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1. Introduction and overall vision

Cyber-technical systems (CPS) that exploit wireless technologies, micro-sensing micro-electro-mechanical-systems
(MEMS), and distributed decision making and control, have enriched the confluence of ubiquitous computing, networking
technologies, and wireless sensor networks (WSNs), boosting many promising applications in environmental sensing [1],
health monitoring [2], surveillance [3], intelligent transportation [4], guiding groups on tourist tours [5], and emergency
response [6,7]. In particular this paper focuses on sensor-aided CPSs that enable intelligent and fast response to emergencies
such as fires, earthquakes, or terrorist attacks. Real-time monitoring and quick response are inherent requirements in the
design of an emergency response system. As an example, during a fire many different types of sensors can cooperate to
interact with civilians and the environment. Temperature and gas sensors are responsible for monitoring the spreading
of hazards. Rotatable cameras track the spread of the fire and the movement of civilians. Ultrasonic sensors can range
the distance to obstacles in the environment, and monitor dynamic changes of maps due to the sudden changes of some
built structures through destruction and the accumulation of debris. Intelligent evacuation scheduling can be conducted
by the cooperation between first-aid decision nodes, sensors, and civilians with mobile devices since partial information
and opportunistic connection are usually inevitable in an emergency. Civilians with mobile devices will follow personalized
navigation directions and distributed decisions may help mitigate congestion, while those without mobile devices may
follow audio or visible LED directions from nodes in their neighborhood. Grid/Cloud-supported simulators will gather all
sensing information to dynamically predict and forecast the spread of hazards and to make decisions on resource allocation
and response policies.

1.1. Approaches to emergency response

Two types of approaches to emergency response, Approach 1 and Approach 2 of Fig. 1, have motivated considerable
research. One approach addresses the evacuation of victims of an emergency with the aid of fixed wireless sensor networks,
so that the evacuation process responds dynamically to the manner in which hazards spread or recede. In this approach,
work has also been devoted to directing first responders and emergency personnel towards the events that are taking place
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Fig. 2. Analysis of emergency evacuation systems.

and to aid the victims. Approach 2 focuses on the use of mobile devices, as well as sensors, so that the victims of an emergency
and the emergency personnel can act autonomously based on the advice and information that they receive. Approach 3 on
the other hand which we have called “next generation systems” would include some of the methods and technologies that
we will discuss in Section 5.

2. Emergency evacuation

A representation of the evolution of emergency evacuation systems, from the simpler to the more complex, is given in
Fig. 2. Below, we review both types of systems and discuss issues including communications, information acquisition and
dissemination, knowledge discovery, heterogeneous system integration and asynchronous control.

Finding safe evacuation paths and providing them in a timely fashion to the evacuees is the primary goal of an emergency
evacuation system. We will therefore discuss three classes of distributed protocols to compute safest evacuation paths.

2.1. Potential-maintenance approaches

In [8], a WSN is adopted to monitor hazards in the environment, and only one exit is assumed. Each user is equipped with
a sensor node to communicate with the WSN for requesting an emergency evacuation path to the exit. The deployment of
the WSN is assumed to be known by each user. The sensors that detect hazards are modeled as multiple obstacles. Thus, the
goal is to find a “safest” path from each sensor to the exit without passing through any obstacles. The concept of artificial
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potential fields which has been long used in mission planning [9,10] is adopted to compute evacuation paths in a distributed
manner. The exit sensor generates an attractive potential to pull sensors to the exit, while each obstacle generates a repulsive
potential to push sensors away from the obstacle. In this way, each sensor can compute an overall potential value that is
used to guide the evacuees. Here the overall potential value of sensor s; is computed by P(s;) = Zsh eH m where H is

the set of sensors that detect hazard and d(s;, s) is the shortest hop distance from s; to an obstacle sy, (i.e., hazardous sensor).

However, as only the shortest path is used without the concept of hazardous regions, [8], paths that are used may be
very close to the sources of hazards. Also, wireless links do not offer accurate navigation links so that an impractical path
passing through physical obstacles (e.g., walls) may be provided. Thus, by considering several hazardous regions, each of
which is formed by a set of sensors whose hop distance from a hazard is not greater than a predefined threshold D, and a
manual navigation graph, in [11] the concept of multipath routing in mobile ad hoc networks navigate people as far away
from hazardous regions as possible. Each sensor node will maintain an altitude to guide people to the neighboring sensor
node in the navigation graph with the lowest altitude. To bypass hazardous regions, sensor nodes in hazardous regions
must raise their altitudes by the following way. When sensor s; is informed by a hazardous sensor s, with d(sl, sp) < D,it
will consider itself within the hazardous region and update its altitude by A'(s;) = max{A(s;), Aemg X dz(s - + d(si, Se)},

where A.ng is a large constant for the altitude of the sensors that detect hazards and d(s;, s.) is the shortest hop distance
from s; to an exit. Here, A’(s;) and A(s;) are used to distinguish the altitude before from after update. Since s; may be within
multiple hazardous regions, the maximum altitude resulted by these hazardous regions accounts for s;'s altitude. By setting
the altitude, some sensors may become local minimum ones. A partial link reversal operation is performed to solve this
problem so that each sensor maintains at least one outgoing link. Ref. [12] extends [11] to a 3D environment, where sensors
are classified as normal sensors, exit sensors, and stair sensors. A sensor considers itself in a hazardous region if it is within D
hops away from hazards, or if it is a stair sensor and its downstairs sensors are in hazardous regions. The navigation principle
is to guide people to rooftops if there are no safe paths to “downstairs”.

However, frequent global message flooding should be avoided when hazards dynamically expand or shrink. Thus [13]
exploits localized geographic routing to plan navigation paths so as to adapt to dynamic hazards, where only those sensors
without outgoing links need to perform a local link reversal operation in case of changes in hazardous regions. Each sensor
is assumed to know its geographic coordinates. Not only hazardous regions but also safe regions are considered. A hazardous
region is defined as the area whose danger degree exceeds a predefined threshold, while the a safe region is defined as
the area outside those hazardous regions. The goal is to find at least one safe path for each sensor in the safe regions and
at least one escape path for each sensor in the hazardous regions. Each sensor s; in the safe region will maintain a safe
vector (R;, d;, s;), where R; is the reversal counter of s; in safe regions which indicates when s; becomes a local minimum,
and d; is the Euclidean distance to the nearest exit. In contrast, each sensor s; in hazardous regions maintains a hazardous
vector (R;, d;, s;), where R; is the reversal counter of s; in hazardous regions which indicates the times of s; becoming a
local maximum and d; is the Euclidean distance to the hazard source. Based on the safe vector or the hazard vector, each
sensor can set a navigation link for moving toward exits or for escaping from hazardous regions. If there exists a local
minimum/maximum at s;, only those incoming links from neighboring sensors whose reversal counter is less than s;’ will be
reversed so that each sensor node has at least one outgoing link for navigation. The partial reversal operation will efficiently
reduce communication overhead when hazards change dynamically.

The human congestion problem in an emergency evacuation is considered in [14,15], where [14] proposes a distributed
protocol to balance the number of evacuees among multiple navigation paths to different exits. In this work, each sensor is
assumed to be location aware and capable of detecting the number of evacuees within its sensing coverage. Based on the
number of evacuees in each sensor s;'s neighborhood, the sensor maintains a potential value to find a navigation direction
toward its neighbors. A sensor with the larger potential value implies that there are more evacuees in its vicinity. Therefore,
each sensor will select the neighbor sensor with the minimal potential value to be its navigation direction. The potential
value of each sensor s; is computed by P(s;) = D(s;) + a x Pg(s;) + BPn(sj) + y, where D(s;) is the number of evacuees
detected by s;, P, (s;) is the potential value of s;’s current navigation direction, and Py (s;) is total number of evacuees detected
by s;’s neighbors. Here, e, 8, and y are system parameters. By considering the relationship between the evacuee density and
the walking speed of evacuees, the work in [15] extends [14] to reduce congestion, where the evacuee density is acquired
by technologies such as image processing or RFIDs. This work adopts a discrete mapping function from the evacuee density
to walking speed, where the evacuees’ walking velocity is determined by changes in evacuee density. Thus, each sensor s;
computes its potential P(s;) = Zys,es; ( d(s‘:fsg) Zv e ), where Sg is the subset of sensors at exits, d(s;, S.) is the Euclidean
distance between s; and s., and W, is a constant representing the exit capacity at exit s, which depends for instance on the
width of the exit. A larger potential value implies a path with the less congestion. Thus, each sensor will select the neighbor
with the maximal potential value to be its navigation direction.

2.2. Geometric approaches

This type of approach exploits the unique properties of geometric graphs to plan evacuation paths as far from hazards
as possible. For instance in [16] Delaunay triangulations [17] are used to partition a WSN into several triangular areas for
planning area-to-area navigation paths, as shown in Fig. 3; each sensor knows its location and will cooperate to compute a
planar graph, termed the localized Delaunay triangulation [18], in a distributed manner. For each triangulation, each sensor



3872 E. Gelenbe, F.-]. Wu / Computers and Mathematics with Applications 64 (2012) 3869-3880

/\\-—\,H J —> Navigation direction
\ o hazard ___y Updated navigation direction

(exit, hop=0)

0= O
“(F, hop=2), (G, hop=2)

(E, hop=3) N
Fig. 3. An example of area-to-area navigation paths. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

<— Shortest path tree on backbone
@ Sensor detecting hazards
O Sensors on backbone

Fig. 4. An example of the backbone of road map.

maintains the following information: (i) another two sensors involved in the triangulation, (ii) one outgoing edge, and
(iii) incoming edges. The initial outgoing edge of a triangulation is composed of the two sensors which are crossed by the
navigation direction toward the neighboring triangulation with the smallest number of hops to the exit. For example in
Fig. 3, ACFG's outgoing edge is CG since D has a smaller hop count to the exit than B. Triangulations will be of three colors
based on sensor readings to represent different degrees of hazard. A triangulation is red if all of the three sensors of the
triangulation detect a hazard (i.e., sensing reading is not smaller than a predefined threshold T). It is a yellow area if the
two sensors on the outgoing edge detect a hazard but the remaining one does not. Otherwise, a triangulation is green. The
navigation direction of each triangulation is then recomputed in both yellow and red areas to guarantee that the evacuees
are guided toward green areas.

However, location information of both sensors and users may not always be available, so [19] maintains a road map in
each user device to compute navigation paths, where the road map is a simple graph that represents the geometrical features
of the environment. By measuring the signal strength, each evacuee follows a sequence of sensors to the exit along the safest
navigation path. Based on the distance of each sensor from the hazardous areas, the backbone of the road map composed of
a set of sensors, termed the medial axis [20], is created as shown in Fig. 4. Then, a shortest path tree of those sensors on the
backbone is constructed; it is rooted at the exit so that evacuees do not go through hazardous areas. The navigation principle
is to guide each evacuee to the sensors on the backbone and then to the exit along sensors on the backbone.

2.3. Prediction-based approaches

While most of the research focuses on finding paths based on real-time information, this type of approach uses the
prediction of how long a hazard will take to reach the sensor, to compute the evacuation path with the longest escape
time before the hazard reaches it. The work [21] predicts safe evacuation paths by maintaining two graphs, the hazard
graph and the navigation graph. For each room and each line-of-sight corridor one sensor node is deployed. Each sensor
has a corresponding vertex in both of the hazard graph and the navigation graph. Since hazards may spread across walls or
corridors, there is an edge in the hazard graph between any two adjacent room-to-room, room-to-corridor, and corridor-
to-corridor sensors. Also, there is an edge between two sensors in the navigation graph when there is a physical walking
path between the two sensors. In the hazard graph, each edge between sensor s; and sensor s; will be associated with
a hazard weight which is the estimated time for the hazard to spread from s; to s;. In the navigation graph, each edge
between sensor s; and sensor s; will be associated with a navigation weight which is the estimated time for moving from
s; to s;. By performing a breadth first search from the hazard source, each sensor can estimate a hazard time for itself.
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The estimated safety of a navigation path P from a sensor s; to the exit is the minimum of the difference between the
hazard time of each node in P and the moving time from s; to each sensor along P. Thus, each sensor can select the
safest path toward the exit. The hazard time and also the moving delay time are considered in [22]. The delay time of
each sensor is the estimated time for moving from the sensor to the exit that depends on the distance between the sensor
node to the exit. According to the predefined hazard time threshold H; and delay time threshold D;, each sensor switches
between five states: (1) 0 < hazard time < H; and delay time > Dy, (2) hazard time > H; and delay time > Dy, (3)
hazard time > 0 and delay time < Dy, (4) delay time = 0, and (5) hazard time <O, each of which has different degrees of
safety and guiding policies to each other. The guiding policy for sensors with state 1 is to send the evacuee further from the
hazard and then head towards the exit. Sensors with state 2 are far from the hazard and the exit, so the guiding policy is
based on the distance to the exit and to the fire. To reduce the density of evacuees near the exit, the guiding policy of state 3
is to navigate evacuees straight toward the exit. Finally, the state 4 refers to a node at the exit, while state 5 implies that the
sensor is in a hazardous location. To reduce computation and communication overhead, each state has a different frequency
of information update.

The inherent limitations of simple homogeneous WSNs as the sole means of supporting the communication and guidance
needs of emergency evacuations has major shortcomings, leading to the need for heterogenous cyber-physical emergency
evacuation systems to achieve essential requirements of real-time monitoring and quick response to emergencies. Such
systems carry out monitoring and decision-making by considering two subsystems, a sensing subsystem and a decision
support subsystem to overcome the inherent limitations of a WSN.

1. Inherent limitations of sensors: Complicated tasks may be too costly and beyond the sensors’ capabilities of weak
communication, storage, and computing. For example, an IEEE 802.15.4-compliant MICAz [23] has a 128 kB program
flash memory, 512 kB measurement flash, 4 kB EEPROM, and 250 kbps data rate. However, the response time needs of
an emergency system is much more strict than other WSN-aided applications. WSN-based emergency response systems
with both sensing and computation tasks running on lightweight sensor nodes may incur unnecessary service delay. In
contrast, separating sensing and decision-making tasks is more likely to achieve the requirement of quick response.

2. Energy-efficient data collection: Sensing capability is a necessary condition of emergency response systems. Since
communication is energy-hungry and will consume more energy than computation especially for multihop relaying,
reducing sensor energy consumption for relaying data [24,25] will prolong lifetime and is important. Thus, to prolong
system lifetime in emergencies, separating the sensing and computational tasks is necessary for sensors so as to monitor
physical information by single-hop collection with lower transmission power for energy-conservation purpose.

3. Participatory sensing and opportunistic communication: WSN coverage and connectivity may not be always achievable in
dynamic and uncertain emergencies. User personal devices may be used to overcome these limitations, where available
sensors and users devices would cooperate to collect and disseminate physical information such as hazard spreading and
the location of people, and make distributed decisions.

4. Faster-than-real-time prediction and forecast: Prediction and forecast can avoid unnecessary casualties but are difficult for
lightweight sensors. A separated decision support subsystem can serve as a predictor to compensate for the limitations
of the sensing subsystem so as to forecast dynamic changes in emergency.

5. Multi-dimension responses: while in-situ and real-time information is collected by different types of sensors, selecting
the best action and response based on modeling and optimization will be needed.

2.4. Decentralized evacuation systems

This type of system is a two-tiered architecture composed of a distributed decision system and a sensing system. The
upper-tier distributed decision system serves as a middleware layer to connect two different types of client in the lower tier,
the sensing clients and the user clients. Note that all sensor nodes do not form a connected WSN and are only responsible
for reporting in-situ and real-time information to the decision system. In the work reported by [26], there are two major
components, the sensing component and the decision component. The sensing component is composed of a set of sensor nodes,
while the decision component is composed of a set of lightweight decision nodes (DNs). Each sensor node is responsible
for reporting hazard intensity to the neighboring decision nodes. These DNs are deployed in predetermined locations in
the building (e.g., rooms and corridors) to form a distributed network so as to compute the safest evacuation paths. The
ideas here are inspired from adaptive QoS-aware algorithms for packet routing that were described earlier in [27]. The idea
is to replace the “packet” in a packet network by an “evacuee”, the QoS in the packet network is replaced by a measure
combining delay to the safe exit and the safety of the path, and the DNs play the role of routers for the evacuees. For a
recent survey of experimental results concerning QoS-aware routing algorithms in packet networks, see [28]. To make this
scheme workable in the evacuation scenario, each evacuee is equipped with a user portable device (e.g., a smart phone)
which communicates with the DNs directions. The potential paths that evacuees can follow in the physical system mimic
the paths in the network, and the DNs are physically placed at decision points of an undirected graph which represents the
displacements that evacuees can make as they move in the building. Edges between DNs represent short physical distances
that evacuees can move through, and the distances are short enough so that adjoining DNs can communicate very reliably
with each other. The decision algorithm will operate in a distributed fashion at all of the DNs, and they will all have stored this
simple graph representation. In the algorithm, a cost or effective length associated with the edge will relate to the physical
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distance, and will be increased as a function of hazard based on sensed information, that will be propagated progressively
among DNs. The effective length, which represents the degree of hazard of this particular edge based on the physical length
and sensing information. is be computed as d(D;, D;) - H(D;, D;), where d(D;, D;) is the physical distance between DNs D; and
D; and H(D;, D;) is the hazard intensity reported by the sensor placed on this edge. Using adaptive routing techniques [29],
each DN can find the neighbor DN along the minimum-cost path to an exit. By considering the spatial correlation of hazards,
in the sense that the neighborhood of a hazard may be more dangerous than the other areas further away from the hazard,
the work in [30] extends [26] to a more realistic emergency scenario, where the hazard intensity reported by each sensor
aggregates its own value with that of neighboring sensors. Thus the effective length between DN D; and DN D; is computed
as d(D;, Dj) - Hy(D;, Dj), where the Hy(D;, D;) = H(D;, D;) + H,yg. Here, H(D;, D;) is the hazard intensity monitor by the sensor
at the edge (D;, Dj), denoted by s;;, and H,yg is the average hazard intensity monitored by s;’s neighbors.

However DNs may fail or be destroyed during an emergency, so that in [31] opportunistic communications are suggested
for the design an elastic evacuation system, where a set of mobile decision nodes (MDN) that are carried by the evacuees
and possibly by emergency personnel are used to complement or partially replace the DNs.

Each MDN maintains a navigation graph as explained in [26]. Static sensor nodes are pre-deployed in the building to
perform localization of MDNs and report their sensing information to those MDNs that are passing within communication
range of sensors. These MDNs will form an opportunistic network in the sense that the information is acquired and
disseminated only when MDNs can contact each other. When two MDNs meet within their communication range, a low
latency flooding-based information dissemination policy [32]. Once a MDN acquires the newest information from static
sensor nodes or other MDNs, it will perform a local update on link costs in the navigation graph to recompute the safest
path for the evacuee. The work of [33] considers a hybrid decision component, where both static decision nodes and mobile
decision nodes may coexist for increased reliability and message delivery rate.

In [34], the concept of functional separation is adapted to partitioning the sensing system into two sensing units, the
emergency sensing unit and the position sensing unit. The emergency sensing unit is composed of different types of sensor
node (e.g., thermometer, hygrometer, vision sensors, and microphones) to sense abnormal events, while the position sensing
unit consists of users’ mobile phones to sense the wireless beacons for localization. Each mobile phone fetches sensing
data from a centralized sensor-data management middleware that is a sensing information pool to conduct localization and
evacuation navigation. Apparently, the functionality-separated concept is also considered as a means to isolate a sensing
database from the sensor clients and user clients.

3. Agent-based simulators

Agent-based emergency response simulators [35,36] have attracted much attention on facilitating decision of first-aid
responders in an emergency, where the physical world is modeled as fixed-distance grid points. To reduce the computation
cost, [37] models the physical word as a directed graph G = (V, E). The vertex set V is composed of a set of Points of Interest
(Pol), each of which is corresponding to a location in the physical world (e.g., a room, a segment of a corridor, a door, and a
stair). There is an edge in E between two Pols if there is a motion path between the two locations in the physical world. In
the simulator, each Pol maintains a few attributes including ID, the 3D coordinate, the Pol type (e.g., room or corridor), the
availability (e.g., wireless connection). Similarly, each edge maintains attributes including ID, the two end points of Pols, the
length, the type, the degree of risk. Each dynamic entity (e.g., evacuee, robot, or rescuer) is regarded an agent that participates
in the simulated event. To simulate movements of agents, each agent has a moving function of Pols which considers three
factors, the duty, the risk, and the imitation. The factor of duty is an evaluation of the attractive force to a Pol (e.g., the exit
has attractive force on each evacuee) so that a dutiful agent will generally be more responsive to instructions it receives.
The factor of risk evaluates the perceived danger of the agent moving toward a Pol which will depend on the condition
of the path. Imitation is the evaluation of influence degree among agents which is to avoid consistency among agents. By
considering that each entity in the physical world only has partial knowledge, each agent updates the attribute values only
when it arrives to a Pol. Note that more realistic physical sensor inputs are adopted in this simulator to simulate hazards so
that the simulator can also provide real-time decisions for events that take place in the physical world.

To speed up the simulations in a complicated environment, DEFACTO [38], SimSITE [39], and DBES [40] consider a
distributed emergency simulator. The goal of DEFACTO [38] is to provide a 3D visualization system for first-aid decision
makers to facilitate emergency response in a large-scale outdoor environment. There are two components in DEFACTO: the
Omni-Viewer and the proxy-based teamwork. The Omni-Viewer is a 3D human interface to facilitate interactions between
first-aid experts and the environment, while the proxy-based teamwork consists of distributed proxies, each of which
controls and coordinates a partial of agents in the simulated environment. DEFACTO does not follow the specification of
the High-Level Architecture (HLA) [41] which specifies a general framework to address scalability issues on distributed
simulations. As following HLA, SimSITE [39] also built a 3D visualization simulator to facilitate training of first-aid
responders, where the physical world is modeled as a matrix so as to compute the shortest path for each evacuee along
a set of consecutive entries in the matrix. Instead of the grid-point model, graph-based DBES [40] follows HLA to extend [37]
to a distributed evacuation simulator. In a distributed simulator, how to decompose the simulated environment into several
parts without incurring too much communication and computation cost is a key issue. Since the simulated events (e.g.,
hazard spreading) may have temporal and spatial independence in an emergency evacuation application, an application-
driven decomposition manner is adopted in this work, where a multi-stair building could be partitioned into multiple
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floors or groups of rooms. Two types of agents, simulators and simulated agents, are designed in DBES. The simulators are
a set of distributed event schedulers, each of which is associated with a smaller part in the environment to coordinate
the interactions among events. The simulated agents are the set of active units, each of which is associated with an entity
in the physical world and be implemented a specific goal and strategy. To reduce storage, each individual simulator only
maintains a brief of other simulators in a condensed way (e.g., a set of Pols at the intersection of corridors or a stairway).
To reduce internal communication costs within the distributed simulator, a simulated agent’s attributes will migrate from
one simulator to another only when the simulated agent migrates between the physical areas that are being represented
by each part of the simulator. To facilitate the communication among all agents, the FIPA handshaking protocol [42] among
agents is adopted.

Some papers have considered the social interactions and behavior among evacuees to design simulators. For instance
in [43] a virtual-physical emergency simulator for a city-wide environment introduces the concept of participatory
simulations in the sense that all evacuees are involved in the process of the simulation to interact with each other. This system
is composed of two major agents, the evacuee agent and the guide agent. The evacuee agent is responsible for simulating
evacuees in the virtual city map, while the guide agent is responsible for providing navigation instructions for evacuees.
Instead of having homogeneous characteristics for all evacuees, in [44] each individual evacuee has unique characteristics
in their physical, psychological, and motion aspects. In this simulator, each evacuee is an agent with physical attributes,
psychological attributes and moving attributes. Based on these characteristics, Particle Swarm Optimization (PSO) [45], is
adopted to make decisions regarding the evacuation.

3.1. Grid-supported systems

This type of system relies on the technology of Grid Computing to assimilate multiple types of sensing data so as
to provide real-time and faster-than-real-time prediction for emergency responders, where the functionality-separated
sensing system, storage system, and computation collaborate to support emergency response. Such systems will often rely
on simulation tools in order to provide fast prediction.

The FireGrid system is described in [46]. It consists of four major components: (1) the data acquisition and storage,
(2) the simulation component, (3) the agent-based command-control component, and (4) the Grid middleware, as shown in
Fig. 5. The data acquisition and storage component is responsible for collecting and storing sensing information through
the three functional units as follows. The Data Acquisition Unit (DAU) collects raw sensing data from multiple types of
sensors (e.g., smoke, temperature, and gas sensors). The Data Translation Unit (DTU) transforms the raw sensing data into an
adequate form (e.g., transforming thermocouple voltage readings into temperatures). The Data Grading Unit (DGU) filters the
information to make sure about the accuracy and reliability of the database. The simulation component provides a parallel
and distributed computing resource to interpret the current status and predict the future behavior of an ongoing fire.
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4. Search and rescue systems

Identifying the locations of the possible victims is usually the first step before rescue. An overestimate of victims may lead
to resource wastage and more serious casualties. Ref. [47] studies a double-counting problem in a WSN due to overlaps of
sensing coverage. Given a set of camera-based sensors, each of which is capable of counting how many targets (i.e., victims)
are in its sensing coverage, this work aims at finding the probability mass function of the total number of targets. By
exhaustively enumerating all of combinations of non-overlapping areas partitioned by the sensing circles, the probability
of a given number of targets could be found based on the conditional probability of all possible cases. However, exhaustive
enumeration will incur extremely high complexity in computation which depends on the number of non-overlapping areas.
Thus, this work proposes a low-complexity counting mechanism by reducing the enumerating space, where the zero-
detection sensing area will be eliminated first and the remaining non-overlapping areas are divided into several groups
with the even number of areas for counting independently. So, the final probability of a given total number of targets could
be estimated by combining the probabilities of these groups. To reduce counting error, the division of groups is based on
the size of the areas or the number of targets in areas.

Injured civilians who are immobilized will need to communicate with the external world when the communication
infrastructure fails, and [48] addresses robot deployment to connect as many civilians possible with a static base station.
Assume that each civilian is equipped with a mobile device with a communication range of r. and each robot has a
communication of R.. For a given candidate positions of robots which may depend on the destroyed degree of the
environment and robots’ capabilities, the work formulates the robot deployment problem as a mixed integer linear
programming such that the number of connected civilians is maximized, where each connected civilian can communicate
with the static base station in a multi-hop way. Considering the uncertainty of civilians’ locations, [49] extends [48] to a
distributed heuristic, where the number of civilians at a given position u is modeled as a random variable X,,. Thus, given a
probability threshold g, for each candidate position u, we can compute the expected number of civilians Eq(u) = E;(Xy|Xy <
m). Based on the uncertain model, an iterative heuristic is designed in a greedy way. For each iteration, each robot only
considers a subset of candidate positions with E;(u) > L and applies k-means clustering to group these candidate positions
into k clusters with radius smaller than r. + R, for the connectivity guarantee, where k is an adequate value. Each robot g;

moves toward the cluster C with the maximum attraction % to compete for being cluster head, where d(a;, C) is the
moving distance from a;’s current position to cluster C. A cluster-head robot a; must issue an exploration message to request
other robots to connect the civilians within its cluster. Once all civilians in a cluster have explored, the cluster-head robot
reduces the threshold of the considered subset to avoid attracting other robots. In this way, robots can iteratively explore
civilians as many as possible. While many efforts focus on the coverage and connectivity issues in a WSN [50], this type of
work concentrates on discovering possible communication devices in a highly uncertain environment for search and rescue
purposes. Comprehensive solutions to moving planning of robots are presented in [51].

Considering the changes of victims’' locations in an uncertain environment (e.g., aftershocks sites may shift after
a large earthquake), [52] proposes a robot-sensor network system for tracking victims autonomously without relying
on localization technologies. Assume that robots have the capability of estimating the distance between itself and the
neighboring sensors, and victims will generate detectable signals such as heat, CO,, or sounds. Inspired by the thermotaxis
of insects, the main idea is to make the movements of robots from colder sensors toward the hotter sensors (i.e., closer
to victims). Each sensor will maintain a gradient to facilitate the moving of robots. If a sensor s; detects a victim, it
will set its gradient as g; = 0, and broadcast it. While sensor s; receives broadcast messages, it will set its gradient as
max{gjls; € N(si)} + 1, where N(s;) is the set of neighbors of s; and also broadcast it. Each robot will switch between three
states: (1) blind search, (2) follow sensors, and (3) approach the victim. A robot will switch from state 1 to state 2 (resp. to
state 3) when it receives sensors’ (resp. to victims’) signals. A robot in state 2 will move toward the neighboring sensor with
the lowest gradient until it receives a signal from a victim. A robot in state 3 must keep approaching the victim unless it loses
the signal from the victim or other robots are tracking the victim. Next, we will discuss the optimization of resource allocation
in an emergency, where limited resources (e.g., firefighters or ambulances) need be assigned to several events (e.g., fire
events or injurious people) to conduct emergency response. Two types of approach in an environment with certainty and
uncertainty will be reviewed. In an environment with certainty, each resource is assumed success in executing a mission
once it has been allocated to an event. In contrast, in an uncertain environment, a resource may fail in executing a mission.

Ref. [53] exploits the Voronoi polygons to design a selection scheme of mobile resources (“resource” for short). All
resources will form Voronoi polygons, each of which contains exactly one resource, where each sensor in a particular Voronoi
polygon is closer to the resource than to other resources. When a static sensor s; needs to request for a resource, it will send
a weight request packet (WREQ) to look for an adequate resource. Once receiving a WREQ, each resource a; will reply its
weight w; = w to bid for the event, where the Area; is the area of a;'s Voronoi polygon, h(s;, g;) is the hop distance
from s; to a;, and e; is a;’s energy. A resource with the smaller weight will win the bidding and move to the event location
for providing services.

Instead of geometric approaches, [54] considers a grid-quorum network to design a service discovery scheme. Each
service provider (i.e., resource) disseminates its location information along a “column” in the network. An event will search
resources along a “row” in the network. In this way, service delivery is guaranteed since there is at least one intersection
of column-based dissemination and row-based searching. However, the computation of Voronoi polygons must rely on the
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Fig. 6. The model of RNN for the resource allocation problem.

location information of nodes, and the quorum-based approaches may incur network-wide flooding in case all resources
are collinear. Ref. [55] combines the concepts of Voronoi polygons and the quorum-based approaches to design a localized
service discovery scheme. Assuming that all nodes form a grid-topology network, each resource disseminates its location
information along its residing row and column but broadcast messages will be blocked at the nodes which have received
a message from another resource with smaller hop distance. In this way, the network will be partitioned into several cells.
Each event will request a service from the nearest resource by disseminating discovery messages along its residing row and
column within its cell.

By considering the energy issue, in [56] resources are dispatched to events in an energy-balanced way. Each event will
search resources within a limited radius to find the one with the minimum energy consumption on moving. If no resource
is found, the searching radius will be incrementally increased until each event has be matched with a resource. Considering
that people may be trapped with no escape path, [57] proposes a mechanism to dispatch resources to eliminate key hazards
or obstacles first so that the number of rescued victims is maximized. By modeling a WSN as a network flow problem [58],
this work finds the minimum cut, which is a subset of edges with the smallest total capacity than other cuts, to allocate
resources for the elimination of hazards or obstacles.

The complexity of resource allocation in emergency situations requires fast and near-optimal algorithms to provide
advice in real-time. Thus in [59] the related resource allocation problems are formulated as a non-linear optimization
problem, which is then solved approximately in real-time using a previously trained Random Neural Network [60,61].
Note that the generic resource allocation problem is NP-hard for both deterministic and nondeterministic cases, so this
work proposes polynomial-time approximate solutions. Considering the generic ambulance allocation problem, a set of
tasks (denoted by T) represent a set of emergencies to which ambulances must be sent, while a set of resources (denoted
by R) are the ambulances themselves. The initial locations of both tasks and resources are known and the traversal cost
(distance or time) can be estimated by each resource. A task is allowed to be executed by multiple resources, while a resource
cannot be assigned to multiple tasks at the same time. The optimization problem must minimize the total execution cost
Ciotal = D rer 2reg CO P, ) + D cr KO [ [, (1 = (1 — q(r, ))p(r, t)). Here, p(r, t) and q(r, t) are the probabilities
of assigning resource r to task t and the probability that resource r will fail in executing task t respectively; C(r, t) and K (t)
are the cost of resource r executing task t and the penalty of a failed execution for task t respectively. This optimization
problem is to obtain the p(r, t) foreach t € T and r € R. Note that for a deterministic case, p(r, t) € {0, 1}. To solve the
problem, a RNN is constructed with |R| x |T| neurons, each of which has an internal excitation probability p(r, t) which is
aresult of the RNN internal interconnections and external signals. Each neuron receives positive and negative spikes from
other neurons with interconnect rates wt and w~ and from the external world with arrival rates W+ and W, as shown
in Fig. 6, where ¢ = K(t)(1 — q(r, t)) — C(r, t) is the expected reduction of cost when r is allocated to t. For each neuron
(r, t), the negative spike from (r’, t) has a non-negative arrival rate to inhibit distinct resource r and r’ being allocated to
the same task t, and the negative spike from (r, t’) also has a non-negative arrival rate to inhibit resource r being allocated
to two distinct task t and t’. After the RNN is constructed, the unique solution to p(r, t) foreachr € Rand t € T is obtained.
Finally, based on the value of p(r, t), a greedy heuristic is iteratively conducted to choose the largest positive p(r, t) until
there is no available resource.

4.1. Toward cyber-physical search and rescue platforms and systems
The Pathfinder [62] system provides firefighters with safety navigation during rescue missions and two major

components, ultrasonic beacons and ultrasonic trackers, are adopted. Each firefighter wears an ultrasonic tracker to receive
signals from ultrasonic beacons with three types of ultrasonic beacons: the firefighter beacon, the exit beacon, and the
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auxiliary beacon, each of which works on a different frequency for different purposes. Each firefighter wears firefighter
beacons so that injured firefighters can be found by other firefighters. Exit beacons are used to mark exits, while auxiliary
beacons are used to mark way-points inside a building or injured/trapped people along a return path. In [63] the CenWits
(Connection-less Sensor-Based Tracking System Using Witnesses) is proposed to search for lost or injured hikers in a large
wilderness area. Instead of a well-connected network, all hikers form an opportunistic network to exchange their witness
information to indicate encounters with each other so as to provide approximate areas of disappearance of hikers for
rescuers. The system consists of a number of sensors, access points (APs), location points (LPs), and an external processing
center. Each hiker carries a sensor with a GPS receiver and an RF transmitter for communicating with other sensors, APs, and
LPs. A set of APs are deployed at predefined locations where the hikers may pass through (e.g., intersections of footpaths or
resting areas), connected to the external processing center. A few LPs are deployed at particular locations to update sensor
locations in case the GPS cannot work. The external processing center is responsible for collecting the witnesses from all APs.
When two sensors meet in their communication range, they will record the presence of each other in their witnesses and
also exchange their earlier witnesses, where each record in the witnesses including encountered node ID, the current time,
encountered location, the number of transferred hops. Once a sensor meets an AP, all of its witnesses will be uploaded to the
AP. Based on the witnesses, the system can estimate the possible lost locations of a hiker to perform rescue missions. This
work points out two technical challenges, memory and power management for maintaining witnesses at each sensor. For
memory management, a record will be deleted at a sensor based on the number of transferred hops or the record gap. For
power management, hikers could be separated into groups, each of which has a group leader, based on social or geographical
relationships, and witnesses are only exchanged among group leaders.

Ref. [64] describes a navigation system, termed robot-and-sensor team, to control moving robots along safe paths. This
system consists of static temperature sensors for monitoring, static radio tags for localization, and mobile robots. Based
on the collected sensing data, a temperature gradient graph is constructed to navigate robots’ movements. Three technical
challenges, localization, information flow of navigation, and asynchronous network control, are studied. SmokeNet [65]
tracks firefighters and provides safe navigation paths for firefighters in a multi-stair building. The system consists of a static
WSN with a sink, static beacons, wearable beacon receivers, head-mounted displays, and an incident command center.
The WSN serves as a communication backbone to connect the outside incident command center. Each wearable beacon
receiver is responsible for the localization of the firefighter in a RF-fingerprint technology. The head-mounted display is
a user interface which can see floor map and locations of other firefighters. The incident command center provides key
information (e.g., firefighters’ location, hazard status, etc.) to outsider hummer commanders. To guide people, sensors are
integrated with red, yellow, and green LEDs to serve as traffic lights so as to indicate safe paths (green lights), dangerous paths
(red lights), and the system out of service (yellow lights). This work conducts comprehensive experiments to investigate
localization accuracy communication reliability in highly dynamic and uncertain emergencies.

Ref. [66] focuses on designing hardware platforms of robots to facilitate monitoring, searching, and communication
between rescuers and victims. This work designs a controllable guiding robot with two DC motors, a RC servomotor, a
camera, multiple types of sensor (e.g., temperature, CO, O,, gas, and compass), a speaker, a microphone, an LED-set lamp,
and an RF module. These controllable robots could be thrown into narrow space to serve as searchers in an emergency.
In case victims are discovered by robots’ cameras, the rescuers can communicate with victims via the robots. Three major
challenges of designing robots are raised: small size, temperature protection, and waterproofing.

The work [67] implements a robot tracking system in an outdoor emergency (e.g., earthquakes), where robots serve as
searchers to discover victims and a static WSN facilitates localization and tracking of the robots. Each robot is equipped with
a ZigBee communication module for reporting sensing data and localization. Each static sensor serves as a reference node
for localization, while each robot will query neighboring sensor nodes to measure received signal strength and estimate
the location of itself. To improve localization accuracy, a motor encoder and an electronic compass are installed in the each
robot, where the motor encoder is to measure the displacement of the robot based on the number of the motor’s rotations
and the electronic compass is to obtain the direction of the robot.

LifeNet [68] provides an electronic lifeline for firefighters to mark the paths they have taken to facilitate the process of
search and rescue. Each firefighter is equipped with a beacon ejector, a boot-mounted beacon receiver, a head-mounted
display, and a wearable computer. The beacon ejector will deploy beacon nodes automatically along the firefighters’ trails
with a fixed time interval. The boot-mounted beacon receiver is integrated with a sensor node to collect beacon signals and
environmental information, where the localization relies on the ultrasonic ranging. The head-mounted display provides two
modes for firefighters. The first mode is to show the direction of a retreat path marked by beacon nodes, while the second
mode is to show the detected beacon nodes and other firefighters within its range. A challenge of the system is the issue of
beacon movement since a fixed-distance deployment of beacon nodes is provided by the beacon ejector.

4.2. Summary of search and rescue systems

Refs. [52,67] focuses on searching for victims or tracking their movements, while [62,65,68] pays attention to tracking
rescuers (or firefighters) to guarantee their safety. Based on the presence of victims, [63] focuses on reducing search and
rescue space. To connect with civilians in an emergency, [48,49] form a communication backbone, while [64,66] uses robots
to search for and guide victims. Ref. [47] assesses the number of civilians in an emergency, while [53-57,59] concentrate on
the optimization of search and rescue cost.
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5. Beyond existing technologies

Beyond existing technologies, this paper has compared the various trends of research on emergency response systems
by discussing the relationship between the level of technical support and how well an emergency response system can
work to achieve their primary objective of saving lives and improving human wellbeing. One important research area
in emergency management which has been neglected so far is the use of probability modeling, which has long been
used in the study of large scale systems [69,70], as well as in distributed systems [71], and for evaluating and handling
uncertainty in sources of information [72]. An advantage of such approaches is that they can provide a computationally
fast mathematical probabilistic prediction of the overall performance of algorithms and policies, prior to lengthy simulation
studies or experimental evaluations, even though the mathematical analysis may not be able to include all relevant aspects.

We think that such methods will become more important in this field, as a way to conduct predictions of the spread
of hazards during an emergency with moving entities such as robotic resources and human beings. Such models are also
useful in obtaining best case and worst case bounds, as well as the average behavior which is less useful in such situations.
Probability models can also be used to evaluate risk and damage, and to model the effect of failures in the different
components and infrastructures of the system being considered.
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