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Abstract

We extend the theory of leading twist nuclear shadowing to calculate leading twist nuclear diffractive parton dist
functions (nDPDFs). We observe that the quark and gluon nPDFs have different patterns of theA-dependence. It is foun
that the probability of diffraction in the quark channel increases withA, reaching about 30% atx ∼ 10−4 for A ∼ 200, and
weakly decreases withQ2. In the gluon channel, the probability of diffraction is large for all nuclei (∼ 40% for heavy nucle
at x ∼ 10−4 andQ2

0 ∼ 4 GeV2), it weakly depends onA and it decreases rather fast with increasingQ2—the probability

decreases by approximately a factor of two asQ2 changes from 4 GeV2 to 100 GeV2. We also find that nuclear shadowin
breaks down Regge factorization of nDPDFs, which is satisfied experimentally in the nucleon case. All these novel e
nDPDFs are large enough to be straightforwardly measured in ultraperipheral collisions at the LHC.
 2004 Published by Elsevier B.V.

1. Introduction

It is firmly established by the HERA H1 [1,2] and ZEUS [3] experiments that inclusive diffraction constitu
significant fraction, about 10%, of the total cross section for deep inelastic scattering (DIS) of leptons on hy
The diffractive events are characterized by the absence of hadronic activity in the detector at central ra
This QCD phenomenon involves both nonperturbative and perturbative aspects of the QCD dynamics
discussions see [4], and it is usually referred to as scattering off the “Pomeron”. Note that in the case
the dynamics is quite different from that of the Pomeron pole exchange in soft hadron–hadron interaction
use the concept of Pomeron in order to indicate that we refer to the kinematics of large rapidity gaps an
momentum transfers to the recoil nucleon.

The proof of the factorization theorem for hard diffraction [5] enables one to describe the process in te
Q2-dependent diffractive parton distribution functions (DPDFs) and extract the DPDFs from various diffr
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data. The current data [1–3] are consistent with the dominance of leading twist in hard diffraction and w
dominance of the gluon DPDF over the sum of the quark DPDFs. The DPDFs for the scattering off unpo
target,fD(4)

j/N (β,Q2, xP, t) depend on four variables: Bjorkenx, virtualityQ2, four-momentum transfer squared
the targett and the fraction of the longitudinal momentum loss by the targetxP.

The aim of the present Letter is to investigate, within the leading twist approximation, nuclear depend
coherent (without nuclear break-up) diffraction induced by hard probes and to obtain nuclear DPDFs. Thi
allow to calculate the cross sections of various diffractive DIS processes as well as of direct photon dif
off nuclear targets. Experimental studies of these processes will be feasible in ultraperipheral collisions (
heavy ions at the LHC [6] and at the EIC [7].

Inclusive hard diffraction in DIS off nuclei has been studied in a number of papers, see e.g. [8,9]. Un
previous attempts, we use the QCD factorization theorem for hard diffraction [5] and the leading twist th
nuclear shadowing [10–12]. This enables us, for the first time, to calculate nDPDFs, i.e., to perform th
separation. This is an essential ingredient for the calculation of various, more complicated, problems
charm production in DIS and dijet production in direct photon diffraction off nuclear targets, which need nD
and especially the gluon nDPDF. The present Letter complements our studies of the role of leading twist
shadowing at small-x in inclusive processes with nuclei.

While we assume that the QCD factorization theorem for hard diffraction in DIS holds and all considered
are leading twist effects, the studies of coherent diffraction on nuclei help to understand the transition to the
of high parton densities. Indeed, the fraction of diffraction of the total cross section in DIS is a measure
close to the black body regime (the regime of complete absorption of the projectile by the target) one is
diffraction is approximately 10% of the total cross section in DIS on hydrogen, the fraction of diffractive e
steadily increases as one increases the atomic numberA, asymptotically approaching the absolute limit of one h

This Letter is structured as follows. In Section 2 we recapitulate essential points of the leading twist
shadowing model and present the formula for coherent diffraction on nuclei. The analysis and discus
the resulting expressions for nuclear diffractive parton distributions are presented in Section 3. We conc
summarize in Section 4.

2. Leading twist nuclear shadowing and coherent diffraction on nuclei

The theory of leading twist nuclear shadowing is based on the Gribov relation between nuclear shadow
diffraction [13], Collins factorization theorem for hard diffraction in DIS [5] and the QCD analysis of the H
data on hard diffraction in DIS on hydrogen [1,2]. The foundations of the resulting theory and predictio
nuclear parton distribution functions and inclusive structure functions can be found in Refs. [10–12].

The master equation for the evaluation of the shadowing correction,δfj/A, to the nuclear structure parto
distribution functions of flavorj , fj/A =Afj/N − δfj/A has the form

δfj/A
(
x,Q2

0

) = A(A− 1)

2
16πRe

[
(1− iη)2

1+ η2

∫
d2b

∞∫
−∞

dz1

∞∫
z1

dz2

xP,0∫
x

dxP f
D(4)
j/N

(
β,Q2

0, xP, tmin
)

(1)× ρA(b, z1)ρA(b, z2)exp
{
ixPmN(z1 − z2)

}
exp

{
−A

2
(1− iη)σ

j
eff

z2∫
z1

dzρA(b, z)

}]
,

with η the ratio of the real to imaginary parts of the diffractive scattering amplitude;z1, z2 and�b the longitudinal
(in the direction of the incoming virtual photon) and transverse coordinates of the nucleons involved (defin
respect to the nuclear center);β , xP andt the usual kinematic variables used in diffraction;β = x/xP; tmin ≈ 0;
ρA(b, zi) the nucleon distribution in the target nucleus. The upper limit of integration,xP,0 is a cut-off parameter
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which equals 0.1 for quarks and 0.03 for gluons. The effective cross section,σ
j

eff, is expressed through the nucle
DPDFs as (see Ref. [12] for the detailed discussion and numerical estimates)

(2)σ
j

eff

(
x,Q2

0

) = 16π

fj/N (x,Q
2
0)(1+ η2)

xP,0∫
x

dxP f
D(4)
j/N

(
β,Q2

0, xP, t
)∣∣∣∣
t=tmin

.

Eq. (1) serves to define the input nuclear PDFs at the initial scaleQ2
0, Q2

0 = 4 GeV2 in our analysis. Nuclear PDF
at larger scalesQ2 are obtained using the NLO QCD evolution equations.

In Eq. (1), the interaction with two nucleons is calculated in a model-independent way. The only sou
model-dependence is due to the approximation of the interaction with three and more nucleons by the att
factor

exp

{
−A

2
(1− iη)σ

j

eff

z2∫
z1

dzρA(b, z)

}
,

which involvesσ jeff, the rescattering cross section given by Eq. (2). While this quasi-eikonal approxima
expected to be valid atQ2

0 = 4 GeV2, it becomes progressively worse with increasingQ2. The reason for this is
that the eikonal approximation conserves the number of bare particles and thus contradicts QCD evolu
a result, one obtains a wrong, higher twist,Q2-dependence of nuclear shadowing in the processes dominat
small partonic configurations of the incoming virtual photon. Only at lowQ2 scales, where the effects of QC
evolution are not very important, can one justify the use of the eikonal and quasi-eikonal approximation
means that Eq. (1) should be used only at the initial scaleQ2

0 = 4 GeV2.
The generalization to the case of coherent diffraction in DIS on nuclei is rather straightforward, and it f

closely the case of the vector meson diffraction, see e.g. [14]. The nuclear diffractive parton distribution o
j can be presented in the form

f
D(3)
j/A

(
x,Q2

0, xP

) = A2

4
16πfD(4)

j/N

(
x,Q2

0, xP, tmin
)

(3)×
∫

d2b

∣∣∣∣∣
∞∫

−∞
dz exp

{
ixPmNz

}
exp

{
σ
j

eff
A

2
(1− iη)

∞∫
z

dz′ ρA(b, z′)
}
ρA(b, z)

∣∣∣∣∣
2

.

The superscripts(3) and(4) denote the dependence on three and four variables, respectively. We present ou
for the t-integrated nuclear DPDFs since it is more compact and since it is not feasible to measuret in diffraction
off nuclei in the collider experiments. In deriving Eq. (3) we neglected a possibleβ-dependence ofσ j

eff(x,Q
2) in

the exponential factor and substitutedσ jeff by its average value. Since the total probability of diffraction chan

rather weakly withσjeff, see e.g. [15], this seems a reasonable first approximation. At the same time, in the
of smallβ and smallx corresponding to the triple Pomeron kinematics for soft inelastic diffraction, we exp
significant suppression of diffraction as compared to the quasi-eikonal approximation of Eq. (3) forQ2 ∼Q2

0, see
the discussion in the end of the section.

One should note that the large momentum transferQ2, which is necessary for the applicability of the QC
factorization theorem, does not preclude the existence of coherent nuclear diffraction. Indeed, at high ene
minimal momentum transfer to the nucleustmin is small,tmin ≈ x2

BjM
2
A, which makes it possible for nucleus to st

intact (or diffract into low mass excited states). In practice, in the collider kinematics coherent nuclear diff
cannot be identified by its distinctly sharpt-dependence in the forward direction (forward diffractive peak), wh
originates from the factor(FA(t))2 whereFA(t) is the nuclear form factor. Instead one has to use the zero a
neutron calorimeter [16].
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Assuming the exponentialt-dependence of inclusive diffraction on free nucleons and using thattmin ≈ 0, we
obtain

(4)f
D(4)
j/N

(
x,Q2

0, xP, t = 0
) = Bjf

D(3)
j/N

(
x,Q2

0, xP

)
,

whereBj is a slope. In our analysis, we useBj = 7.2 GeV−2 for quarks andBj = 6+ 0.25 ln(10−3/x) GeV−2 for
gluons, which are rather close numerically.

For sufficiently small values ofxP, xP � 0.01, the H1 data [1,2] and ZEUS data [3] can be fitted reason
well using a factorized approximation first suggested within the picture of soft mechanism of diffractive proc
Ingelman and Schlein [17]. In this approach, DPDFs can be presented as a product of a factor dependingt
andxP (Pomeron flux) and a factor depending only onβ = x/xP andQ2 (which is often referred to as the DPD
of the Pomeron)

(5)f
D(3)
j/N

(
x,Q2

0, xP

) = fP/p(xP)fj/P
(
β = x/xP,Q

2
0

)
,

wherefP/p is the so-called Pomeron flux andfj/P is the parton distribution function of the Pomeron.
Note that the QCD fits to the diffractive data lead toαP(0) for the effective Pomeron trajectory, which

somewhat larger than the one for the effective soft Pomeron trajectory. This is likely due to a different in
of soft and semihard physics in hard diffraction at theQ2

0 scale and a different role of screening compared to
interactions. Hence, it is likely that a violation of the factorization approximation will be observed once th
are more accurate.

The final expression forf D(3)
j/A takes the form

f
D(3)
j/A

(
x,Q2

0, xP

) = A2

4
16πBjfP/p(xP)fj/P

(
β = x/xP,Q

2
0

)

(6)×
∫

d2b

∣∣∣∣∣
∞∫

−∞
dz exp

{
ixPmNz

}
exp

{
σ
j

eff
A

2
(1− iη)

∞∫
z

dz′ ρA(b, z′)
}
ρA(b, z)

∣∣∣∣∣
2

.

One immediately sees from Eq. (6) that the factorization approximation is not valid for nuclear diffractive
distributions, even if it is valid for the nucleon case: at fixedxP, the right-hand side of Eq. (6) depends not only
β but also on the Bjorkenx since the screening factor is given by the exponential factor containingσ

j

eff, which is a
function ofx. In addition, the right-hand side of Eq. (6) depends on the atomic mass numberA since the effect o
nuclear shadowing increases with increasingA.

The aforementioned breakdown of the factorization approximation is a result of the increase of the
shadowing effects both with the increase of incident energy and with the increase of the atomic numb
precludes the possibility of a scenario offered in Ref. [16], where coherent diffraction in DIS on nucleo
nuclear targets is provided by the same universal diffractive PDFs—“a universal Pomeron”.

It is also worth noting that the approximation which we use atQ2
0 in order to take into account multipl

rescatterings, corresponds essentially to treating diffraction as superposition of elastic scattering of
components of the photon wave function off the nucleus. This is a reasonable approximation for the config
with masses comparable toQ2. As one approaches theβ 
 1 limit (which corresponds toM2

X �Q2, one
approaches the limit analogous to the soft triple Pomeron limit, in which case diffraction off nuclei is st
suppressed as compared to the elastic scattering, see e.g. [8,18]. This effect should be even stronger in o
DIS sinceσjeff increases with the decrease ofβ . Hence, we somewhat overestimate diffraction at smallβ and at
relatively smallQ2

0 scale, see Figs. 2 and 3. At largerQ2, diffraction at smallβ is dominated by the QCD evolutio
from β � 0.1 atQ2

0 and, hence, the accuracy of our approximation improves. Hence, in the numerical stud
neglect the effect of the small-β suppression.
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3. Numerical results

In our analysis of Eq. (6), we used the 1994 H1 fit [1] forfj/P, where the gluon distribution is decreased
the factor 0.75. This change seems to be required by the more recent analysis of the 1997 H1 data on
diffraction on hydrogen [2].

In order to have an idea about the magnitude of diffraction in DIS on hydrogen, the ratiosRj/N ≡ f
D(2)
j/N /fj/N

for u-quarks and gluons andFD(2)
2N /F2N are presented in Fig. 1 as functions of Bjorkenx. Note that by definition

(7)f
D(2)
j/N

(
x,Q2) =

xP,0∫
x

dxP f
D(3)
j/N

(
x,Q2, xP

)
.

These ratios give the probability of diffraction in the processes dominated by the coupling of a hard p
a quark or gluon, respectively. For the hard process with a specific trigger, the probability of diffraction
close toRq/N , such as the measurement of the diffractive structure functionFD

2N , or to Rg/N , such as theb-
quark production. Alternatively, the probability of diffraction can have an intermediate value betweenRq/N and
Rg/N , such as in thes-quark production. In Fig. 1, the solid curves correspond toQ= 2 GeV; the dashed curve

Fig. 1. The ratiosfD(2)
j/N

/fj/N for the u-quarks and gluons and NLOFD(2)
2N /F2N . The solid curves correspond toQ= 2 GeV; the dashed

curves correspond toQ= 10 GeV; the dot-dashed curves correspond toQ= 100 GeV. In addition, for the gluons the dotted curve corresp
to Q= 5 GeV.
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Fig. 2. Theu-quark and gluon nuclear (40Ca) diffractive parton distribution as a function ofβ at two fixed values ofxP. The solid curves
correspond toQ= 2 GeV; the dashed curves correspond toQ= 10 GeV; the dot-dashed curves correspond toQ= 100 GeV. In addition, for
the gluons the dotted curve correspond toQ= 5 GeV.

correspond toQ= 10 GeV; the dot-dashed curves correspond toQ= 100 GeV. Since theQ2-dependence o
g
D(2)
N /gN is rather strong, we also show the ratiogD(2)

N /gN atQ= 5 GeV (dotted curve). One sees from Fig
that in the quark channel, diffraction constitutes 15–20% of the total cross section, while in the gluon c
diffraction is significantly larger [10]. This is likely to be related to a larger cross section of the interaction
gluon color dipole (in the8 × 8 representation) as compared to the triplet quark–antiquark dipole.

The absolute upper limit of the gluon distribution,g
D(2)
N /gN = 1/2 is reached atx = 6× 10−5 andQ= 2 GeV.

Since we prefer to stay away from modeling the kinematics, where taming of the increase of the diffractive
distributions becomes necessary, we will consider the limited range of Bjorkenx, x > 6× 10−5, in this Letter.

Next, it is natural to analyze how the ratios presented in Fig. 1 change when hydrogen is replaced by a
target. This can be done in two steps. First, acting in the spirit of the QCD factorization theorem for hard diff
in DIS, Eq. (6) is used to define the input for DGLAP evolution at fixedxP. Subsequent QCD evolution enab
us to determinefD(3)

j/A (x,Q2, xP) as a function ofβ = x/xP andQ2 at all fixedxP. An example of these resul

in presented in Figs. 2 and 3 for the nuclear targets of40Ca and208Pb. Theu-quark and gluon nuclear diffractiv
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Fig. 3. Theu-quark and gluon nuclear (208Pb) diffractive parton distribution as a function ofβ at two fixed values ofxP. The solid curves
correspond toQ= 2 GeV; the dashed curves correspond toQ= 10 GeV; the dot-dashed curves correspond toQ= 100 GeV. In addition, for
the gluons the dotted curve correspond toQ= 5 GeV.

parton distributionsf D(3)
j/A (x,Q2, xP) (arbitrary absolute normalization) are presented as functions ofβ = x/xP

at two fixed values ofxP = 10−4 andxP = 10−2. The solid curves correspond toQ= 2 GeV; the dashed curve
correspond toQ= 10 GeV; the dot-dashed curves correspond toQ= 100 GeV; the dotted curves correspo
to Q= 5 GeV. Different shapes and sizes off

D(3)
j/A (x,Q2, xP) at xP = 10−4 andxP = 10−2 clearly demonstrate

violation of the factorization approximation for nuclear DPDFs.
Another characteristic feature of nuclear DPDFs is that, like in the case of the free proton target, th

distribution is significantly larger than the quark distribution. However, we point out that the ratio of the qu
the gluon DPDF is significantly larger in the nuclear case because of a faster increase of the quark nDP
the atomic numberA. Also, similarly to the free proton case, scaling violations of nDPDFs at largeβ are rather
insignificant. This point is exemplified in Fig. 4 where we plot theu-quark and gluon nDPDFs as functions ofQ2

at fixed largeβ = 0.5 and smallxP = 10−3. One readily sees from Fig. 4 that QCD evolution in lnQ2 is weak.
The difference in large-β scaling violations of the structure functionFD(3)

2 in the nuclear and nucleon case

presented in Fig. 5. AtxP = 10−3 and two values ofβ , β = 0.5 and β= 0.1, FD(3)
2 is plotted as a function ofQ2
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Fig. 4. Theu-quark and gluon nuclear PDFs as functions ofQ2 at β = 0.5 and smallxP = 10−3. The solid curves correspond to40Ca; the
dotted curves correspond to208Pb.

for 40Ca (solid curves),208Pb (dashed curves) and free nucleon (dot-dashed curves). The curves are norma
coincide at the lowestQ2 = 4 GeV2. One can readily observe from Fig. 5 that scaling violations are largest fo
free nucleon and that scaling violations decrease as one increasesA.

Having obtainedf D(3)
j/A (x,Q2, xP), they can be integrated overxP at fixed Bjorkenx, just like in Eq. (7). The

resultingf D(2)
j/A /fj/A ratios for theu-quarks and gluons and NLOFD(2)

2A /F2A are presented in Fig. 6 for40Ca

and in Fig. 7 for208Pb. From Figs. 6 and 7 one can see that the fraction of the diffractive events in D
small x for moderately heavy and heavy nuclei is of the order of 30% and weakly changes withQ2, which is
in a good agreement with the early estimates of Ref. [8]. In the case of gluon-induced reactions, the pro
decreases rather significantly with an increase ofQ2. However, the probability still remains at the level of 15–20
at Q= 10 GeV and, hence, it would be feasible to study this in ultraperipheral collisions at the LHC usin
instance, production of heavy flavors similarly to the case of inclusive production considered in [19]. A
option is to use dijet production like it was done in the proton case in the ZEUS [20] and H1 [2] experimen

Another conclusion that can be drawn from Figs. 6 and 7 is that theA-dependence of the probability of cohere
diffraction is rather weak forA� 40. For these values ofA, the interaction for the central impact parameter
close to being completely absorptive (black) with a small contribution from the opaque nuclear edge. Mo
theA-dependence is weaker in the gluon case since the gluon interactions at theQ0 scale are already close to th
black limit, even for the nucleon.
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Fig. 5. The diffractive structure functionFD(3)
2 as a function ofQ2 atβ = 0.5 andβ = 0.1 and smallxP = 10−3. The solid curves correspon

to 40Ca; the dotted curves correspond to208Pb; the dot-dashed curves correspond to the free nucleon.

Mathematically this pattern is a result of a compensation of two effects—stronger small-x nuclear shadowing
in the case of coherent diffraction compared to the inclusive case, is compensated by the nuclear form fa
consequence of nuclear coherence.

It is worth noting a qualitative difference between theA-dependence of the fraction of the diffractive events
the quark and gluon-induced processes at smallx. In the gluon case, it is a very weak function ofA because alread
in the proton case, the probability of diffraction is close to one half, the maximal value allowed by unitarity.
same time in the quark case a steady growth withA is predicted since for the proton the probability of diffracti
in this channel is rather small and, hence, the increase of the blackness of the interaction withA leads to a gradua
increase of the diffraction probability to the values close enough to the black body limit.

4. Conclusions and discussion

We study small-x coherent diffraction in DIS on nuclear targets using the theory of leading twist nu
shadowing and the QCD factorization theorem for hard diffraction. It is demonstrated that Bjorkenx and
A-dependent nuclear shadowing explicitly breaks down Regge factorization in diffraction, which means
fixedxP, nuclear parton distribution functions depend not only onβ = x/xP but also on Bjorken xandA.
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Fig. 6. The ratiosfD(2)
j/A /fj/A for the u-quarks and gluons and NLOFD(2)

2A /F2A for 40Ca. The solid curves correspond toQ= 2 GeV; the
dashed curves correspond toQ= 10 GeV; the dot-dashed curves correspond toQ= 100 GeV. In addition, for the gluons the dotted cur
correspond toQ= 5 GeV.

We calculate nuclear DPDFs (Figs. 2, 3 and 4) as functions ofβ , Q2, xP and the atomic numberA. Like in
the free nucleon case, the gluon nDPDF is much larger than the quark nDPDF. Using the calculated nDP
contribution of coherent diffraction to the total probability is estimated for theu-quark and gluon channels as w
as for the NLOF2 structure functions (Figs. 6 and 7). The key result is an observation of dramatically dif
patterns of theA-dependence. In the quark channel and in theF2 case, the probability of diffraction increas
with A, reaching about 30% atx ∼ 10−4 andQ2

0 ∼ 4 GeV2 and forA∼ 200. In the gluon channel, the probabili
of diffraction is already large for the proton and, hence, it changes (decreases) rather insignificantly w
proton target is replaced by the heavy nuclear target: the probability remains at the level of∼ 40% atx ∼ 10−4 and
Q2

0 ∼ 4 GeV2.
TheQ2-dependence of the probability of diffraction is also different in the quark and the gluon channe

very large gluon diffractive distribution makes QCD evolution of the ratiosu
D(2)
A /uA and NLOF

D(2)
2A /F2A rather

weak. At the same time, the ratiogD(2)
A /gA falls off rapidly asQ2 increases (compare the solid and broken cur

in Figs. 6 and 7).
From the experimental point of view, coherent diffraction in deep inelastic scattering on nuclei can be id

via a two-step procedure. First, similarly to the case ofep scattering, one selects events with a rapidity g
Second, one needs to separate the coherent and incoherent diffraction. This can be readily done using
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Fig. 7. The ratiosfD(2)
j/A

/fj/A for theu-quarks and gluons and NLOFD(2)
2A /F2A for 208Pb. The solid curves correspond toQ= 2 GeV; the

dashed curves correspond toQ= 10 GeV; the dot-dashed curves correspond toQ= 100 GeV. In addition, for the gluons the dotted cur
correspond toQ= 5 GeV.

of neutrons in the zero angle neutron calorimeter since the break-up of the nucleus in incoherent diffractio
in production of several evaporation neutrons, see discussion in [16]. In addition, the ratio of incoherent dif
to coherent diffraction is expected to be∼ 0.1–0.15 [15]. Hence, overall in the collider kinematics the task
selecting the diffractive channel without break-up of the target appears to be much easier in the nucleus c
in the proton case. Thet-dependence of coherent diffraction originates primarily from the factor(FA(t))

2 where
FA(t) is the nuclear form factor. Hence, averaget are small and it is hardly possible to measure thet-dependence
of the diffractive amplitude for the case of the large masses of the produced diffractive system. Howeve
the t-dependence is mostly trivial, inability to measure the differential cross section would not lead to a sig
loss of information about the dynamics of diffraction. Note also that the break-up channel originates mostly
the scattering off the edge of the nucleus, leading to the same pattern of diffraction as in the scattering o
nucleon. Hence, we predict a differentβ,xP,Q

2 dependence of the hard diffraction in incoherent and cohe
diffraction.

Nuclear diffractive PDFs, discussed in this Letter, exhibit novel effects, which are large enough to be m
in the ultraperipheral collisions at the LHC. We also would like to emphasize that the proximity of the prob
of hard diffraction to the unitarity limit atQ2 ∼ 4 GeV2 shows that the color transparency phenomenon and re
to Bjorken scaling decomposition over powers of 1/Q2, which are typical for DIS, disappear in the vicinity
theseQ2. Thus, nuclear shadowing does not preclude observation of a variety of phenomena characterist
unitarity limit for the gluon channel in the case of the nucleon and nuclear targets atx � 10−3, and for the quark
channel forx � 10−4 for heavy nuclear targets. In particular, we expect that blackening of the interactio
reveal itself in heavy ion collisions at the LHC (and to less extent at RHIC) in the filtering out of nonpertur
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ion [21]

e

dation

eptember

, DESY,
QCD effects and producing a pQCD phase in the proton-nucleus collisions in the proton fragmentation reg
and in the heavy ion collisions in the ion fragmentation regions [22].

Numerical results presented in this Letter are available from V. Guzey (vadim.guzey@tp2.ruhr-uni-bochum.d)
upon request.
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