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Abstract

Charged black holes in Gauss—Bonnet extended gravity are studied. The electromagnetic field is coupled non-minimally, as
in U (2, 2) Chern—Simons theory. We find that the geometrical properties of the solution exhibit “phase transitions” as one varies
the mass and charge. The full phase diagram for all values of the ADM mass and charge is displayed.

0 2003 Published by Elsevier B.Wpen access under CC BY license

1. Introduction, main results and conclusions

In a five-dimensional Universe, the Gauss—Bonnet demzf@(R2 — 4R"™ R,y + RW“’R,MP) cannot be
omitted in the gravitational Lagrangian. This term is covariant, its associated Einstein tensor is conserved, and,
despite being quadratic in the curvature tensor, yields second order field equations for the metric [1,2]. The most
general action for Gravity in five dimensions is then

1gu]l = f V—=g[ao + 1R + a2(R? — AR™ R,y + R™ Ryip) |- )
Ms
The presence of this term of course changes the dynamical equations, and many aspects of general relativity have tc
revisited. This issue is particularly relevant in the context of brane worlds models, and many papers have recently
been devoted to the subject [3].

The simplest problem that can be analyzed in a closed form is the spherically symmetric five-dimensional black
hole spacetime,

d 2
ds? = —N2di? + % +r2d s, @)

Although the equations can be solved for arbitrary values of the three couplings [4—6], we are interested in the role
of the Gauss—Bonnet term and then we set, for simpliaity= 1, ®p = 0 andap > 0. The equations of motion
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yield [4]*

1
N2=f2=1+—(r2—\/r4+4a2M), (3)
o2
whereM is an integration constant, that will be seen to be the ADM mass.
We first note that fo = 0 the metric reduces to flat space, which is the stable background for this theory [4].
It also follows that for* > 4Mas,
2M
NZ~1- 22 @)
r
showing that, asymptotically, (3) approaches the five-dimensional Schwarzschild metric. Incidentally, note that if
M > as thenr® > 4Ma, would hold all the way to the Schwarzschild horizonrat= ~/2M. If ap =0, (4)
becomes an exact solution.
The function (3) has some interesting properties. The valugadt the singularity- = 0 is finite,

aM
N3O =1— [—,
a2

although the curvature is still singufaihe location of the horizony?(r,) =0, is

/ o

We see from this expression that the horizon exists onlyMor a2/4. We thus find a mass gap separating flat
space from the spectrum of black holes:

M =0, flat space,
0< M < az2/4, naked singularities
M > a2/4, black holes (6)

The mass gap appears in all odd-dimensional theories containing the highest Lovelock [1] term. In three
dimensions, this term is just the Hilbert term and the mass gap is present [12]. In this case, however, the “naked
singularities” have a sensible interpretation in terms of particles [7].

In this Letter we add electric chargeto this black hole and study the corresponding spectrum. We shall see
that the solution has some peculiarities not present in usual charged black holes.

As a first surprise, the addition of charge does not imply the existence of two horizons. There are open regions
in the plang M, ¢} having non-extremal black holes witine horizon. In order to find solutions with two horizons,
q has to be bigger than a certain critical valge; ¢.. Fig. 1 gives a summary of the properties of various solutions
obtained by varying the values #f andq.

In one region of the space of parameters, we find a set of non-extremal charged black holes having only one
horizon. We call this region the “heavy branch” because it is defined by the contitierMi;. For masses within
the range

Mciit 2 M > Mext, q>dqc (7)

1 The coefficientay appearing here differs from that in (1) by a numerical constant. Notedthat 1 implies, in five dimensions,
[mas§ = [lengtt?] = [a2].

2 Consider the metric of a conds2 = o dr? + r2d¢? with 0 < ¢ < 27. It is known that its curvature is concentrated-at 0. Consider
now ds? = a dr? + r2(d6? + sin? 6 d¢?). The scalar curvature 8 = (« — 1)/(cr2) showing that the geometry is not locally flat.
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The "Phase Diagram"

M
Critical Curve
M = Meip
Heavy Branch \
ONE HORIZON \
\ Light Branch
TWO HORIZONS
< _ Extreme black holes
M=Mext
. NAKED SINGULARITIES
Mass Gap § l

Flat Spac G=q¢ " " q '
Critical Charge

Fig. 1. The phase diagram. For each valuegof g, there exists two black holes phases. Flat space is locatgd=ad/ = 0, and it is
disconnected from the black hole spectrum by a set of naked singularities.

we find the “light branch” with black holes with two horizons. Mt = Mgy, we find extremal black holes with only

one horizon (and zero Hawking temperature). Below the extreme value, the solution represents a naked singularity.
There is also a “critical charge” below which the light branch ceases to exist. Flat space is loceted@t= 0,

and thus the mass gap persists in the charged solution.

The terms “phase structure” and “phase transitions” are used here only in analogy with the statistical mechanics
concept, without implying a direct connection. Of course, given the thermodynamical properties of black holes,
this may turn out to be more than an analogy but we shall not study this issue here.

To avoid future confusions, we stress that the action considered in this Letter is not the usual minimally coupled
Einstein—Maxwell system (plus a Gauss—Bonnet term). Those solutions were studied in [6] and do not exhibit this
phase structure. Instead, we consider a five-dimensional Chern—Simons theory for thé&/ ¢2oRp[8], which
has a sensible interpretation as a gravitational plus electromagnetism theory, with a Gauss—Bonnet term. This
interpretation, however, requires a symmetry breaking term because otherwise the equations of motion differ from
the usual ones even asymptotically. This point was discussed in detail in [9].

The application of Chern—Simons theories to gravity has been discussed several times in the literature and we
shall not repeat it here. The first constructions were reported in three dimensions in [10], and the same idea was
then applied in [8] to five dimensions. See [11] for other aspects.

For the purposes of this Letter, we refer the reader to Ref. [9] were many details omitted here can be found.
In particular, the asymptotic form of the charged black holes was already reported in that reference. The goal of
the present Letter is to display tk®act solution for an arbitrary mas&f and electric chargeg, and study the
associated phase space.

2. Theequationsand their solution
2.1. The equationsand spherically symmetric ansatz

We start by writing down the equations of motion associated to a Chern—Simons theory for thé/géhap
This group contain§O(4, 2) which would give pure gravity with a Gauss—Bonnet term. The extensiohi(202)
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incorporates an Abelian one-form, that we interpreted as an electromagnetic field, coupled non-minimally to
gravity. See [9] for a detailed analysis, and other motivations to study this system.

A key issue in the analysis (and discussed in [9]) is the fact that the Chern—Simons equations of motion do
not provide a sensible theory for ti&) (2, 2) field. For example, there is no linearized theory and the metric is
not asymptotically Schwarzschild. Given the strong topological roots of the Chern—Simons construction, it is still
attractive as a field theory, and one would like to know if the equations can be “repaired” by some mechanism,
hopefully within the same theory. Some progress in this direction was reported in [13].

Here we follow [9] in which a symmetry breaking term is added to the action. The Chern—-Simons equations
then becomes closer to the real world and one can start asking questions such as what is the structure of black
holes, and what is the nature of the couplings between the gravitational and iifé Mabauge fields degrees of
freedom. In this Letter we concentrate on the coupling between the gravitation&l(@néeld.

The symmetry breaking term added in [9] consists in a cosmological term (vacuum energy) and it is
parameterised by a real numher_et ¢ be the five-dimensional vielbein one-form?” the spin connection, and
A the Abelian one-form. The equations of motion following from the, 2) Chern—Simons theory (including the
symmetry breaking term proportional t) are,

eabcde[(R“b + e“eb) A (RCd + e“eb) NN ed] =—-4T, A F, (8)
Eabcde(Rab + eaeb) AT = (Rge +eqee) N F, )
1

ERabARab —d(ea AT*)=F AF, (10)

where R = dw® + we.w, T* = de® + we? and F = dA. For = 0, these equations are equivalent to
F A F =0 with F € U(2, 2) which are the exact Chern—Simons equations.

Since we are interested in black hole solutions, we write the ansatz for the metric and gauge field with spherical
symmetry

ds?=—N(r)2di® + f2(r)dr® +r?d 23, (11)
A=—¢(r)dr, (12)

whereN, f and¢ are functions to be determined.

As shown in [9], the dynamics of the Abelian formis linked to the torsion tensor. If we assume from the
very beginning that* = 0, then the equations of motion fdr do not give Maxwell's equations in any limit. On
the contrary, lettingl’ to be different from zero yields a system of equations that can be analyzed perturbatively
and yields, to first order, Maxwell’'s theory for the potenthdl-). The relationship between the torsiéfi and the
Maxwell field F is encoded in Eqg. (9). To first order we ignore the right-hand side of (8) and find the gravitational
background (AdS spac&*’ = (r — 1)e%e’. Replacing in (9) it implies [9]

eq NT="F, (13)

wherex represents Hodge’s dual. Replacing (13) into (10) one obtains the usual five-dimensional Maxwell-Chern—
Simons systerd*F = F' A F. This is, in short, the mechanism that transfounmito a radiating field.

Incorporating the back reaction from the right-hand side of (8) produces corrections to (13), and the Maxwell
equation. It is precisely the role of these corrections what we aim to investigate in this Letter.

Let us then assume that the torsion is not zero, andét= w(¢) + k* wherew?’(e) is the solution
to the equationie® + w?,(e) A ¢ =0, and only depends on the metric parameterizes a non-zero torsion by
T =% A e, In order to prescribe a spherically symmetric ansatzfér it is convenient to express all indices
in the coordinate basig,g;,, = ea(,x”bu epp. The correct ansatz with spherical symmetry for this tensor follows by
studying the equations of motion order by order starting from the AdS vacuum. The details were given in [9], and
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the resultis,

o V0
7Y 2\/%

wheree,,;*# is the Levi-Civita tensor withe"?1%203 = 1, \/h = r3sir? 6, sinf,, andz = dt A dr, U = B(r) dt,
V = a(r)dr. The torsion then contributes with three more functions ¢d be determined by the equations of
motion, namelyx(r), B(r) andy (r). ¥ is closely related to the electric field (see Eq. (13)), whiland 8 are
auxiliary fields which will be eliminated algebraically from their own equations of motion.

We shall see that this ansatz does provide an exact solution to tiéflR) system.

GuvkaﬂZaﬂ — Zuy U, + zgk[/LVu], (14)

2.2. The spherically symmetric reduced equations

In this section we present some of the details in finding the equations and their solution. The reader interested
only the final result can jump to the next section where the final form of the metric is displayed and its properties
analyzed.

It is a direct but long calculation to replace in the equations of motion (8), (10) the ansatz with spherical
symmetry shown in the last paragraph. The resulting equations turns out to be extremely complicated.
Some simplification can be achieved by making field redefinitions which simplify the expressions for the
curvatureR*® and torsionT¢. These field redefinitions involve all variables. We transf¢smg, N, f, ¥, ¢} —

{a1, B1, No, f2, Y1, ¢1}, according to

-1 N
a="" ﬂ:N(—f ﬂl+N’+Na>,
g

r

r

o1
/= T fi=14r2=yi+ fo, N = fiN1, N1=exp(/N2>,

r

¢ = 4/dr (N1yr1®1), V= E (15)

r

Note that the horizon structure will be controlled by the zero’es of the fungtion
Inserting the above ansatz into the equations of motion, we find two sets of equations which can be analyzed
and solved separately.

2.2.1. Theas, Y1, f> system
The first set of equations involves only the functidig, 1, f2}. The equations are the following (prime
indicates radial derivative):

(493 — drPyry — &y — 2 foy1) Y — 2 for + 2r foo1 + 202731 =0, (16)
a1fo— fa—2rynyy =0, (17)
2921 — (W1fa) =0. (18)
We note that (17) and (18) can be easily solved. We find, respectively,
2 I
w=1+ 201 (19)
f2
2 5,490
== + R 20
f2 Swl v ( )
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wheregqo is an integration constant that will be related to the electric charge. It will be convenient in what follows
to do yet one more redefinition,

q0 V6q
=— == 21
Y1(r) vy =20 (21)
whereW (r) is a new function of. Replacing (20) into (19) we find the following expressiondar
(Pry
= 22
a1 P (22)
whereP is a short hand for
q/3 _ 2
P = 11/3q ) (23)
Finally, we replace (19) and (20) in (16) and obtain a closed equation for the function
av
(6g*W? + 32w — 6¢rtw? — 6g%W° — 495 + v9) —+ 202395 (g2 — ) =0. (24)
r

This last equation is linear i#’. The integral can be done explicitly and we find the implicit solutiondfar),

12(w3—q2)44 1,2 3q2 445 945 9 g8 2443 244% 12410
= A Tg?
2

w2 797 298 ' 10wl0 T 11yll T 5 g5  13yl3
1 12 3 4 3 10
42429 29 _ 5y (25)

where M is an integration constant that will be seen to be the ADM mass of the solution. This is an algebraic
equation that should be inverted to figdr).

2.2.2. The p1, N2, & system
We now proceed to find expressions far, N> and®1 in terms of¥. The three remaining equations are:

0= for + prfo+72, (26)
0=o1f2+Bif2+ f3B1+ NoPrfz — 2y1yifr+ 22 + drydy

— 2rynyy — 2a1Bar + rfy+ a1r? + 2rpa, (27)
0= 20181 — 2f2P1 — 2N2yZ + 2Na + f3 + 2Nof2 — 2y + 2]

+ 2rag 4 2r 4 2r NoB1 + 2r°No. (28)

This set of equations can also be solved in a closed form. We shall not go into the details on how to find the
solution, we only quote the result. Using the valuexgpffound in the previous paragraph, we find that Eqgs. (26)—
(28) are solved by:

2
ﬂlz_r(fzi)’ (29)
Sf2
N, = v (30)
f2
2 _ 9 4\1/
o, — LB/~ 2 (31)

2 2y
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Note that making the redefinition (21), and using the solution (20Yiawe have
w3 _  2\4
N]_:efN2=< [psq)

This completely solves the problem. All functions are known in terms afid¥, and¥ is known in terms of-
by (25).

3. Charged black holesand a phase transition
3.1. The metric

Let us summarize the results of the analysis of the equations of motion. The metric ansatz was
ds?>=—N@r)2di*> + f2(r)dr® + r?d 2. (32)

The functionsV and f are fixed by the equations of motion as (prime denotes radial derivative)

N%=P8f2, (33)
2
2 (Pr)/ 1
f = [Tj| F, (34)
1
where
1 2

andP is given in (23). Finally® is a function ofr defined by the algebraic equation (25).
In some applications it may be convenient to define a new radial coordinate, as suggested by Egs. (25) and (34),

p=Pr. (36)
In terms of this new coordinate the metric takes a simple form,
1 [ dp?
ds?> = —P8f2dr® + -3 <f—12 + pzdsz??) (37)
and the relation (25) becomes

b=t yed. 840 ga° 94 484°48¢% 24¢0 147 4% 647
w2 7y w8 5yl0 11yll 5 S 13913 2ylé g4 Tl
(38)

From now we shall only consider the case- 1. This is only for simplicity in some calculations, but it does not
affect the main conclusions.

3.2. Known limits of the solution. Reissner—Nordstrom solution

Since the exact solution displayed in the previous paragraph is rather complicated, as a first check we analyze
how this solution reduces to the known ones, in various limits. We first study the uncharged solution, found in [4]
and discussed in the introduction. Then we show how in the limit of small charges and large radial coerdinate
we recover the usual Reissner—Nordstrom spacetime.
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Consider first the uncharged solution with= 0. In this caseP = 1 (hence = p), we can solver explicitly,
¥ = +/r4 4+ 4M, and obtain forf; the closed expression,

f2o14r2— i am, (39)
representing the uncharged solution [4], described in the introductionggvithl.
Consider now the charge as a small parameter, and seek for a perturbative solgfiom ihe Eq. (25). Let
W (r) = r4 4+ 4M + q2h1(r). (40)
Replacing in (25) and keeping only the linear termg#rwe find for the first order perturbation
2r4 +3Vr  + AM
4+ 4M)?2
Replacing in (20), and taking the limit > 4M, we find
1 2M 342 1
N=—==1-"F+22 10 = 42
S=1- 43 vo(5) @2)

coinciding exactly with the Reissner—Nordstrom spacetime. We can also see that the parameter that wéscalled
in fact the electric charge, up to a normalization.

ha(r) = —

(41)

3.3. Theorigin, the Kasner singularity, and physical range of radial coordinate

The metric (37) has a curvature singularity at the orjgia 0. There is another singularity at the point whére
(P was defined in (23)) vanishes,

11/3—Q2=0. (43)

At this singularity, proper times are shrink to zero while spacelike separations are stretch to infinity. The volume
element, however, remains finite, get- P® x (P~2)* = 1. For this reason, we call this point the “Kasner
singularity”.

Both singularities can be shown to be physical in the sense that the components of the curvature tensor in an
inertial frame diverge. It is then important to ask whether these singularities are protected by horizons.

The analysis of existence of horizons is greatly simplified by noticing that the fungticam be used as a radial
coordinate. Although the algebraic relation (38) betwpérand ¥ is quite untractable and attempts to invert it
explicitly are hopeless, we can in fact show that in the domain of interest, it is an invertible function.

We first note that the derivative of (38) can be factorized in the form,

dp* _ (3 +24° — /Bq¥) (W + 24 + VBq¥) (W2 — )"
av wl7 '
Sincew? = 42 is a curvature singularity, we do not need to worry about non-invertibility at that point. We need

to focus on eithew® > 42 or ¥3 < ¢2. Since, asymptotically ~ r? is a large positive number, the physical
domain of the function is

(44)

q2/3 <V <400, (45)

and we explore invertibility of (38) on this domain.
All factors in (44) are positive definite in the physical domain except for the first one. We would then like to
know if the solutions, to the equation,3 + 2¢2 — v/64¥, = 0 lie in the physical range of the functiah or
not. Let us first note this equation has positive solutions ony+f . := (2/3)%/2. Thus, our first conclusion is
that the relation (38) is invertible far > ¢..
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Recall now that the metric has two singularitigs’ = g2, andp = 0. Let us call¥ the particular value o¥
such thatp (¥p) = 0. It turns out (this is most easily done by a graphical analysis) thatif;. the three numbers
¥., ¥o andg?/® are ordered according to

q2/3 < ¥, < Yy. (46)

This means that the non-invertible poi#t is beyond the origiro = 0 and thus, it does not affect the physical
domain.

3.4. Horizon structure

Given the form (37) of the metric it is clear that horizons will arise whenever the fungfg?ovanishes. As
mentioned before, the relation betweemnd ¢ is invertible and we can studﬁf as a function ofr. We write
here the explicit form 01712 in terms of¥, the ADM massM and the charge,

14° Wb

2gy—1_-9 g, T
R =1-55 ¥+ G5y

X\/lp2 142 642 24¢10 948 4848 845 6
7

2916 - y2  13¢l13 5yl0 11yll 7y7

10 946 344 4844
q_+i+i__q__4M‘
pla -y 4 5 ys

(47)
In Fig. 2 we have plottegi; (¥)? in the domainy?/2 < ¥ < oo, for ¢ = 6, and five different values of the mak&
(The picture is actually generic for all valugs- ¢..) Let us analyze each curve separately.

3.4.1. Light black holes, M < M, and extreme black holes
The lightest case, correspondingigy: = 7.057. . ., represents the extreme black hole. It touches the horizontal

line once, and its derivative is zero there too. The mastggq) are defined by the equations

dff _

av

f2

(48)

o

Fig. 2. The functionf2(¥) in the domainy?/2 < ¥ < oo for ¢ = 6 and five different values a¥/.
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These equations can be solved numerically and we have fodimeéar relation

Mexi(q) ~ —0.30914. ..+ (1.2247.. )q. (49)

(The linear approximation is better for charges 2.) This result is remarkable because Eq. (48) definifagi(q)
form a extremely non-linear system. Note also that the slope of the curve appro&2®%s 1 = /3/2, which is
precisely the value obtained by the asymptotic solution (valigfor < 1),

2M 2 2 \/E 2 \/§
2 q q

~1-— I (1. /=22L , M= —q.
fl I’Z 3]’4 ( 3r2> 2

A word of caution is in order here. This analysis does not imply that the funéfiggn(q) is exactly linear, for all
values ofg. We only claim that the linear relation is a good approximation for that curve.

Let us now we move to the curvi, = 7.8. This looks very much like a standard charged black hﬁfe.
intersects the horizontal line twice, and thus there are two horizons.

The black holes discussed so far have one or two horizonsfi%ruﬁk/erges as one approach&s— ¢%/3; in
these cases, the Kasner singularity/dt= ¢ is met before the originp = 0.

3.4.2. Thecritical mass M = Mt

If we carry on making the black hole heavier, we reach the curve(fol6) Mt = 8.113... where something
new happens (we give a close expressionMgyi: below). This curve intersects the horizontal line only once, and
thus it has only one horizon. Also, at the origjff, has a finite value.

To have a better understanding of this case, consider the funﬁlﬁaﬂisplayed in (47). For generic values of
M there is a explicit singularity a#® = ¢2. However, if M is fine-tuned such that the numerator (square root)
vanishes at that point, the pole is cancelled. In fact, one observes that the zero in the square root is stronger than
the zero in the denominator, and that whole term vanishés’at ¢2. The value off?Z at that point is then,

3
f]_2|q/3:q2 =1- 5612/37 (50)

which is in fact finite. Sincé/ enters linearly in the square root, the value\of called M;it, such that the square
root vanishes a2 = ¢2 can be calculated directly,

Mt =

3 2
/3(33¢%/3 + 26 51
g an? | (33477 +26), (51)
(13!=13%11%9-3x 1).
Finally, recall that the square root is nothing lpdt(see Eq. (38)). This means that, by definition, at the critical
massM.rit, the originp = 0 and the Kasner singularitiy® = ¢2 coincide.

3.4.3. Heavy black holes: M > Myit

Let us now increase the value &f aboveMi:. We find the curvesy, = 8.5 and M = 10. These curves
intersect the horizontal line only once. The associated black holes then have only one horizon, despite being
charged.

In this class of solutions (witl4 > M) the origin p = 0 is metbefore the Kasner singularity. This is the
reason that the curve stops before reachiiig= ¢°. At p =0, ff has a finite value (just like the uncharged black
hole discussed in the introduction).

3.4.4. Thecritical charge
We have seen that the spectrum of black holes is separated into two branches, the heavy bravich Wit
and the light branch witldf < M. The interphase is defined by the critical cuMe= Mci; displayed in (51)
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3/2

THE CRITICAL CHARGE: g =2

2
f1 y <Meit

T M> Mgt

Fig. 3. The functionf? as a function o for ¢ = (2/3)%/2.

which depends on the chargeWe shall now see that there exists a particular valug, oamely,

2\ 3/2
qc=(§) , (52)

for which the light branch produces only naked singularities.

In fact, going back to Eq. (50) we note that fpe= g., the value off? atw3 = g2 is zero. We have plot in Fig. 3
the functionfl2 for ¢ = g, and three different masse¥, < Mcit, M = Mcit and M > Mcyit. We observe that the
curveM < Mgt cannot intersect the horizontal line. The light branch thus gives rise only to naked singularities.

For charges; < g, the critical curve is pulled upwards. The light branch will carry on producing naked
singularities, while the heavy branch will have both, black holes and naked singularities depensing on

These results are summarized in the “phase diagram” displayed in the introduction, Fig. 1, showing the various
black holes types for all values @ andq. The most important aspect of that diagram, and of this Letter, is
the existence of two types of black holes for charges ¢., which are continuously connected by varying the
parameterd/ andg.

3.5. The Coulomb potential

So far we have only analyzed the properties of the metric. To compute the value of the electrostatic potential we
first go back to the redefinitions (15), and recall that the functiéns); andy; are known in terms o, which
is algebraically related to the radial coordinate. The full expression for the potential is not very illuminating so we
do not display it here. We only quote the result in the asymptotic kit oo

o) ~—3/6L + (9(14) (53)
r r

showing as stated above that the electromagnetic potential is asymptotically controlled by Maxwell equations.
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