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Human vaccine development remains challenging because of

the highly sophisticated evasion mechanisms of pathogens for

which vaccines are not yet available. Recent years have

witnessed both successes and failures of novel vaccine design

and the strength of iterative approaches is increasingly

appreciated. These combine discovery of novel antigens,

adjuvants and vectors in the preclinical stage with

computational analyses of clinical data to accelerate vaccine

design. Reverse and structural vaccinology have revealed

novel antigen candidates and molecular immunology has led to

the formulation of promising adjuvants. Gene expression

profiles and immune parameters in patients, vaccinees and

healthy controls have formed the basis for biosignatures that

will provide guidelines for future vaccine design.
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Introduction
Vaccines are generally considered one of the most

impressive success stories of medicine [1]. In all docu-

mented instances they have reduced the targeted infec-

tious disease remarkably. The success of currently

available vaccines is based on their ability to induce

antibodies that block or neutralize infectious agents or

their products [1]. Antibody-mediated protection is not

sufficient in all infectious diseases. The major contagious
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killers of today for which we do not yet have vaccines are

restrained to some extent not only by antibodies but also

by cell-mediated immunity. There is currently a strong

clinical development pipeline for novel vaccines against

infectious diseases. These candidates have entered

clinical trials based on evidence for protective efficacy

in animal models, or, in the case of malaria and some other

infections, in a human challenge model [2]. However,

their development has proceeded without knowledge of

the correlates of vaccine-induced protection and bio-

markers or a biological signature (a custom-made compi-

lation of different biomarkers) that can predict reduced

disease incidence. Ideally, clinical trials generate suffi-

cient data to allow definition of a biosignature that can be

used to predict vaccine efficacy and safety of novel

candidates [3,4] (see Figure 1).

Challenges in human vaccine development
Challenges are faced at all stages of vaccine research and

development (R&D) including: shortening the time of

discovery of vaccine candidates, production and clinical

development; ensuring that vaccines reproduce appropri-

ately native antigens and that the immune response

induced is of adequate strength and quality for efficient

protection; and predicting at early stages safety and ef-

ficacy of vaccine candidates. Novel technologies devel-

oped in recent years can diminish these challenges:

genomics and proteomics for the vaccine antigen discov-

ery; structural biology to redesign broadly protective

antigens; synthetic technologies to accelerate vaccine

production; adjuvants and immunopotentiators to tailor

the appropriate protective immune responses; systems

biology and other computational methods to predict the

safety and the efficacy of vaccines. In the following

sections, examples of these technologies and their appli-

cations will be discussed.

Vaccine target discovery
The potential of vaccine target selection has increased

significantly by the sequencing of whole microbial gen-

omes. This approach, named ‘reverse vaccinology’,

started from the MenB genome, for which conventional

approaches had only limited success [5], and focused on

those proteins predicted to be surface exposed or

secreted. Candidate antigens were identified based on

their ability to induce bactericidal antibodies, which were

known to correlate with protection against disease. This

procedure shortened the time of vaccine target discovery

from decades to a few years, and allowed the identifi-

cation of antigens which were completely unknown
www.sciencedirect.com
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‘Life cycle’ of modern vaccine development comprising iteration of basic research, vaccine trial, clinical study of natural infection and modeling by

computational analysis. Vaccine development against HIV/AIDS, malaria and TB starts from basic research providing proof of concept for a novel

vaccine candidate. Valid candidates are introduced into clinical trial, which will not only provide information about safety and efficacy but also reveal

informative biosignatures. In parallel, clinical studies on naturally infected and diseased individuals can provide information about disease-related

biosignatures. Computational analysis and modeling will generate new hypotheses, which can be validated by basic research. This iteration can lead

to further vaccine improvement.
before. Three antigens plus outer membrane vesicles

were tested in clinical trials in adults, adolescents and

young children with satisfactory safety profile, high

immunogenicity [6�], and the ability to cover the majority

of MenB strains globally [7��]. Results of these studies

allowed the European Medicine Agency to approve the

first vaccine against MenB in 2012 (commercial name:

Bexsero1) [8].

Reverse vaccinology is now applied to a wide variety of

other important pathogens [9]. The concomitant use of

genomics, bioinformatics, proteomics, and protein arrays

can accelerate identification of vaccine targets and the

subsequent vaccine development process [10].

The challenge of vaccine preparation
A major component of the MenB vaccine, the factor H

binding protein (fHbp), induces strong protective anti-

bodies. This antigen, however, has more than 500 amino

acid variants [11] that do not induce cross-protective

immunity. The ideal candidate antigen would be able
www.sciencedirect.com 
to induce protective antibodies against all the allelic

variants of the fHbp. Elucidation of the 3D structure

of the antigen revealed protective epitopes in each of the

variants. Chimeric molecules were designed to contain

the identified epitopes in correct conformation. Many of

them elicited broadly protective antibodies and one has

been selected for further studies [12��].

Structure-based information is being exploited for

rational design of vaccines against viruses. Information

about the structure of the F protein of respiratory syncy-

tial virus (RSV) allowed design of a novel F protein in

which the protective antigenic site could be stabilized.

Immunization of mice and monkeys with the F protein

containing the stabilized neutralizing site induced pro-

found levels of protective antibodies [13��]. Similarly, the

cryo-electron microscopy reconstruction and structural

model of the human immunodeficiency virus (HIV)

gp140 trimer complexed with a broadly neutralizing

antibody has now provided insights into the trimer assem-

bly, the interactions between gp140 and gp41, and the
Current Opinion in Immunology 2014, 28:18–26
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interaction with the CD4 binding site and with neutraliz-

ing antibodies. This paves the way for the development of

structure-based broadly protective vaccines against HIV

[14��,15��].

Purified proteins are poorly immunogenic and require the

use of adjuvants for the induction of effective responses.

Toll-like receptor (TLR) agonists are promising vaccine

adjuvants and a TLR-4 agonist has been approved in a

vaccine against human papilloma virus [16]. Other adju-

vants are emulsions containing a core of biodegradable

lipids. MF59 [17] and AS03 [18] have been approved with

pandemic and seasonal influenza vaccines (MF59) or with

pandemic influenza vaccines (AS03). These adjuvants not

only increase antibody titers, they also modify the quality

of the antibody response in terms of both breadth of the

strains recognized and the repertoire of B-cell epitopes, as

exemplified by MF59 with H5N1 and seasonal subunit

vaccines [19]. The MF59 adjuvant drives the antibody

response towards the HA1 subunit of the hemagglutinin

(HA), and in particular to the receptor binding site, and

much less to the HA2 moiety, suggesting a role of these

phenomena in the enhanced efficacy and effectiveness of

the MF59-adjuvanted vaccines in infants and the elderly

[20�,21��,22��].

Vaccines against influenza pandemic must become avail-

able prior to the pandemic. During the last H1N1 pan-

demic, mass vaccination was implemented only when

transmission already declined [23]. A prompt response

to a pandemic has become feasible due to in vitro syn-

thesis of genomes [24]. As a prerequisite, sequences of the

viruses isolated must be provided as soon as they are

available. A combination of enzymatic, cell-free assembly

techniques with enzymatic error correction allows rapid

and accurate synthesis of genes that are then used to

transfect cell lines qualified for vaccine manufacturing,

from which viruses can be rescued for vaccine prep-

aration. This process takes as few as five days with the

recovery of synthetic viruses antigenically identical to the

wild-type viruses. This synthetic process has been suc-

cessfully used to generate influenza strains including

seasonal as well as H1N1, H3N2, H5N1 and H7N9 [25��].

Predictive biosignatures of vaccine safety and
efficacy
As discussed below, some recent late stage clinical

vaccine trials have unexpectedly shown either a complete

[26,27�] or partial [28] lack of efficacy, or raised safety

concerns [26]. Biosignatures of safety and efficacy could

be used in pre-clinical studies to prioritize available

candidates, and in early clinical development to avoid

later failure. Parameters may be identified retrospectively

[27�], but post hoc analyses may identify misleading

chance correlations. An alternative approach is to use

vaccines in translational studies to dissect-out mechan-

isms of reactogenicity and efficacy, and such an approach
Current Opinion in Immunology 2014, 28:18–26 
was taken in an HIV vaccine efficacy trial [29]. This can

be applied to human and animal models, in which whole

blood or separated cell population gene expression, multi-

plex cytokine responses, as well as cellular and humoral

immune responses are integrated.

Application of biosignatures to predict
influenza vaccine efficacy
With influenza vaccines, older adults have suboptimal

responses, and using a systems approach Furman et al.
[30] identified an age-related antibody epitope that pre-

dicted the response, possibly by inhibitory memory CD4+

T cells and apoptotic pathways. Observations from lim-

ited human samples can be explored in animal models,

and apoptosis-deficient mice did exhibit poor serologic

responses [30]. Franco et al. found a correlation between

influenza antibody responses and apoptosis gene expres-

sion [31]. In this case T cell-mediated apoptosis of target

cells, together with mechanisms involved in antigen

presentation, membrane trafficking and intracellular

transport were also identified. Tan et al. [32] observed

that upregulation of genes related to proliferation and

immunoglobulin genes segregated high and low vaccine

responders. These correlations would have been missed

by conventional, single-gene level approaches. Querec

et al. [33��] also found that whereas molecules in the

integrated stress response predicted antiviral CD8 T cell

responses to influenza vaccines, an independent signature

involving B cells predicted neutralizing antibody

responses.

Harmonization of systems vaccinology
approaches
A challenge for the systems approach is the diversity of

strategies for integrating and analyzing extremely large

sets of high-throughput data. Small numbers of samples,

repeated or single measures of heterogenous parameters

and outcomes, may also lead to contradictory correlations.

Harmonization of analytical tools, reporting of data, and

experimental conditions is needed [34�]. Liquet et al.
[35�] combined a multilevel analysis with the usual multi-

variate approach to analyze data. Whereas the discrimi-

nant multilevel analysis identified subsets of related

genes, an integrative multilevel analysis revealed clusters

of highly correlated genes and cytokines. This highlights

that the re-analysis of data from a single trial using

different strategies can yield significantly greater infor-

mation. Different vaccine antigens or adjuvant systems

are likely to induce different innate and adaptive

responses, making extrapolation from different trials chal-

lenging. Obermoser et al. [36��] detected significant

differences in genes responding to a protein subunit

influenza vaccine versus a conjugate polysaccharide

pneumococcal vaccine. Differences have also been

described between live and non-living vaccines [37�].
Applying ‘modules’ of responder genes identified in

inflammatory diseases, two significant challenges arise
www.sciencedirect.com
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[38]: firstly the selection of related genes to group into a

module based on infection or inflammatory states may be

misleading for vaccine trials. Different gene expression

patterns of inflammation were found in mice and humans

caused by trauma or burn injury [39��]. Secondly, gene

modules complicate comparison between published

results if the modules contain different genes [37�].

Systems vaccinology for biosignatures of
reactogenicity
A practical application of a systems approach was the

retrospective identification of underlying factors respon-

sible for an increase in febrile reactions associated with a

specific trivalent influenza vaccine [40��]. The investi-

gators integrated human, animal, cell line and primary cell

culture experiments with gene profiles and cytokine

readouts. A combination of the introduction of three

entirely new influenza strains, and differences in the

manufacturing processes were identified as the probable

cause of the unexpected reactogenicity. This opens the

possibility to screen vaccine antigen combinations for

reactogenicity using an ‘omic’ approach [34�].

Update on HIV vaccine trials
Improved biomedical strategies are slowly impacting the

HIV epidemic, as shown in recent trends of lower in-

fection rates in some at-risk populations [41]. However,

an end to the HIV pandemic will likely require wide-

spread immunization with an effective vaccine. After

more than two decades of clinical evaluation, no single

vaccine regimen has demonstrated sufficient efficacy to

advance to licensure [42,43]. Concepts tested in efficacy

trials include recombinant bivalent HIV-1 gp120 mono-

mers formulated in alum designed to induce binding and

neutralizing antibodies (VAXGEN003 and VAXGEN004

trials) [44,45], recombinant adenovirus (Ad) serotype 5

(Ad5) vectors encoding HIV-1 genes to induce antiviral
Table 1

Accelerating HIV vaccine development building on the RV144 trial out

Strategy 

Post-RV144 Phase III licensure trial in Sub-Saharan Af

1 clade C gene inserts and envelope pr

Improved pox virus vectors with prime-b

T cell immunity CMV vectors to induce potent and pers

Mosaic adenovirus and pox vectors to i

Broad-neutralizing

antibodies

Structure-based immunogen designs re

B-cell ontogeny designs to guide specifi

repertoires.

Immunoprophylaxis Mixtures of HIV broadly-reactive mAbs.

Genetic immunization with vectors enco

Improve durability Alternative adjuvant-protein formulations

Optimized prime-boost regimens, includ

Notes: CMV, cytomegalovirus CMV; HIV, human immunodeficiency virus; 
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CD8+ T cells (Step and Phambili trials) [26,46], and

prime-boost regimens to induce antibodies and T cells

(RV144 and HVTN 505 trials) [47��,48].

The low-level efficacy (31%) demonstrated in the RV144

Thai trial with the canarypox vector and bivalent gp120 in

alum prime–boost regimen suggests that a protective

vaccine against HIV acquisition may be possible [48].

Enhancing the level and duration of protection seen in

the RV144 trial is a major goal in clinical vaccine devel-

opment, and public–private partnerships to accelerate

product development and testing in regions with the high-

est HIV incidence rates are underway (Table 1). Current

plans include a licensure trial in Sub-Saharan Africa using

canarypox and subunit envelope protein immunogens that

express antigens from HIV-1 clade C, the most common

subtype circulating in Sub-Saharan Africa, as well as a series

of phase IIb research studies to assess new pox vectors and

other immunogens expressing HIV-1 subtype C antigens

that may improve upon the RV144 regimen and/or poten-

tially induce protection by alternative mechanisms. The

design of these studies will efficiently determine vaccine

safety, efficacy and correlates of immunity to better inform

which regimens to advance to licensure trials and to guide

new vaccine designs.

The HIV vaccine field faced disappointment earlier this

year with the failure of the HVTN 505 phase IIb trial

[47��], which evaluated a DNA prime-recombinant Ad5

boost HIV vaccine regimen to assess efficacy in reducing

either the rate of HIV-1 acquisition or post-infection

viremia in 2504 at-risk US men or transgender women

who have sex with men. Unlike previous Ad5/HIV vaccine

studies, both vaccines in this regimen encoded env genes,

and induced both strong HIV-specific CD4+ (62%) and

CD8+ T cell (64%) response rates and anti-Env IgG (100%)

to the vaccine strain envelopes and preferentially to the
come and alternative strategies

Designs

rica evaluating RV144 type regimen (ALVAC + bivalent gp120) using HIV-

otein.

oost strategies in phase IIb trials in Sub-Saharan Africa.

istent effector memory T cells.

mprove the breadth and depth of T-cell epitopes recognized.

sembling viral spike and/or distinct neutralizing epitopes.

c clonal lineages, circumvent autoimmunity, and select for B-cell

ding broadly-reactive nAbs.

.

ing DNA plasmid as a prime before the protein boost.

mAbs, monoclonal antibodies; nAbs, neutralizing antibodies.
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gp41 region. Of note, anti-Env V1-V2 IgG response rates

were substantially lower than observed in the RV144 trial,

and whether this finding is relevant to the lack of efficacy in

the HVTN 505 trial remains unclear.

Although no significant difference in infection rates be-

tween the vaccine and placebo groups was observed in the

HVTN 505 trial, 41 infections occurred in the vaccine and

31 in the placebo group. Taken together with greater

infection rates in the Step and Phambili trials testing the

Merck Ad5/HIV trivalent vaccine, these data raise con-

cerns about safety and have prompted longitudinal follow

up of HVTN 505 subjects, a meta-analysis of infection

rates in Ad5-vectored HIV-1 vaccinees, and ongoing

experimental studies to understand mechanisms that

may contribute to potential enhancement of infection.

Because Ad-specific CD4+ T cells induced following

natural Ad infections and Ad5 vector immunizations

recognize epitopes across multiple Ad serotypes [49�],
one hypothesis is that intercurrent Ad infections, com-

monly detected in mucosal sampling [50], may activate

Ad-specific T cells recognizing cross-reactive epitopes

and increase the number of HIV-1 target cells in the

mucosa. Results from these studies may have implica-

tions in future decisions concerning use of Ad5 and Ad

vectors of other serotypes as vaccines for HIV and other

pathogens in HIV-1-uninfected study participants at risk

for HIV-1 infection.

Update on TB vaccine trials
TB vaccine design is in the unique situation that a com-

parator already exists. As part of the Expanded Program on
Table 2

News from preventive tuberculosis vaccine candidates in clinical trial

Candidate Construct Status of clinical dev

VPM1002 rBCGDureC::hly Phase I completed (saf

immunogenic), phase II

MVA85A MVA expressing Rv3804

(Ag85A)

Phase IIb completed (s

immunogenic in target 

no efficacy)

H1 Rv1886 (Ag85B) + Rv3875

(ESAT-6) fusion protein in

adjuvant IC31 or CAF01

Phase I completed (saf

immunogenic)

MVA85A MVA expressing Rv3804

(Ag85A)

Phase IIb ongoing (safe

immunogenic in target 

Ad5HUAG85A Human Ad 5 expressing

Rv3804 (Ag85A)

Phase I completed (saf

immunogenic)

M72 Rv1196 + Rv0125 fusion

protein in adjuvant AS01

Phase IIa completed (s

immunogenic in target 

Notes: Ad, adenovirus; Ag, antigen; AS01E, liposomal-based, surface-activ

Guérin; CAF01, liposome-based lipoid MINCLE ligand; IC31, cationic antim

ium tuberculosis; MVA, modified Vaccinia Ankara; rBCG, recombinant BC
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Immunisation (EPI), the vaccine Bacille Calmette-Guérin

(BCG) has been administered more than 4 billion times. It

protects against severe extrapulmonary forms of infant TB

but not against pulmonary TB in any age group, which

represents the vast majority of cases and main source of

spreading [51]. Hence, vaccine candidates aimed at repla-

cing BCG need to perform better with respect to efficacy

and/or safety than BCG.

The TB vaccine portfolio comprises recombinant live

vaccines for prime instead of BCG, as well as recombinant

viral vectors expressing Mycobacterium tuberculosis (Mtb)

antigens and adjuvant formulations of Mtb antigens for

heterologous boost following BCG [51–54]. The most

advanced viable recombinant vaccine in clinical trial,

VPM1002, is a recombinant BCG (Table 2), which will

soon complete a phase IIa trial in infants. Vakzine Projekt

Management (VPM) sponsored two phase I trials, which

demonstrated safety and immunogenicity of VPM1002

[55]. Adjuvanted protein vaccine candidates against TB

have mostly been developed by Statens Serum Institut

(SSI) and by GlaxoSmithKline (GSK) (Table 2). One of

the first vaccines to enter clinical trial, the H1 vaccine

from SSI, comprising a fusion protein of two antigens in

the adjuvant Intercell (IC)31, was found to induce strong

immune responses as late as 30 weeks after administration

[56]. GSK have comprehensively analyzed their protein–
adjuvant vaccine candidate M72, by varying the formu-

lation of the vaccine. Although the early formulation

M72F protein in adjuvant system (AS)02 proved both

safe and immunogenic [52,55,57,58], it was further

improved to become the final construct M72 in AS01,
s

elopment Type Target population

e and

a ongoing

Viable rBCG for

preexposure

Prime vaccine for infants, to

replace BCG

afe and

population,

Viral vector for

preexposure

Heterologous booster

vaccine for BCG-vaccinated

infants

e and Protein adjuvant for

preexposure

Heterologous booster

vaccine for BCG-vaccinated

individuals

 and

population)

Viral vector for

preexposure

Heterologous booster

vaccine for BCG-vaccinated

adolescents and adults

e and Viral vector for

preexposure

Heterologous booster

vaccine for BCG-vaccinated

individuals

afe and

populations)

Protein adjuvant for

preexposure and

postexposure

Heterologous booster

vaccine for BCG-vaccinated

individuals

e saponin plus Toll-like receptor (TLR)-4 ligand; BCG, Bacille Calmette–

icrobial peptide plus Toll-like receptor (TLR)-9 ligand; Mtb, Mycobacter-

G.
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which is safe and immunogenic in individuals with or

without prior exposure to Mtb [59]. Notably, high fre-

quencies of multifunctional T cells were induced by M72

in AS01 [60]. This vaccine qualifies for pre-exposure and

post-exposure administration.

Currently, two types of viral vectors are being exploited

for TB vaccination: Ad as potent CD8 T cell inducer

[61], and modified Vaccinia Ankara (MVA) virus, which

preferentially stimulates CD4 T cells [27�] (Table 2). A

phase I trial with an Ad5 vector expressing an antigen of

Mtb not only revealed its safety and immunogenicity,

but also assessed effects of preexisting antibodies

directed against the vector [61]. Pre-existing antibodies

could cause rapid elimination of the Ad5-based vaccine

thus reducing its efficacy. Although the study did

not support this apprehension, these and other side

effects of Ad-based vaccines remain a concern (see also

above).

Disappointingly, the phase IIb trial, with the MVA85A

vaccine based on MVA-expressing an antigen of Mtb
[27�], given as a heterologous booster on BCG prime to

infants, revealed no evidence of superior protection [27�].
However, the vaccine proved safe and the study, com-

prising nearly 3000 infants, proved the feasibility of

performing large-scale TB vaccine trials in Sub-Saharan

Africa [27�]. In parallel, this vaccine is currently under-

going a phase IIb trial in adults after results of a phase IIa

trial demonstrated its safety and immunogenicity in indi-

viduals independent of their HIV and Mtb exposure status

[62].

TB biosignatures
Only 10% of those who are infected with Mtb develop

disease during their lifetime. The vast majority remain

healthy but latently infected. Biosignatures that can pre-

dict risk of disease would be helpful for stratification of

study participants with high TB risk for vaccine trials,

leading to reduced size and duration of phase IIb/III

clinical trials. Data from vaccine trials, comprising a

sufficiently high proportion of protected versus nonpro-

tected individuals, should be harnessed for defining cor-

relates of vaccine-induced protection. This approach,

which has been spear-headed in the arena of HIV vacci-

nation [42,43,48,63��], could soon be realized in the area

of TB with increasing vaccine candidates entering phase

IIb trials.

In parallel, the availability of the BCG vaccine provides

an opportunity to analyze vaccine-induced protection. A

longitudinal study exploiting canonical immune markers

in BCG-vaccinated infants, who developed TB, failed to

identify a BCG-induced immune correlate of protection

against TB [64�]. Intriguingly, this study questioned the

long-held belief that IFN-g suffices as biomarker of

protection.
www.sciencedirect.com 
Ongoing longitudinal studies are comparing blood tran-

scriptome profiles in household contacts of recently diag-

nosed TB cases, with the aim to identify a biosignature

that can predict risk of TB. One ongoing study is analyz-

ing >4000 household contacts of newly diagnosed TB

cases at different sites in Africa (http://www.biomarkers-

for-tb.net/); the other ongoing study has enrolled >6000

adolescents from a highly endemic area in South Africa

[65,66].

Clinical malaria vaccine development
Malaria remains a major public health threat [67]. A

malaria vaccine can play an important role in controlling

the disease in endemic regions. Hope has been raised by

the RTS,S recombinant sporozoite vaccine given in AS01.

Many trials have shown its immunogenicity, tolerability,

and efficacy in various age groups [68]. Recently, results

have been reported from a large multicentric phase III

trial carried out at 11 centers in 7 African countries, with

more than 15 000 enrolled children. In the first part of the

study involving 6000 children (5–17 months old), the

efficacy of 3 doses of the RTS,S/AS01 vaccine against

clinical malaria during the 14 months after the first dose

varied between 50% and 55%, and between 45% and 47%

against severe malaria [69�]. In the second part of the

study in infants 6–12 weeks of age receiving the vaccine

together with the EPI vaccines, the efficacy against

clinical malaria and against severe malaria dropped to

about 30% or 26%, respectively [70]. Several reasons may

account for this drop including: the younger age of these

children as compared to those of the first part of the study,

the potential interference between RTS,S/AS01 and

vaccines of the EPI, the pre-existing immune status

towards the hepatitis B vaccine, the possibility that ef-

ficacy varied from one site to another.

The possibility that the efficacy of the RTS,S/AS01

vaccine may vary with the intensity of malaria trans-

mission has been evoked by another study conducted

in Kenya and Tanzania [71�]. In this smaller study (about

220 5–17 month-old children) the efficacy against clinical

malaria was about 30% over a period of 4 years, with 43%

during the first year, and 0.4% during the fourth year. The

efficacy was higher in children with a lower malaria-

exposure index (45%) than in children with a higher

malaria exposure index (16%) [71�]. These studies

suggest that on the one hand a recombinant subunit

vaccine such as RTS,S/AS01 provides some efficacy

against clinical and severe malaria, and on the other hand

further improvements are necessary to achieve long-term

protection by large-scale vaccination in EPI-vaccinated

young children in highly endemic areas.

An alternative approach has been reported recently,

namely the immunization with non-replicating live atte-

nuated sporozoites given intravenously to healthy volun-

teers followed by challenge through the bites of infectious
Current Opinion in Immunology 2014, 28:18–26
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mosquitoes [72��]. All six volunteers receiving the highest

dose of sporozoites (1.35 � 105) five times, and 6 out of 9

receiving the same dose four times, did not develop any

signs of malaria. Protected individuals had higher titers of

anti-sporozoite antibodies and had higher frequencies of

sporozoite-specific CD4+ and CD8+ T cells in the per-

ipheral blood, especially CD8+ T cells producing IFN-g,

[72��]. Further studies will be needed to validate these

findings in larger sample sizes and to determine the

duration of protection. The feasibility of five intravenous

injections of live-attenuated sporozoites for mass vacci-

nation campaigns in malaria-endemic areas may be diffi-

cult, and strategies to simplify this regimen yet retain its

protective response will be required.

Concluding remarks
Although, development of new vaccines still has a long

way to go, recent advances in antigen identification,

adjuvant development and vector design have brought

forward the preclinical vaccine R&D pipeline. These

advancements are complemented by recent accomplish-

ments in human vaccinology including rational design of

biosignatures, which, by predicting risk of disease as well

as vaccine safety and efficacy, can be harnessed for future

improvement of novel vaccine candidates. Thus, an

iterative combination between wet-lab, in silico analyses,

and clinical studies represents the best way to accelerate

development of vaccines needed for control of major

infectious diseases (Figure 1). Even though the first

generation of vaccine candidates may not provide satis-

factory efficacy, comparative analyses of host responses in

protected versus unprotected study participants will

reveal information for further improvement of next-

generation vaccines. To harness novel information arising

from data analysis of ongoing vaccine trials adoptive

vaccine protocols would be best suited.
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