3)( x, N), 0n(x; ~, fl, N), t'. (x, N), 
k. (x,N) and ?~.U)(x), respectively. Observe that therefore by h. we do not denote the 

Hahn-Eberlein polynomials h~U,V)(x,N) as in [19]. 
In the continuous case, we looked for power series representations, i.e., we set Qm(x)=x m. The 

corresponding chmce in the discrete case is a representation in terms of the falling factorial 

Qm(x)=x m- : = x ( x -  1 ) . . - ( x -  m + 1 ) = ( x -  m + 1)m =(--1)m(--X)m. 

We get 
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Theorem 6. Let  P.(x) be a monic polynomial system given by the difference equation (4) with 
a(x)  = ax 2 + bx + c, and r(x)  = dx + e. Then the series coefficients Cm(n) given by 

"._¢.. 
P~(x) = ~ Cm(n)x m- 

m = 0  

satisfy the recurrence equation 

(an + am - a + d) (n  - m)Cm(n) 

+ ( m  + 1)(an 2 - 2am 2 - an - am + nd - 2din - b m -  d - e)Cm<(n) 

- (m+l)(m+2)(am 2 + 2 a m + d m + b m + a + d + b + c + e ) C m + 2 ( n ) = O .  

I f  c = O, then the recurrence equation 

(n - m)(am + d + an - a ) C m ( n )  - (m + 1 )(am 2 + mb + md + e ) C m + l ( n )  = 0 

is valid, and we have the hypergeometrtc representation 

e . (x )  _- ( ~ ) °  , - a  k4) 

- n , - x , . -  l + ~- ) ¢/ 

× 3F2 b+a+X/(e_a)2_4ae b + d _ k / ( b _ d ) , _ _ 4 a  e 1 , 

2a ' 2a 

valid for  a ¢ O, or 

(42) 

(43) 

(44) 

(45) 

(n:x 
-I- 2Fi ~ , (46) 

vahd for  a = O, b + d 7k O, or finally 

valid for  a = O, d = - b .  
Therefore, the classwal discrete orthogonal polynomials and their monic counterparts have the 

following hypergeometric series representations: 

h :~ , l~) (x ,N)_( -1  n ( - n , - x , n +  l + ~ + f l  l , l _ N  n! ) (fl + l ) . (N  - n).  3~ 1 
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(see e.9. [19], p. 54, Table 2.4), 

~(~./3)(x,N)= (1 + ~ ) , ( I - N ) ,  3 F 2 ( - n , - x , n + l + ~ + ~  1 ) ,  
(1 + n  + ~ + f l ) , ,  f l + l , l - N  , 

1,1 - N  

t , (x ,N)  -- n!(1 - N),  ( [ ' -n , -x ,n  + 1 1) 
(1/2),4" 3F2\ 1 , 1 - N  

Qn(x; ~, [LN) = 3F2 1 
~+  I , - N  

(see e.#. [23], 1.5), 

Qn(x; ~, fl, N ) = ~ (~'~) h, (x,N + 1), 

m~,:'l')(x) = (7), 2Fl ~ 1 -- 

(see e.y. [19], p. 54, Table 2.4), 

.=~,'. f,)z_-, 2F1 1 -- , 
" "  \ I 

k~ ( . ~ , N ) = ( - 1  2Fl --nlVx 

(see e.9. [19], p. 54, Table 2.4), 

k. ( ~ , N ) = ( - N ) . p  n 2F~ - n , - x  

(see e.9. [19], p. 54, Table 2.4), 

These results are all particular cases of  the recurrence equation (44). 

Proof. Substituting the series (42) into the difference equation, and equating the coefficients of the 
falling factorials yield the recurrence equation (43) which had been obtained by Lesky [16]. 
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This conversion can be easily done using a computer algebra system by bringing the given differ- 
ence equation into the form (5), expanding it, and replacing any occurrence of  Ay(x) by (m+ 1)C,,+1, 
any occurrence of  a product xy(x)  by C,,-i + mCm and any occurrence of a shift y(x + 1) by 
Cm + (m + 1)Cm+l since 

A x m = m x  m-I , x x m z x  m+l q -mx  m, 

and 

(x + 1 )m_ = x ~_ + mxm-1. 

Iteratively for all nonnegative Integers j ,  k any of  the terms x ~ A ky(x) and x~y(x + k) can be replaced 
by these rules. Note that this method can also be applied for higher order difference equations with 
polynomials coefficients. 

Different from the continuous case, the recurrence equation (43) does not degenerate to a two- 
term recurrence equation for c = 0. To get (44), nevertheless, we must use a different approach. One 
possibility is to apply Petkov~ek's algorithm [18] to the recurrence equation (43), leading to (44). 

Another possibility is to modify the method which will be used in the next section to deduce 
representations of  the falhng factorials in terms of discrete orthogonal systems. This method yields 
(44) directly. 

As soon as (44) is deduced, the initial value C,(n)= 1 gives the hypergeometric representations 
(45)- (47)  which include all other representations by substituting the particular parameters a, b, c,d, 
and e. 

We would like to mention that, again, a single recurrence equation, (43), carries the complete 
information about the hypergeometric representations given in the theorem. 

Note furthermore, that the radicals in (45) do only occur by the representation used: the radical 
factors come in pairs whose product is radical-free. Note that the computation which gives (45), 
answers a question raised by Koornwinder [15]. For more examples of this type see [13]. 

Our method was able to find hypergeometric series representations for the particular case c = 0. 
This is the most important situation since all the classical discrete orthogonal families are of  this 
type, corresponding to the fact that their discrete support has zero as left boundary point (see e.g. 
[ 19], Tables 2.1-2.3 ). 

By construction, all the series representations determined have an upper parameter -x .  The ques- 
tion remains, however, whether or not such a hypergeometnc series representation might be valid for 
c ~ 0, too. In general, the answer is no. Petkov~ek's algorithm shows that the recurrence equation 
(43) does not generally have a hypergeometric term solution. 

Note that the hypergeometric representation (21) for K(~'l~)(x) is not of  this type, and cannot be 
obtained by the given method. By Petkov~ek's algorithm there is no representation (42) with a 
hypergeometric term Cm(n) for these polynomials. 

6. Falling factorial representations 

Whereas in the last section we considered the specific connection coefficient problem for Q,,(x)= 
x ~-, in this section the opposite problem, having P,(x)=x-", is studied. 



W. Koepj, D. SchmersaulJournal oJ Computational and Apphed Mathemattcs 90 (1998) 57 94 85 

Theorem 7. Let Q,,(x) be a monic polynomial system 9iven by the difference equation (4) with 
~(x) = a x  2 + bx + & and ~(x)=dx + g. Then the coefficients C,,(n) o f  the fallin9 factorial repre- 
sentations 

x"- = ~ Cm(n)Qm(x) (48) 
m=0 

satisfy the recurrence equation 

(2ma + a + d)(2ma + 3a + d)(2ma + 2a + d)2(2ma + d)(n - m)Cm(n) 

+ (2ma + a + d)(2ma + 3a + d)(2ma + 2a + d)(m + 1 )(2m2na 2 - 2m2a 2 

+ m2ad + 2m2ab + 2mna 2 + 2mnad - 2ma 2 - mad + 2ma[~ + md -'2 

+ 2mdT, + n a d +  2naO - nd-i, - ad + d~, + a ~ ) c ~ + , ( n )  

+ (m + 1)(2ma + d ) ( m 4 a  3 + 4m3a 3 + 2m3a2d + 6m2a 3 + 6m2aid 

+ 4m2a2r.7 " + 2m2a2g + m2ad 2 _ m2adb - meab 2 q- 4ma 3 + 6ma2d 

+ 8maig.7, • + 4ma2y + 2mad 2 - 2madb + 4madg + 2mady 

_ 2ma~ 2 _ md"2~ _ md~ 2 + a 3 + 2a2d + 4a2g + 2a2,. a + ad ''2 

- a d s  + 4 a d e  + 2 a d a  - a~, 2 + a~  2 - d25 + d~e  

- d[~ 2 - dbY)(rn + 2)(ma + na + a + d)Cm+2(n) = O. (49) 

I f  ~ = O, then 

0 = (d  + a + 2am)(d  + 2 a m ) ( - n  + m)Cm(n) 

- (an + d +  am)(m + 1)(am 2 + md+ mb+ ~)Cm+~(n). (50) 

Therefore, the followm9 representations for  the falling factorials in terms o f  the classical discrete 
orthogonal polynomials are valid: 

x-~= ~ (fl+ 1).(1 -N).(-1)"(1 + = + /3 + 2 m ) ( - n ) m ( 1  + ~ + /3)m h ~ , l ~ t  ~ ^t~ 

m=0 (= -~- ~ 2 ) n ( - 1  7~-£~-)-(n--~---2-7-=-7 ~ ) m ' ~ ~ m ( i  ~lW"~m "'m \~,~v 1, 

x-" = ~ (/3 + 1),(1 - N ) , ( - 1 ) "  ( -n)~(=/2  +/3/2 + 1)m(~/2 + /3/2 + 3/2),,4 m ~=,~)¢~ N), 

m=0 (= +/3 + 2), (n + 2 + = + ~ 7  i)-m(i 7 g ) m m ]  - - m  x - - ,  

x"-=v%2_, (1 + = ) n ( - N ) , ( - 1 ) "  ( = + / 3 +  1 + 2 m )  ( - n ) , ( 1  + =  +/3)= 
m=0 (= q-/3 + 2)n ( = + / 3 + 1 )  (n + 2 + = +/3)~m! Qm(X;=,/3, N )  
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(compare [8], (4.2)-(4.3)), 

x~=(1  - N ) . ( - 1 )  ~ ~ (-rt)m(1 +2m)  
n + 1 (n + 2)m(1- YN-)m tm(x,N), 

m = 0  

x ~ = ( 1 - N ) . ( - 1 ) "  ~ (--n)m(3/2)m4 m . .  • . 
,, + 1 'mtx'   

m = O  

m=0 (7)mm! m~'4')(x)' 

, ,  (±)n--m 
x"-=~(-1)"(~')" ~_,j (--~)m~.,,(X). 

m=0 (7)m m! 

n 

x ~- = ~ ( -  1 )" ( - N ) .  p.-m (-n)m l~p)r~ N~ 

m : O  

m = 0  

Xn - = (--n )m C(tL)(- 
m! m .~ ), 

m=O 

( -  1 )n ( - N ) .  p.--m (--n)m ~CP) 
k m (x,N), 

( -N)mm! 

n 
x"-= ~--~ ( -1)"  (--/~)"-m (--n)m ~ ' ( x ) .  

m! 
m = O  

Proof. In Section 2 it was shown how one obtains three essentially different cross rules for the 
connection coefficients between P~(x) and Qm(x). We modify this method here. For Qm(x), we have 
the difference equation 

7 
if(x) A ~7Qm(x ) + ?(x)AQm(x) + zmQm(x)= 0 

with i ( x ) = 6 x  2 +/~x + ~, and the difference rule (11) 

( i ( x )  + ?(x))  A Q m ( x ) =  ~mQm+l(X) + (tim -- ~ m ) Q m ( x )  -+- ~mQm-I(X), 

and it is easily seen that our current P . (x)=x ~- satisfies any of the difference rules 

(if(x) + ~(x))AP.(x)= dnP~+,(x) + n (d(2n - 1) +/~ + d) P~(x) 

+ n ( ( n -  1) (6 (n -  1) + D + d) + ~ +  y)P,,_,(x). (51) 
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Hence in our situation, we get the two cross rules (24) with a. = 1, b. = n, cn = 0 

Cm(n + 1 ) = 6m-ICm-l(n) + bmC,.(n) + c.,.+lC.,+1(n) (52) 

and (26) with fin -- 1/(n + 1 ), bn = ~. = 0 

1 a .Cm(n+l)  gtm-,Cm-,(n)+[~mCm(n)+~m+lCm+l(n) (53) 
n + l  

which we had deduced in Section 2. Using the difference rule (51), we obtain the third cross rule 

JnCm(n+ l ) + n ( 6 ( Z n -  1 ) + [ ~ + d ) C m ( n ) + n ( ( n -  1 ) ( 6 ( n -  1 ) + [ 9 + d ) + ~  +~)Cm(n-  1) 

= ~m_lfm_l(n) + flmfm(n) q- ,Tm+lCm+l(n). (54) 

To recewe the recurrence equation (49), we use Theorem 1 writing the cross rules m terms of  
J,/3,?,d, and 4, only. Then by linear algebra we eliminate the variables Cm(n + 1 )  and Cm(n- 1) 
to obtain a pure recurrence equation with respect to m. (Similarly by elimination of  the variables 
C,,_l(n) and Cm+t(n) a pure recurrence equation with respect to n is obtained.) A shift by one 
gives (49). 

If ? = 0, then the recurrence equation has still three terms, unfortunately. For ~ = 0, we find a fourth 
cross rule to eliminate one more variable in the following way. Since the (second) difference rule (10) 

6(x)V'Qm(x) = ~.mOm+l(x) q- flmOm(x) ~- ~,.Q~_l(x) 

is valid, we can use the fact that for ? = 0 any of  the difference rules 

6(x)~TPn(x) = 6nP.+l(x) + n (rn + fg)P~(x), 

and therefore the fourth cross rule 

6nCm(n ÷ 1) + n(an + b)Cm(n)=~m-iCm-i(n) + flmCm(n) ÷ ~';m+lCm+t(n) (55) 

is valid. 
Eliminating the variables Cm(n+ 1), Cm-l(n), and Cm-~(n) from the four cross rules (52) - (55)  

gives the first order recurrence equation (50). This leads to the desired representations. [] 

Whereas we admit that all the shifted factorial representations of  the theorem essentially were 
known [8, 22], our presentation unifies this development. In particular, the recurrence equation (50) 
carries the complete information about the falling factorial representations given in the theorem. 

Petkovgek's algorithm proves, again, that for the family Kff'l~)(x) there is no representation (48) 
with a hypergeometric term Cm(n). 

As an immediate consequence of  Theorem 7, we get the following connection coefficient results. 

Corollary 4. The follow&g connection relations between the classical discrete orthogonal polyno- 
mials are valid: 

h~,l~)(x,N) = ~ (fl - ~)~ (1 - N)~ (~ + 1 ), 

o = o  



88 W KoepJ, D Schmersaul Journal of Computatwnal and Apphed Mathemattcs 90 (1998) 57-94 

( o ~ + 6 +  1 + 2 m )  
× 

( - n ) . , ( 1  + ~ +  6 )m(n+  1 + ~z + fl),,, 
(~+fi+l) (l-N)m(~+l)m(O~+2+n+a)m(-n-fl+a+l)m 

x h~'°)(x,N), 

( ~ + l ) . ( 1 - N ) n ( l + 7 + f l ) . ( f l - 6 ) .  
h~"#)(x.N)= (2 + ~ + 6 ) . ( e / 2 ~  ~ +  1 / 2 ) . ( ~ / 2 + f l / 2 +  1).4" 

m=0 

( - n ) , .  (n + 1 + e + fl)m (~/2 + 6/2 + 1)m (~/2 + 6/2 + 3/2) , .4  m ~.O)(x ,N)  ' 
x - ~ - - - - - N - ) m - ( - ~ - + l ) m ( ~ + Z + n + a ) m ( - n - f l + a + l ) m m !  

X~ (# + 1 ). ( 1 - N) .  (~ - 7). ( -  1 )" 
h~'#)(x,N) 

.,=oL" (2 + fl + 7)n n! 

( f l + y +  1 + 2 m )  ( - n ) m ( l + f l + y ) m ( n + l + ~ + f l ) m ( - 1 )  m 
X 

( f l + y +  1) ( 1 - X ) m ( f l + l ) m ( f l + y + n + Z ) m ( y - c ~ - n + l ) m  

x h~"#)(x,N), 

(fl + 1). (1 - N ) .  (1 + ~ + fl). (~ - y). ( - 1 ) "  
h(~'#'(x,N) = (2 +f12t-- ?-%). ( c ~ - 2 ~ f l ~  + 1/2). (~/2 + fl/2 + 1).4" 

m=0 

(--n)m (n + 1 + ~ + fl)., (fl/2 + 7/2 + 1 )m (///2 + 7/2 + 3/2),. (--4) m 
× 

(fl + 7 + n + 2 )m( l  - N)m(f l  + l ) m ( y - o ~ -  n + 1)mm! 

x h~"#)(x,N), 

(56) 

h(.='=)(x, N)  

k./ZJ ( -n /Z)k  (--(n - 1 )/2)a (~ - 7)k ((N - n)/Z)k (N - n + 1 )/2)k ( - n  - Y - l/2)k 

k=O 

~(7,:') x h._2~(x,N), (57) 

h(n~.~)(x,N)____ (~ + 1) . (~ + 1/2) .(27 + 1). 
(7 + 1 ). (y + 1/2). (2~z + 1 ). 

[n/2/ (_N_~)k(~)l~(~__7)k(3--Zy--Zn ~ ( - 2 7 - 2 n - - 1 ~  (--7--n) ( - y - - n + l ~  4 k 
4 - ]k \  2 ]k ~, 2 k \ ~ ] k  

x ~ ( - 7  - n/2)k ( - 7 / 2  - n/2 - 1/4)k ( - n  - ~ + l/2)k ( -Y - n/2 + 1/2)a k! 
k=0 

X 

Q.(x; ~, ~, N )  = 

hC;'_']k(x,N), 

+ 1/2).  + 1 ). 
+ 1/2). (2c  + 1 ). 

L./2J ( -n /2 )~  ( - ( n  - 1)/2)k (~ - 7)~ (3/4 - 7/2 - n/2)k ( - Y  - n - 1/2)k 
x ~ ( - 7 - ~ ~ - k  ~ - ~ 2 - - -  n72 ~ i /~-k (-~--n --~--+ 172-~-k ~ - 7 ~ n 7 2 7 ~  i/2--)k k! 

k=0 

x Q.-2k(x; y, 7,N),  

(58) 

(59) 
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(fl-- 61,,(--11 n Q. ( x ; ~, fl, U ) = -(~ -q_- ~ -~ ~-~. 
m=O 

( ~ + 6 +  1 +2m) ( - n ) , . ( l + ~ + 6 ) m ( n + l + 2 + f l ) m ( - 1 )  m 
x 

( ~ + 6 + 1 )  ( ~ + 2 + n + 6 ) m ( 1 - f l + 6 - n ) m m !  

(compare [8], (4.1), (4.5)), 

" (~ - 7). (fl + 1). 
Q.(~ ~, ~,N) = ~ (~ + i-)7(2- g ~ + ~,)° 

m~0 

( f l + 7 +  1 +2m) ( - n ) m ( l + f l + 7 ) m ( 7 + l ) m ( n + l + 7 + f l ) m  x 
( f l + 7 + l )  ( f l + l ) m ( f l + 7 + n + 2 ) m ( 7 - ~ - n + l ) m m !  

x Qm(x;T, fl, N) 

(compare [8], (4.1), (4.5)), 

,,,,,, £ (6(~' -- 3). (--n)m m~.,,)(x ) 
m,,' (x)= - n + l  : ~m-m! 

m=O 

(compare [8], (5.5)), 

- m  

m=O\It- 1] ( 3 - n + l - , ) m m .  "m ~ ,, 

m~,, , , , , (x)=£( v - P  )" ( - n ) m (  V ( I t - 1 ) )  m 
m=O ] '2(];~ -1) (]))n (7)m m! v - u  m~"")(x) 

(compare [8], (5.4)), 

rfi(, ,,,(x)_ £ ( v - p  )"-m(7).(-n)m(-1)mrh~,V,(x) ' 
m=O (P-- i~(V-- 1) (7)m m! 

k~P)(x,N)= £ (p _ q).-m ( - g ) .  (-n)m ( -1)  m k~q)(x,g) 
n! (-N)m m=O 

(compare [8], (5.11 )), 

T:cp~(x,N) = £ (p _ q).-m (--N). (--n)m (--1 )" 
m=O (--N)m m! km ~~q)(x'N)' 

~_~ p.--m (M -- N). (-n)m 
k~P)(x,U) k~P'(x,M) 

m=O ~ "~. -~----1~-- . + 1)m 

89 

Qm(x; ~, 3, N) 
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(compare [8], (5.12)), 

~--~ p"-'~ (m - N), (-n)m ~(p) 
h:(.P)(x,N)= (--N~ M - - - n 7  1)m m! km (x,M). 

m=O 

n 

c(f)(x)=~--~(_l) . v m ~l)n_ m (--n)m C:)(X) 
m=0 ~ (V-  m! 

(compare [8], (5.16)), 

a~f~(x) = £ (-1) m (v - ~).-m 
(-n)m 

m! Cm~O'~(x), 
m = 0  

KJl(x)=  - - 7 -  m! ~ J~ K~m~(x)' 
n m = 0  

(3--(J) ~ (--17)m (:~(.-n)~fl+O) 
R(n~'fl)(X)= T nm=O m! K m (x). 

Proof. Combining the representations 

P , ( x ) = ~ A j ( n ) x  J- and xZ=~-~Bm(j)Qm(x), 
jEZ mE~_ 

and using Zeflberger's algorithm, the method of Corollary 2 yields the results. 
The connection relations for the polynomials K~,/~)(x) cannot be obtained by this method. Here 

Theorem 2 leads straightforwardly to the result. [] 

Although besides (57)-(59) the connection results were essentially known [8, 3], our development 
gives a unified treatment of them and makes new results like (57)-(59) easily accessible. 

Note that some of the representations are rather complicated. We suggest the idea to use the 
notation pfq for the summand of pFq, i.e., 

,u  er )  up er ) 
pFq~ lOwer x = Z P J q ~  x;k . 

With this notation, (56) could be written in the standardized hypergeometric notation 

(fl-a,l-N,~+12+~+6 ) h~'/J)(x,N)=3f.\ 1;n . 

" ( - n , l + ~ + a , n + l + ~ + f l , ~ / 2 + 6 / 2 + 3 / 2 , 1  ) 
×m~__04f5 1 - N , o ~ + l , 7 / 2 + a / 2 + l / 2 , ~ + 2 + n + a , - n - f l + 6 + l  1;m 

(~,~) × h m (x,N). 

Finally, we deduce the parameter derivatives for the classical discrete orthogonal polynomials. 
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Corollary 5. The following representations for the parameter derivatives of the classical d&crete 
orthogonal polynomials are valid: 

n--I 

P-~-h(~'lS)~ ~ N) = ~ 1 . (h~=,l~,(x,N) 
~ - ~  ""' o~ + fl + m + n + l m=O 

+ ( - - 1 ) n - m ( o ~ + f l - }  - 1 + 2 m ) ( 1  - N + m ) n _ m ( f l +  1 + m ) n _  m h~.,)(x,N)), 
(n - m)(~ + fl + l + m)._m 

~_~ .-1 (_l)._m(c~ + fl+ l + 2m) ( 1 - N  +m)n-m(fl+ l +m)n-mn! 
h~ ' l~)(x 'N)=Z ( c t + f l + m + n +  1 ) ( n -  m) ( ~ + f l +  1 +2m)2n-2mm! h~'13)(x'N)' 

m=O 

Q " ( x ; ~ ' f l ' N ) = Z  o : + f l + m + n + l  ~ + m + l  .(Q.(x;~,fl, N) 
m : 0  

( ~ + f l +  1 + 2 m ) ( f l +  1 +m)._mn! 
+ (n - m ) ( ~ +  1 + m ) . - m ( ~ + f l +  1 +m)n_mm! Qm(x;~'fl'N))' 

f[3h. (x,N n-1  1 .(h(~,l~)(x,N ) 
_ _  I~,~) ) = E c ~ + f l + m + n +  1 

m=0 

~ + f l +  1 + 2 m  (1 - N + m ) n - m ( ~ +  1 +m).-m + 
n - m  ( ~ + f l +  1 +m)n-m 

h~'~)(x,N)), 

n--1 ~ + f l + l + 2 m  ( 1 - N + m ) . _ m ( C ~ + l + m ) n _ m n !  

h ~ ' / ~ ) ( x ' N ) = Z ( ~ + f l ÷ m ÷ n + l ) ( n - m )  (~+fl+l+2m)2n-2mm! h~'/~)(x,N), 
m=0 

n--I 1 

Q.(x; ~z, fl, N)  = ~ • (Q.(x; ~, fl, N)  
m=O ~ + f l + m + n +  1 

(--1)"-m(~ + fl + 1 + 2 m )  n! + 
n --m ( ~ + f l +  1 +m)._mm[ 

Qm(x; ~, fl, N)), 

,m~,U)(x) n( -1  + 7 + n )  ("u) = m.'21 (x) 
( 1  - t ,  )t~ 

()',#) ~ \  
m n (a) 

(see, e..q., [12], Theorem 9), 

m~r'f')(x)- (1-_-~-~2 ,n._~t~), 

~-~ ,m~r4')(x)= ~ m! (n--- m) mm (x) 
' m=O 
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(see 
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[12], Theorem 10), 

~ ,  n - - l ( 1 2 ~  n-m 

m=O 

n! 
m ! ( n - - m )  

--Tk(~P)(x,N) = ( - 1  + n - N)k~.P)I(x,N ) 

(see, e.9., [12], Theorem 9), 

~--Tk~P)(x,N) = (--1 + -- N)~tP) l~ N), n n 

~ 4 ~ ( x  ) = n _~.~ n 4 ~ ( x )  

(see, e.g., [12], Theorem 9), 

~a~,)(x) - (x). na(n~ l 

n--I O~ n-m-1 n! 
~-~K~'l~)(x) : ~ (~=--~)~! K~='lJ'(x), 
~ r" m=O 

n--1 
~ U,~.e)(x ) = S-" n! g~'~'(x) .  
aft m/~=o o~ ( n -- m ) m [ 

Proof. If  the derivative is taken with respect to a variable occurring as an argument rather than as 
a parameter in the hypergeometric representation, its representation can be easily obtained from the 
derivative rule of  the generalized hypergeometric function, and the chain rule. In those cases, the 
representations need at most two neighboring polynomials. 

The other cases can be handled similarly to Corollary 3. [] 

7. Conclusions 

Here, we want to recall the algorithms to convert between the different types of  representations: 
(i) Hypergeometric Representation ~ Recurrence Equation: Zeilberger's algorithm; 

(ii) Hypergeometric Representation ~ Difference/Differential Equation: Zeilberger's/Almkvist- 
Zeilberger's algorithm; 

(iii) Difference~Differential Equation ~ Recurrence Equation: Theorem 1; 
(iv) Difference/Differential Equation--+ Hypergeometric Representation: method of Sections 3 

and 5; 
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(v) Recurrence Equation---~Difference/Differential Equation: Algorithms 1 and 2 in [14]; 
(vi) Recurrence Equation --~ Hyperoeometric Representation: combination of methods 5 and 4. 
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