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Abstract

Charged black holes in Gauss–Bonnet extended gravity are studied. The electromagnetic field is coupled non-min
in U(2,2) Chern–Simons theory. We find that the geometrical properties of the solution exhibit “phase transitions” as on
the mass and charge. The full phase diagram for all values of the ADM mass and charge is displayed.
 2003 Published by Elsevier B.V.

1. Introduction, main results and conclusions

In a five-dimensional Universe, the Gauss–Bonnet density
√−g(R2 − 4RµνRµν + RµνλρRµνλρ) cannot be

omitted in the gravitational Lagrangian. This term is covariant, its associated Einstein tensor is conserv
despite being quadratic in the curvature tensor, yields second order field equations for the metric [1,2]. T
general action for Gravity in five dimensions is then

(1)I [gµν] =
∫
M5

√−g
[
α0 + α1R + α2

(
R2 − 4RµνRµν +RµνλρRµνλρ

)]
.

The presence of this term of course changes the dynamical equations, and many aspects of general relativ
revisited. This issue is particularly relevant in the context of brane worlds models, and many papers have
been devoted to the subject [3].

The simplest problem that can be analyzed in a closed form is the spherically symmetric five-dimension
hole spacetime,

(2)ds2 = −N2dt2 + dr2

f 2 + r2dΩ3.

Although the equations can be solved for arbitrary values of the three couplings [4–6], we are interested in
of the Gauss–Bonnet term and then we set, for simplicity,α1 = 1, α0 = 0 andα2 > 0. The equations of motio
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(3)N2 = f 2 = 1+ 1

α2

(
r2 −

√
r4 + 4α2M

)
,

whereM is an integration constant, that will be seen to be the ADM mass.
We first note that forM = 0 the metric reduces to flat space, which is the stable background for this theo

It also follows that forr4 � 4Mα2,

(4)N2 � 1− 2M

r2

showing that, asymptotically, (3) approaches the five-dimensional Schwarzschild metric. Incidentally, not
M � α2 then r4 � 4Mα2 would hold all the way to the Schwarzschild horizon atr+ = √

2M. If α2 = 0, (4)
becomes an exact solution.

The function (3) has some interesting properties. The value ofN2 at the singularityr = 0 is finite,

N2(0)= 1−
√

4M

α2
,

although the curvature is still singular.2 The location of the horizon,N2(r+)= 0, is

(5)r+ =
√

2M − α2

2
.

We see from this expression that the horizon exists only forM > α2/4. We thus find a mass gap separating
space from the spectrum of black holes:

M = 0, flat space,

0<M � α2/4, naked singularities,

(6)M >α2/4, black holes.

The mass gap appears in all odd-dimensional theories containing the highest Lovelock [1] term. I
dimensions, this term is just the Hilbert term and the mass gap is present [12]. In this case, however, the
singularities” have a sensible interpretation in terms of particles [7].

In this Letter we add electric chargeq to this black hole and study the corresponding spectrum. We sha
that the solution has some peculiarities not present in usual charged black holes.

As a first surprise, the addition of charge does not imply the existence of two horizons. There are open
in the plane{M,q} having non-extremal black holes withone horizon. In order to find solutions with two horizon
q has to be bigger than a certain critical value,q > qc. Fig. 1 gives a summary of the properties of various soluti
obtained by varying the values ofM andq .

In one region of the space of parameters, we find a set of non-extremal charged black holes having
horizon. We call this region the “heavy branch” because it is defined by the conditionM >Mcrit. For masses within
the range

(7)Mcrit � M >Mext, q > qc

1 The coefficientα2 appearing here differs from that in (1) by a numerical constant. Note thatα1 = 1 implies, in five dimensions
[mass] = [length2] = [α2].

2 Consider the metric of a cone,ds2 = α dr2 + r2 dφ2 with 0< φ < 2π . It is known that its curvature is concentrated atr = 0. Consider
now ds2 = α dr2 + r2(dθ2 + sin2 θ dφ2). The scalar curvature isR = (α − 1)/(αr2) showing that the geometry is not locally flat.
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Fig. 1. The phase diagram. For each value ofq > qc there exists two black holes phases. Flat space is located atq = M = 0, and it is
disconnected from the black hole spectrum by a set of naked singularities.

we find the “light branch” with black holes with two horizons. AtM =Mext, we find extremal black holes with on
one horizon (and zero Hawking temperature). Below the extreme value, the solution represents a naked si
There is also a “critical charge” below which the light branch ceases to exist. Flat space is located atM = q = 0,
and thus the mass gap persists in the charged solution.

The terms “phase structure” and “phase transitions” are used here only in analogy with the statistical me
concept, without implying a direct connection. Of course, given the thermodynamical properties of black
this may turn out to be more than an analogy but we shall not study this issue here.

To avoid future confusions, we stress that the action considered in this Letter is not the usual minimally c
Einstein–Maxwell system (plus a Gauss–Bonnet term). Those solutions were studied in [6] and do not exh
phase structure. Instead, we consider a five-dimensional Chern–Simons theory for the groupU(2,2) [8], which
has a sensible interpretation as a gravitational plus electromagnetism theory, with a Gauss–Bonnet te
interpretation, however, requires a symmetry breaking term because otherwise the equations of motion di
the usual ones even asymptotically. This point was discussed in detail in [9].

The application of Chern–Simons theories to gravity has been discussed several times in the literature
shall not repeat it here. The first constructions were reported in three dimensions in [10], and the same
then applied in [8] to five dimensions. See [11] for other aspects.

For the purposes of this Letter, we refer the reader to Ref. [9] were many details omitted here can be
In particular, the asymptotic form of the charged black holes was already reported in that reference. The
the present Letter is to display theexact solution for an arbitrary massM and electric chargeq , and study the
associated phase space.

2. The equations and their solution

2.1. The equations and spherically symmetric ansatz

We start by writing down the equations of motion associated to a Chern–Simons theory for the groupU(2,2).
This group containsSO(4,2) which would give pure gravity with a Gauss–Bonnet term. The extension toU(2,2)
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incorporates an Abelian one-form, that we interpreted as an electromagnetic field, coupled non-minim
gravity. See [9] for a detailed analysis, and other motivations to study this system.

A key issue in the analysis (and discussed in [9]) is the fact that the Chern–Simons equations of mo
not provide a sensible theory for theSU(2,2) field. For example, there is no linearized theory and the metr
not asymptotically Schwarzschild. Given the strong topological roots of the Chern–Simons construction, i
attractive as a field theory, and one would like to know if the equations can be “repaired” by some mec
hopefully within the same theory. Some progress in this direction was reported in [13].

Here we follow [9] in which a symmetry breaking term is added to the action. The Chern–Simons eq
then becomes closer to the real world and one can start asking questions such as what is the structure
holes, and what is the nature of the couplings between the gravitational and internalU(N) gauge fields degrees o
freedom. In this Letter we concentrate on the coupling between the gravitational andU(1) field.

The symmetry breaking term added in [9] consists in a cosmological term (vacuum energy) an
parameterised by a real numberτ . Let ea be the five-dimensional vielbein one-form,wab the spin connection, an
A the Abelian one-form. The equations of motion following from theU(2,2) Chern–Simons theory (including th
symmetry breaking term proportional toτ ) are,

(8)εabcde
[(
Rab + eaeb

) ∧ (
Rcd + eaeb

) − τ2ea ∧ eb ∧ ec ∧ ed
] = −4Te ∧ F,

(9)εabcde
(
Rab + eaeb

) ∧ T c = (Rde + edee)∧ F,

(10)
1

2
Rab ∧Rab − d

(
ea ∧ T a

) = F ∧ F,

whereRab = dwab + wa
cw

cb, T a = dea + wa
be

b andF = dA. For τ = 0, these equations are equivalent
F ∧F = 0 with F ∈U(2,2) which are the exact Chern–Simons equations.

Since we are interested in black hole solutions, we write the ansatz for the metric and gauge field with s
symmetry

(11)ds2 = −N(r)2dt2 + f 2(r) dr2 + r2 dΩ3,

(12)A = −φ(r) dt,

whereN,f andφ are functions to be determined.
As shown in [9], the dynamics of the Abelian formA is linked to the torsion tensor. If we assume from

very beginning thatT a = 0, then the equations of motion forA do not give Maxwell’s equations in any limit. O
the contrary, lettingT to be different from zero yields a system of equations that can be analyzed perturb
and yields, to first order, Maxwell’s theory for the potentialφ(r). The relationship between the torsionT a and the
Maxwell fieldF is encoded in Eq. (9). To first order we ignore the right-hand side of (8) and find the gravita
background (AdS space)Rab = (τ − 1)eaeb. Replacing in (9) it implies [9]

(13)ea ∧ T a = ∗F,

where∗ represents Hodge’s dual. Replacing (13) into (10) one obtains the usual five-dimensional Maxwell–
Simons systemd∗F = F ∧ F . This is, in short, the mechanism that transformsA into a radiating field.

Incorporating the back reaction from the right-hand side of (8) produces corrections to (13), and the M
equation. It is precisely the role of these corrections what we aim to investigate in this Letter.

Let us then assume that the torsion is not zero, and letwab = wab(e) + κab wherewab(e) is the solution
to the equationdea + wa

b(e) ∧ eb = 0, and only depends on the metric.κ parameterizes a non-zero torsion
T a = κab ∧ eb. In order to prescribe a spherically symmetric ansatz forκab, it is convenient to express all indice
in the coordinate basisκαβµ = eaακ

ab
µ ebβ . The correct ansatz with spherical symmetry for this tensor follow

studying the equations of motion order by order starting from the AdS vacuum. The details were given in
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(14)κµνλ = ψ(r)

2
√
h
εµνλ

αβzαβ − zµνUλ + 2gλ[µVν],

whereεµνλαβ is the Levi-Civita tensor withεtrθ1θ2θ3 = 1,
√
h = r3 sin2 θ1 sinθ2, andz = dt ∧ dr, U = β(r) dt ,

V = α(r) dr. The torsion then contributes with three more functions ofr to be determined by the equations
motion, namely,α(r), β(r) andψ(r). ψ is closely related to the electric field (see Eq. (13)), whileα andβ are
auxiliary fields which will be eliminated algebraically from their own equations of motion.

We shall see that this ansatz does provide an exact solution to the fullU(2,2) system.

2.2. The spherically symmetric reduced equations

In this section we present some of the details in finding the equations and their solution. The reader in
only the final result can jump to the next section where the final form of the metric is displayed and its pro
analyzed.

It is a direct but long calculation to replace in the equations of motion (8), (10) the ansatz with sp
symmetry shown in the last paragraph. The resulting equations turns out to be extremely comp
Some simplification can be achieved by making field redefinitions which simplify the expressions f
curvatureRab and torsionT a . These field redefinitions involve all variables. We transform{α,β,N,f,ψ,φ} →
{α1, β1,N2, f2,ψ1, φ1}, according to

α = α1 − 1

r
, β =N

(
fNβ1

g
+N ′ +Nα

)
,

f = α1

f1
, f1 =

√
1+ r2 −ψ2

1 + f2, N = f1N1, N1 = exp

( r∫
N2

)
,

(15)φ = 4

r∫
dr (N1ψ1Φ1), ψ = ψ1

r
.

Note that the horizon structure will be controlled by the zero’es of the functionf1.
Inserting the above ansatz into the equations of motion, we find two sets of equations which can be a

and solved separately.

2.2.1. The α1, ψ1, f2 system
The first set of equations involves only the functions{α1,ψ1, f2}. The equations are the following (prim

indicates radial derivative):

(16)
(
4ψ3

1 − 4r2ψ1 − 4ψ1 − 2f2ψ1
)
ψ ′

1 − 2f2r + 2rf2α1 + 2τ2r3α1 = 0,

(17)α1f2 − f2 − 2rψ1ψ
′
1 = 0,

(18)2ψ2
1ψ

′
1 − (ψ1f2)

′ = 0.

We note that (17) and (18) can be easily solved. We find, respectively,

(19)α1 = 1+ 2rψ1ψ
′
1

f2
,

(20)f2 = 2

3
ψ2

1 + q0

ψ1
,



18 M. Bañados / Physics Letters B 579 (2004) 13–24

llows

ebraic

find the
6)–
whereq0 is an integration constant that will be related to the electric charge. It will be convenient in what fo
to do yet one more redefinition,

(21)ψ1(r)= − q0

Ψ (r)
, q0 =

√
6q

2
,

whereΨ (r) is a new function ofr. Replacing (20) into (19) we find the following expression forα1,

(22)α1 = (P r)′

P
,

whereP is a short hand for

(23)P = Ψ 3 − q2

Ψ 3 .

Finally, we replace (19) and (20) in (16) and obtain a closed equation for the functionΨ :

(24)
(
6q4Ψ 2 + 3q2Ψ 6 − 6q2r4Ψ 4 − 6q2Ψ 5 − 4q6 +Ψ 9)dΨ

dr
+ 2τ2r3Ψ 5(q2 −Ψ 3) = 0.

This last equation is linear inΨ ′. The integral can be done explicitly and we find the implicit solution forΨ (r),

τ2

2

(
Ψ 3 − q2

Ψ 3

)4

r4 − 1

2
Ψ 2 − 3

q2

Ψ 2
+ 4

7

q6

Ψ 7 − 9

2

q6

Ψ 8
+ 9

10

q8

Ψ 10
+ 24

11

q8

Ψ 11
+ 24

5

q4

Ψ 5
− 12

13

q10

Ψ 13

(25)+ 1

4

q12

Ψ 16 − 3

2

q4

Ψ 4 − 3

7

q10

Ψ 14 = −2M,

whereM is an integration constant that will be seen to be the ADM mass of the solution. This is an alg
equation that should be inverted to findΨ (r).

2.2.2. The β1, N2, Φ system
We now proceed to find expressions forβ1, N2 andΦ1 in terms ofΨ . The three remaining equations are:

(26)0= f2r + β1f2 + r3,

0= α1f2 + β ′
1f2 + f ′

2β1 +N2β1f2 − 2ψ1ψ
′
1β1 + 2r2 + 4rψ2

1Φ1

(27)− 2rψ1ψ
′
1 − 2α1β1r + rf ′

2 + α1r
2 + 2rβ1,

0= 2α1β1 − 2f2Φ1 − 2N2ψ
2
1 + 2N2 + f ′

2 + 2N2f2 − 2ψ1ψ
′
1 + 2rβ ′

1

(28)+ 2rα1 + 2r + 2rN2β1 + 2r2N2.

This set of equations can also be solved in a closed form. We shall not go into the details on how to
solution, we only quote the result. Using the value ofα1 found in the previous paragraph, we find that Eqs. (2
(28) are solved by:

(29)β1 = − r(f2 + r2)

f2
,

(30)N2 = 8ψ1ψ
′
1

f2
,

(31)Φ1 = 1

2

(3f 2
2 − 2r4)ψ ′

1

f 2
2 ψ1

.
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Note that making the redefinition (21), and using the solution (20) forf2 we have

N1 = e
∫
N2 =

(
Ψ 3 − q2

Ψ 3

)4

.

This completely solves the problem. All functions are known in terms ofr andΨ , andΨ is known in terms ofr
by (25).

3. Charged black holes and a phase transition

3.1. The metric

Let us summarize the results of the analysis of the equations of motion. The metric ansatz was

(32)ds2 = −N(r)2dt2 + f 2(r) dr2 + r2 dΩ3.

The functionsN andf are fixed by the equations of motion as (prime denotes radial derivative)

(33)N2 = P 8f 2
1 ,

(34)f 2 =
[
(P r)′

P

]2 1

f 2
1

,

where

(35)f 2
1 = 1+ r2 − 1

2

q2

Ψ 2 −Ψ,

andP is given in (23). Finally,Ψ is a function ofr defined by the algebraic equation (25).
In some applications it may be convenient to define a new radial coordinate, as suggested by Eqs. (25)

(36)ρ = Pr.

In terms of this new coordinate the metric takes a simple form,

(37)ds2 = −P 8f 2
1 dt2 + 1

P 2

(
dρ2

f 2
1

+ ρ2 dΩ2
3

)

and the relation (25) becomes

(38)

τ2ρ4 + 4M = Ψ 2 + 6
q2

Ψ 2 − 8

7

q6

Ψ 7 + 9
q6

Ψ 8 − 9

5

q8

Ψ 10 − 48

11

q8

Ψ 11

48

5

q4

Ψ 5 + 24

13

q10

Ψ 13 − 1

2

q12

Ψ 16 + 3
q4

Ψ 4 + 6

7

q10

Ψ 14.

From now we shall only consider the caseτ = 1. This is only for simplicity in some calculations, but it does n
affect the main conclusions.

3.2. Known limits of the solution. Reissner–Nordstrom solution

Since the exact solution displayed in the previous paragraph is rather complicated, as a first check we
how this solution reduces to the known ones, in various limits. We first study the uncharged solution, foun
and discussed in the introduction. Then we show how in the limit of small charges and large radial coordr,
we recover the usual Reissner–Nordstrom spacetime.
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Consider first the uncharged solution withq = 0. In this case,P = 1 (hencer = ρ), we can solveΨ explicitly,
Ψ = √

r4 + 4M, and obtain forf1 the closed expression,

(39)f 2
1 = 1+ r2 −

√
r4 + 4M,

representing the uncharged solution [4], described in the introduction, withα2 = 1.
Consider now the charge as a small parameter, and seek for a perturbative solution inq2 to the Eq. (25). Let

(40)Ψ (r)=
√
r4 + 4M + q2h1(r).

Replacing in (25) and keeping only the linear terms inq2 we find for the first order perturbation

(41)h1(r)= −2r4 + 3
√
r4 + 4M

(r4 + 4M)2
.

Replacing in (20), and taking the limitr4 � 4M, we find

(42)N2 = 1

f 2 = 1− 2M

r2 + 3

2

q2

r4 +O
(

1

r6

)
coinciding exactly with the Reissner–Nordstrom spacetime. We can also see that the parameter that we cq is
in fact the electric charge, up to a normalization.

3.3. The origin, the Kasner singularity, and physical range of radial coordinate

The metric (37) has a curvature singularity at the originρ = 0. There is another singularity at the point whereP

(P was defined in (23)) vanishes,

(43)Ψ 3 − q2 = 0.

At this singularity, proper times are shrink to zero while spacelike separations are stretch to infinity. The
element, however, remains finite, detg ∼ P 8 × (P−2)4 = 1. For this reason, we call this point the “Kasn
singularity”.

Both singularities can be shown to be physical in the sense that the components of the curvature ten
inertial frame diverge. It is then important to ask whether these singularities are protected by horizons.

The analysis of existence of horizons is greatly simplified by noticing that the functionΨ can be used as a radi
coordinate. Although the algebraic relation (38) betweenρ4 andΨ is quite untractable and attempts to inver
explicitly are hopeless, we can in fact show that in the domain of interest, it is an invertible function.

We first note that the derivative of (38) can be factorized in the form,

(44)
dρ4

dΨ
= 2

(Ψ 3 + 2q2 − √
6qΨ )(Ψ 3 + 2q2 + √

6qΨ )(Ψ 3 − q2)4

Ψ 17
.

SinceΨ 3 = q2 is a curvature singularity, we do not need to worry about non-invertibility at that point. We
to focus on eitherΨ 3 > q2 or Ψ 3 < q2. Since, asymptotically,Ψ � r2 is a large positive number, the physic
domain of the functionΨ is

(45)q2/3 <Ψ <+∞,

and we explore invertibility of (38) on this domain.
All factors in (44) are positive definite in the physical domain except for the first one. We would then l

know if the solutionsΨc to the equationΨc
3 + 2q2 − √

6qΨc = 0 lie in the physical range of the functionΨ or
not. Let us first note this equation has positive solutions only ifq < qc := (2/3)3/2. Thus, our first conclusion i
that the relation (38) is invertible forq > qc.
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Recall now that the metric has two singularities,Ψ 3 = q2, andρ = 0. Let us callΨ0 the particular value ofΨ
such thatρ(Ψ0)= 0. It turns out (this is most easily done by a graphical analysis) that ifq < qc the three number
Ψc , Ψ0 andq2/3 are ordered according to

(46)q2/3 <Ψc < Ψ0.

This means that the non-invertible pointΨc is beyond the originρ = 0 and thus, it does not affect the physic
domain.

3.4. Horizon structure

Given the form (37) of the metric it is clear that horizons will arise whenever the functionf 2
1 vanishes. As

mentioned before, the relation betweenρ andΨ is invertible and we can studyf 2
1 as a function ofΨ . We write

here the explicit form off 2
1 in terms ofΨ , the ADM massM and the chargeq ,

f 2
1 (Ψ )= 1− 1

2

q2

Ψ 2
−Ψ + Ψ 6

(Ψ 3 − q2)2

(47)

×
√
Ψ 2 − 1

2

q12

Ψ 16 + 6q2

Ψ 2 + 24

13

q10

Ψ 13 − 9

5

q8

Ψ 10 − 48

11

q8

Ψ 11 − 8

7

q6

Ψ 7 + 6

7

q10

Ψ 14 + 9q6

Ψ 8 + 3q4

Ψ 4 − 48

5

q4

Ψ 5 − 4M.

In Fig. 2 we have plottedf1(Ψ )2 in the domainq2/3 <Ψ < ∞, for q = 6, and five different values of the massM.
(The picture is actually generic for all valuesq > qc.) Let us analyze each curve separately.

3.4.1. Light black holes, M <Mcrit, and extreme black holes
The lightest case, corresponding toMext = 7.057. . . , represents the extreme black hole. It touches the horizo

line once, and its derivative is zero there too. The massesMext(q) are defined by the equations

(48)f 2
1 = 0,

df 2
1

dΨ
= 0.

Fig. 2. The functionf 2
1 (Ψ ) in the domainq2/3 <Ψ < ∞ for q = 6 and five different values ofM .
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These equations can be solved numerically and we have found alinear relation

(49)Mext(q)� −0.30914. . .+ (1.2247. . .)q.

(The linear approximation is better for chargesq > 2.) This result is remarkable because Eq. (48) definingMext(q)

form a extremely non-linear system. Note also that the slope of the curve approaches 1.2247. . .= √
3/2, which is

precisely the value obtained by the asymptotic solution (valid forq/r2 � 1),

f 2
1 � 1− 2M

r2 + 2

3

q2

r4 =
(

1−
√

2

3

q

r2

)2

, M =
√

3

2
q.

A word of caution is in order here. This analysis does not imply that the functionMext(q) is exactly linear, for all
values ofq . We only claim that the linear relation is a good approximation for that curve.

Let us now we move to the curveM2 = 7.8. This looks very much like a standard charged black holef 2
1

intersects the horizontal line twice, and thus there are two horizons.
The black holes discussed so far have one or two horizons, andf 2

1 diverges as one approachesΨ → q2/3; in
these cases, the Kasner singularity atψ3 = q2 is met before the originρ = 0.

3.4.2. The critical mass M =Mcrit
If we carry on making the black hole heavier, we reach the curve (forq = 6)Mcrit = 8.113. . . where something

new happens (we give a close expression forMcrit below). This curve intersects the horizontal line only once,
thus it has only one horizon. Also, at the origin,f 2

1 has a finite value.
To have a better understanding of this case, consider the functionf 2

1 displayed in (47). For generic values
M there is a explicit singularity atΨ 3 = q2. However, ifM is fine-tuned such that the numerator (square r
vanishes at that point, the pole is cancelled. In fact, one observes that the zero in the square root is stro
the zero in the denominator, and that whole term vanishes atΨ 3 = q2. The value off 2

1 at that point is then,

(50)f 2
1

∣∣
Ψ 3=q2 = 1− 3

2
q2/3,

which is in fact finite. SinceM enters linearly in the square root, the value ofM, calledMcrit, such that the squar
root vanishes atΨ 3 = q2 can be calculated directly,

(51)Mcrit = 39

8 · 13!!q
2/3(33q2/3 + 26

)
,

(13!! ≡ 13∗ 11∗ 9 · 3∗ 1).
Finally, recall that the square root is nothing butρ2 (see Eq. (38)). This means that, by definition, at the crit

massMcrit, the originρ = 0 and the Kasner singularityΨ 3 = q2 coincide.

3.4.3. Heavy black holes: M >Mcrit
Let us now increase the value ofM aboveMcrit. We find the curvesM4 = 8.5 and M5 = 10. These curve

intersect the horizontal line only once. The associated black holes then have only one horizon, despi
charged.

In this class of solutions (withM > Mcrit) the originρ = 0 is metbefore the Kasner singularity. This is th
reason that the curve stops before reachingΨ 3 = q2. At ρ = 0,f 2

1 has a finite value (just like the uncharged bla
hole discussed in the introduction).

3.4.4. The critical charge
We have seen that the spectrum of black holes is separated into two branches, the heavy branch withM >Mcrit

and the light branch withM <Mcrit. The interphase is defined by the critical curveM = Mcrit displayed in (51)
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Fig. 3. The functionf 2
1 as a function ofΨ for q = (2/3)3/2.

which depends on the chargeq . We shall now see that there exists a particular value ofq , namely,

(52)qc =
(

2

3

)3/2

,

for which the light branch produces only naked singularities.
In fact, going back to Eq. (50) we note that forq = qc, the value off 2

1 atΨ 3 = q2 is zero. We have plot in Fig.
the functionf 2

1 for q = qc and three different masses,M <Mcrit, M = Mcrit andM >Mcrit. We observe that th
curveM <Mcrit cannot intersect the horizontal line. The light branch thus gives rise only to naked singular

For chargesq < qc the critical curve is pulled upwards. The light branch will carry on producing na
singularities, while the heavy branch will have both, black holes and naked singularities depending onM.

These results are summarized in the “phase diagram” displayed in the introduction, Fig. 1, showing the
black holes types for all values ofM andq . The most important aspect of that diagram, and of this Lette
the existence of two types of black holes for chargesq > qc, which are continuously connected by varying
parametersM andq .

3.5. The Coulomb potential

So far we have only analyzed the properties of the metric. To compute the value of the electrostatic pote
first go back to the redefinitions (15), and recall that the functionsN1,ψ1 andΨ1 are known in terms ofΨ , which
is algebraically related to the radial coordinate. The full expression for the potential is not very illuminating
do not display it here. We only quote the result in the asymptotic limitr → ∞

(53)φ(r)� −3
√

6
q

r2 +O
(

1

r4

)

showing as stated above that the electromagnetic potential is asymptotically controlled by Maxwell equati
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