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We demonstrated previously that PP2A exists in many cell types as two abundant forms: (1) holoenzyme composed of
two regulatory subunits, A and B, and a catalytic subunit C; and (2) core enzyme consisting of the A and C subunits. These
two forms have different substrate specificities. Since published data suggested that HIV-1 transcription may be regulated
by a cellular protein phosphatase, it was of interest to determine whether changing the ratio between PP2A core and
holoenzyme affects HIV-1 gene expression. This question was addressed by expression in COS cells of an N-terminal
mutant of the A subunit, AD5, which binds the C but not the B subunit. This resulted in an increase in the amount of core
enzyme and a decrease in the amount of holoenzyme concomitant with the expected change in phosphatase activity. Tat-
stimulated transcription from the HIV-1 LTR was inhibited 5-fold by mutant AD5, whereas mRNA synthesis directed by the
actin promoter was not affected. Furthermore, virus production in COS, HeLa, and Jurkat T cells was inhibited 45-, 5-, and
3-fold, respectively, by mutant AD5. These results demonstrate that the balance between PP2A holoenzyme and core
enzyme is important for HIV-1 gene expression and virus production. q 1997 Academic Press

INTRODUCTION tein phosphatases type 1 (PP1) and type 2A (PP2A) (Co-
hen, 1989) as well as of the recently discovered enzymes

Transcription of the genome of human immunodefi-
PP3, PP4, and PP5 (Brewis et al., 1993; Chen et al., 1994;

ciency virus-1 (HIV-1) is controlled by cellular factors that
Honkanen et al., 1991). The phosphorylated form of IkB

act on the 5* long terminal repeat (LTR) of the integrated
is readily dephosphorylated in vitro by PP2A but not by

provirus (Jones and Peterlin, 1994). These factors include
PP1 or PP2B (Sun et al., 1995). Therefore, OA may acti-

the basal transcription factor TBP, the proximal promoter-
vate NF-kB by accelerating the phosphorylation of IkB

binding proteins NF-kB and SP1, and the distal en-
and thereby stimulate HIV-1 LTR activity (Finco et al.,

hancer-binding proteins LEF-1, Ets-1, and TFE-3 (Pazin
1994; Lin et al., 1995; Thevenin et al., 1990). However,

et al., 1996; Sheridan et al., 1995). In addition, HIV-1 tran-
OA is also a strong inducer of the HIV-1 LTR in the

scription is strongly activated by the viral factor Tat (Day-
absence of NF-kB (Vlach et al., 1995). This effect is de-

ton et al., 1986; Fisher et al., 1986; Sodroski et al., 1985a,
pendent on SP1 whose phosphorylation state increases

1985b), which binds to the RNA element TAR at the 5*
during OA treatment. The effect of OA is enhanced in the

end of nascent transcripts (Gaynor, 1995; Rosen et al.,
presence of Tat. It has been suggested that increased1985). NF-kB is a dimeric protein held inactive in the
phosphorylation of SP1, resulting from inhibition of PP2Acytoplasm by association with the inhibitor IkB (Grilli et
by OA, promotes formation of active transcription com-al., 1993). In response to extracellular signals, IkB be-
plexes between SP1, Tat, NF-kB, and general transcrip-comes phosphorylated and subsequently degraded (Al-
tion factors (Jeang et al., 1993; Kashanchi et al., 1994a,kalay et al., 1995; Brown et al., 1995; DiDonato et al.,
1994b; Kerr et al., 1993; Sune and Garcia-Blanco, 1995;1995; Finco et al., 1994; Lin et al., 1995; Miyamoto et al.,
Vlach et al., 1995).1994; Palombella et al., 1994; Thanos and Maniatis, 1995;

PP2A consists of three subunits, the 36-kDa catalyticTraenckner et al., 1994). This liberates NF-kB which then
C subunit and the 65-kDa regulatory A subunit, whichmigrates to the nucleus and binds to cognate enhancer
together form the core enzyme, and the regulatory B sub-sequences. It has been shown that IkB is phosphorylated
unit, which binds to the core enzyme yielding the holoen-in vivo in response to okadaic acid (OA), a tumor pro-
zyme (Mumby and Walter, 1993; Walter and Mumby,moter and inhibitor of the serine/threonine-specific pro-
1993). The A and C subunits both exist as two isoforms
(a and b) and the B subunit as multiple forms, which are
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subdivided into three families, B, B*, and B9, unrelated toSurrey RH8 OTL, UK.
each other by primary sequence (Csortos et al., 1996;2 To whom correspondence and reprint requests should be ad-
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433CONTROL OF HIV-1 BY PP2A

et al., 1996; Tehrani et al., 1996). B subunits have im- pHbA-Tat utilizing the human b-actin promoter/enhancer
(Howcroft et al., 1995). Michael Karin provided us withportant functions in regulating the substrate specificity

(Agostinis et al., 1992; Cegielska et al., 1994; Ferrigno et control reporter plasmid pActin-luciferase. The HIV-1 full-
length genetic clone pNL4-3 from Malcolm Martin wasal., 1993; Kamibayashi et al., 1991, 1994; Sola et al., 1991)

and possibly the subcellular localization of PP2A obtained through the AIDS Research and Reference Re-
agent Program, Division of AIDS, NIAID, NIH (Adachi et(McCright et al., 1996; Sontag et al., 1995; Tehrani et

al., 1996). In all cell lines examined, we found that the al., 1986). The pcDNA3, pSV-Tat, and pTat constructs
contain the SV40 origin of replication permitting theirholoenzyme and the core enzyme are similarly abundant

and that detection of the core enzyme was not an artifact replication in COS cells.
of dissociation of the B subunit from the holoenzyme

Cells and transfection(Kremmer et al., 1996). The A subunit polypeptide con-
sists of 15 nonidentical repeats that form a rod-shaped

COS (Gluzman, 1981) and HeLa cells were maintained
molecule (Chen et al., 1989; Hemmings et al., 1990; Im-

in Dulbecco’s modified Eagle’s medium with 10% fetal
aoka et al., 1983; Walter et al., 1989). The B subunit binds

calf serum at 377C in a humidified 10% CO2 atmosphere.
to repeats 1–10 and the C subunit to repeats 11–15 of

For transfections, 5 1 104 cells were plated per 3.5-cm
the A subunit (Fig. 1) (Ruediger et al., 1992, 1994). Binding

well of 6-well plates. Transfections were carried out us-
of the C subunit to the A subunit occurs in the absence

ing LipofectAMINE from Gibco/BRL following the manu-
of the B subunit, whereas binding of the B subunit to

facturer’s instructions. Jurkat T cells were maintained in
the A subunit requires the presence of the C subunit

RPMI 1640 with 10% fetal calf serum and transfected with
(Kamibayashi et al., 1991, 1992; Ruediger et al., 1994).

DMRIE-C following Gibco/BRL’s instructions. Transfec-
While experiments with OA indicate that one or several

tion conditions were optimized for high expression of
phosphatases play an inhibitory role in HIV-1 transcrip-

effector protein determined by Western blotting, and for
tion, they cannot distinguish which phosphatase is im-

high transfection efficiency determined by staining of
portant. In this paper, we provide direct evidence that

fixed cells coexpressing b-galactosidase with X-gal
PP2A regulates HIV-1 gene expression. Transfection of

(Gibco/BRL) (Sanes et al., 1986). LipofectAMINE was
cells with an N-terminal mutant of the A subunit, which

used at 6 ml/ml, DNA at 1 mg/ml. Of the total DNA, 10–
associates with the C but not the B subunit, causes an

30% comprised reporter plasmid(s), and 70–90% was
increase in the ratio of PP2A core enzyme to holoenzyme

effector plasmid. In titration experiments, the total DNA
and a corresponding change in phosphatase activity.

amount was kept constant using vector DNA. Cells were
Perturbing the ratio of the PP2A forms in this way strongly

transfected for 2–6 h, then the transfection solution was
inhibits transcription from the HIV-1 LTR. Furthermore, a

replaced by medium with 10% FCS until harvest.
strong decrease in virus production was observed. Our
results demonstrate that PP2A plays an important role Standardization of transfection
in the life cycle of HIV-1.

To eliminate the possibility that the DNA preparations
for AD5 were more toxic than those for the A subunit orMATERIALS AND METHODS
vector, all effector plasmids were prepared in parallel on

Expression plasmids
silica gel columns (Qiagen). In addition, three indepen-
dently prepared sets of plasmids yielded identical re-The A subunit constructs in pBluescript (Stratagene)

have been described previously (Ruediger et al., 1992) sults. We also excluded the possibility that transfections
with AD5 vectors were more toxic than those with Aand were cloned as EcoRI–XbaI fragments into the eu-

karyotic expression vector pcDNA3 (Invitrogen), which subunit vectors due to high expression levels for AD5.
In fact, at identical DNA concentrations, expression lev-utilizes the immediate early promoter/enhancer of the

human cytomegalovirus (CMV). The b-galactosidase els for AD5 were always lower than those for A, but
they had stronger effects on phosphatase activity (seegene from pCMVb (Clontech) was inserted into pcDNA3

as a NotI – NotI fragment and used as a control effector Results). Furthermore, the cell numbers and the values
for total cell protein after 48 h of transfection at highconstruct (pcDNA3-bGal). pCMVb and pSV-bGal (Pro-

mega) were used as internal controls. Katherine Jones efficiency were identical for all effector plasmids. To con-
trol for transfection efficiency, the various transfectionprovided us with the reporter construct HIV-1 LTR lucifer-

ase (Sheridan et al., 1995), and with expression plasmid solutions contained equal amounts of b-galactosidase-
producing reporter constructs, pCMVb, pcDNA3-bGal, orpSV-Tat (previously termed TAT-1) utilizing the SV40 pro-

moter/enhancer (Peterlin et al., 1986). Flossie Wong- pSV-bGal. By staining of fixed cells for b-galactosidase,
equal transfection efficiencies for vector, A, or AD5 wereStaal provided us with expression plasmid pTat utilizing

the HIV-1 LTR promoter/enhancer (Knight et al., 1987). found. At the same time, reduced color intensity was
observed in AD5- compared to vector-transfected cells.Jay Rappaport provided us with expression plasmid
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434 RUEDIGER ET AL.

This observation was substantiated by the finding that ties of infection of 5 (Lin and Wang, 1992). The kinase/
cyclin B complex was partially purified by immunoprecipi-b-galactosidase activity was reduced in AD5-transfected

cells. Since AD5 inhibits the expression of b-galactosi- tation using antibodies raised in rabbits against peptide
YFNDLDNQIKKM that corresponds to the C-terminal se-dase driven by the CMV or SV40 promoter/enhancer, it

was not possible to normalize luciferase data against quence of cdk1 (Lee and Nurse, 1987). The stoichiometry
of phosphorylation was 0.3 mol/mol, and the phospho-galactosidase activity. This finding indicates a broader,

but not ubiquitous, involvement of PP2A in gene expres- peptide was assayed at a final concentration of 5 mM.
Transfected cells were harvested at 48 h by washingsion (see Results and Discussion).

with 20 mM Tris–HCl, pH 7.4, 150 mM NaCl followed by
FPLC extracting for 4 min on ice with 0.5% Triton X-100, 50 mM

Tris–HCl, pH 7.5, 150 mM NaCl, 3 mM MgCl2 , 1 mMTransfections were carried out on 15-cm plates. After
DDT, 1 mM Pefabloc, 50 mM leupeptin, 0.2 mg/ml soy-48 h, cells were washed with TBS (10 mM Tris–HCl, pH
bean trypsin inhibitor, and 1 mg/ml aprotinin. The extracts7.4, 150 mM NaCl) and harvested in 2 ml of buffer D
were centrifuged at 14,000 rpm for 3 min at 47C in a(10% glycerol, 50 mM Tris–HCl, pH 7.4, 1 mM EDTA)
microfuge, and the supernatants were diluted for thecontaining 1 mM dithiothreitol, 50 mM leupeptin (Sigma),
phosphatase assay in 0.1% BSA, 50 mM Tris–HCl, pH1 mg/ml aprotinin (Calbiochem), 0.2 mg/ml soybean tryp-
7.5, 0.1 mM EGTA, and 0.1% 2-mercaptoethanol. Thesin inhibitor (Boehringer), and 1 mM Pefabloc (Boeh-
phosphatase assay and extraction of released organicringer). The cells were scraped off the plate and stored
phosphate were performed as described (MacKintosh,in liquid nitrogen. After thawing, they were homogenized
1993). PP2A activity was measured as the activity of aby douncing and centrifuged at 47C and 45,000 rpm in a
diluted extract, which could be inhibited with 1 nM oka-SW 50.1 rotor for 25 min. The supernatants containing
daic acid, in the presence of 0.1 mM inhibitor-2.equal amounts of protein (2.5 mg) for vector-, A-, and

AD5-transfected cells were fractionated on a Mono Q
Luciferase assay

HR 5/5 column (Pharmacia LKB). Fractions were eluted
with a salt gradient of 150 to 400 mM NaCl in 50 mM Usually 48 h after transfection, cells were washed with

PBS and extracted with 100 to 600 ml of either luciferaseTris–HCl, pH 7.4, 1 mM EDTA, and 1 mM dithiothreitol.
A total of 80 fractions, 0.5 ml each, was collected. Frac- lysis buffer (1% Triton X-100, 100 mM Tris–acetate, pH

7.8, 10 mM magnesium acetate, 1 mM EDTA, 1 mM di-tions 10 to 70 (0.1 ml each) were separated by SDS –
PAGE and analyzed by Western blotting. thiothreitol), Triton X-100 buffer (1% Triton X-100, 50 mM

Tris–HCl, pH 8, 150 mM NaCl, 3 mM MgCl2), or buffer
Western blotting D (see above). The extracts (20 to 80 ml) were analyzed

in 96-well plates using an Anthos Lucy 1 luminometerThe ECL Western blotting detection system from Amer-
and WinLcom software. Each well was injected with 100sham was used with the following primary antibodies:
ml of luciferin solution (200 mM D-luciferin from Analyticalrat monoclonal antibody anti-A subunit (6G3) (Kremmer
Luminescence Laboratory, 2 mM ATP, 100 mM Tris–et al., 1996), rabbit anti-Ba subunit produced against the
acetate, pH 7.8, 10 mM magnesium acetate, 1 mMpeptide KGAVDDDVAEADY coupled to BSA with bis-di-
EDTA). Light output was measured for 10 or 20 s withoutazobenzidine as described (Walter, 1986), mouse mono-
delay (De Wet et al., 1987).clonal antibody anti-C subunit from Marc Mumby (Mumby

et al., 1985), and sheep anti-Tat (Biodesign). A variety of
Galactosidase assay

exposures of each Western blot was scanned using an
Apple Macintosh Color One Scanner, and band intensi- Aliquots of 20 to 80 ml of the extracts analyzed for

luciferase activity were mixed in 96-well plates with 200ties were analyzed with NIH Image software.
ml of ONPG solution (0.6% o-nitrophenyl b-D-galactopyra-

Phosphatase assay noside, 100 mM sodium phosphate, pH 7.5, 0.85 mM
MgCl2 , 0.85% 2-mercaptoethanol). The plates were incu-Phosphorylase a, labeled with [33P]ATP (1000 cpm/
bated at 377C for 20 to 120 min before the absorptionpmol), was used as a substrate in PP2A phosphatase
was measured at 420 nm in an ELISA plate reader. Lysisactivity assays as described (MacKintosh, 1993). A pep-
buffer or extract of nontransfected cells, mixed withtide, INGSPRTPRRGQNR, corresponding to amino acids
ONPG solution, was used to set the reader to zero (Ro-246–259 of the retinoblastoma protein was phosphory-
senthal, 1987).lated by cdk1/cyclin B under the conditions described by

Agostinis et al. (1992) using [33P]ATP (1000 cpm/pmol).
p24 assay

The cdk1/cyclin B used in the reaction was expressed
in Sf9 cells infected for 48 h with recombinant baculovi- After transfection of cells on 6-well plates with pNL4-

3 (2 to 20% of the total DNA) and A subunit constructsruses expressing human cyclin B and cdk1 at multiplici-
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435CONTROL OF HIV-1 BY PP2A

(80 to 98%), the transfection solution was replaced with RESULTS
1.3 ml medium containing 10% fetal calf serum. At differ-

Experimental approachent time points, 300 ml of medium were removed and
mixed with 33 ml of 101 Abbott buffer containing Triton The A subunit plays an important role in the regulation
X-100. The 300 ml removed were substituted with 300 of PP2A by binding the B and C subunits and facilitating
ml fresh medium. The samples were stored frozen and their interaction. B subunits can either stimulate or inhibit
subjected, undiluted or diluted, to Abbott’s HIVAG-1 en- the activity of the core enzyme, depending on the sub-
zyme immunoassay following the manufacturer’s instruc- strate and the type of B subunit bound to the core enzyme
tions. The p24 assays were performed by the virology (Agostinis et al., 1992; Cegielska et al., 1994; Ferrigno et
CORE facility of the UCSD Center for AIDS Research. al., 1993; Kamibayashi et al., 1991; Kamibayashi et al.,

1994; Sola et al., 1991). We reasoned that N-terminal
mutants of the A subunit, shown to bind the C but notLuciferase mRNA quantitation
the B subunit in vitro (Ruediger et al., 1994), could be

Total RNA was isolated 48 h after transfection of cells valuable tools for studying the function of PP2A in vivo.
grown on 5-cm plates. RNeasy Minipreps were per- One expects that these mutants replace the wild-type A
formed following Qiagen’s instructions. Up to 2 mg of subunit in preexisting core and holoenzymes and com-
total cellular RNA were translated in vitro using the TNT pete with newly synthesized wild-type A subunit for newly
Coupled Wheat Germ Extract System from Promega. RNA synthesized C subunit, thereby causing an increase in
polymerase and radioactive methionine were omitted. the amount of core enzyme and a decrease in the amount
Promega’s Complete Amino Acid Mixture was used. Re- of holoenzyme (Fig. 1). One also expects to find a change
actions of 25 ml total volume, containing 12.5 ml wheat in phosphatase activity since the core and the holoen-
germ extract, were prepared directly in white 96-well zymes differ in their substrate specificities. The holoen-
plates. After 90 min at 307C the plates were subjected zyme is much more active than the core enzyme toward
to luciferase assays by injecting the stabilized substrate substrates phosphorylated by cyclin-dependent kinases
solution from Promega’s Luciferase Assay System. Light (Agostinis et al., 1992; Cegielska et al., 1994; Ferrigno et
output was measured for 30 s without delay. We found al., 1993; Kamibayashi et al., 1994; Sola et al., 1991),
that (i) up to 2 mg of RNA in a 25-ml reaction result in a whereas the core enzyme is equally or more active than
linear luciferase activity response, (ii) the luciferase activ- the holoenzyme toward most other substrates (Kamiba-
ity is proportional to the luciferase mRNA amount within yashi et al., 1991). Thus, A subunit mutants should serve
a given amount of total RNA, and (iii) cotranslation of as a useful tool to determine whether PP2A is involved
AD5-mRNA contained in the total RNA as a result of the in specific cellular processes, and which form (holoen-
cotransfections does not affect the in vitro synthesis of zyme or core enzyme) is involved.
luciferase (data not shown). This method is extremely
sensitive permitting detection of luciferase activity, i.e., Mutant AD5 does not bind the B subunit in vivo and
luciferase mRNA, within total RNA from 104 COS cells increases the ratio of core enzyme to holoenzyme
cotransfected with reporter constructs at 5 to 10% of
total DNA. The method can detect as little as 0.1 pg We investigated whether mutant AD5 with a deletion

of repeat 5 binds the C but not the B subunit in vivo asof luciferase mRNA (Ruediger and Walter, manuscript
submitted). it does in vitro (Ruediger et al., 1994). Extracts from AD5-

FIG. 1. Model of the action of N-terminal mutant AD5. In normal cells (upper row), the C subunit associates with the A subunit to form A-C core
enzyme. The B subunit then binds to form the holoenzyme. In transfected cells (lower row), AD5 competes with wild-type A subunit for binding to
the C subunit. AD5-C does not bind the B subunit.
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436 RUEDIGER ET AL.

FIG. 2. Mutant AD5 associates with the catalytic C but not the regulatory B subunit of PP2A in vivo. COS cells were transfected with AD5
expression plasmid and extracted 48 h later with buffer D. The extract was fractionated on a Mono Q column by FPLC as described under Materials
and Methods and analyzed by SDS–PAGE and Western blotting for A, Ba, and C. The fractions containing monomeric A and AD5, A-Ba-C
holoenzyme, and A-C and AD5-C core enzyme are indicated. The experiment was performed twice in COS cells and several times in other cell
lines with similar results.

transfected COS cells were fractionated on a Mono Q through replacement or competition, then the molar
amounts of free A and AD5-C should be equal. A smallanion exchange column and individual fractions were

analyzed for their content of A, AD5, Ba, and C. Figure amount of the free A subunit in AD5-transfected cells
may be derived from holoenzymes other than A-Ba-C.2 shows two peaks of AD5, one around fraction 24 corre-

sponding to the free monomeric form and one around For example, it was reported that COS cells synthesize
B* mRNA and therefore may contain A-B*-C (Csortos etfraction 37 corresponding to AD5-C dimer and comigrat-

ing with endogenous core enzyme. Most importantly, al., 1996). We did not examine the Mono Q fractions for
B*. The COS cells used here also contain a small amountthere is no peak of AD5 in the region of endogenous

holoenzyme (fraction 29). This demonstrates that AD5 is of SV40 small T antigen that is bound to core enzyme,
but we did not measure its concentration relative to totalunable to associate with the B subunit in vivo.

By scanning the Western blots shown in Fig. 2, we core and holoenzyme.
determined that AD5-C constitutes 10% of all core and

Expression of mutant AD5 reduces holoenzymeholoenzyme. This implies that 10% of all C subunit com-
activityplexed with A and AD5 is bound to AD5. Since only 18%

of the cells were transfected in this experiment (data not To measure the decrease in holoenzyme activity and
shown), AD5 bound to 55% of the C subunit in transfected the increase in core enzyme activity, which are expected
cells. Consequently, the levels of core and holoenzyme to result from expression of AD5, we used two sub-
in transfected cells dropped to 45% of untransfected strates: phosphorylase a phosphorylated by phosphoryl-
cells. We assume that the levels dropped equally for both ase kinase and Rb peptide phosphorylated by cdk1 ki-
forms. Therefore, since untransfected COS cells contain nase/cyclin B. Since the D5 mutation is distant from the
2
3 holoenzyme and 1

3 core enzyme, transfected cells con- C subunit binding region (repeats 11–15), it is reason-
tain approximately 1

3 holoenzyme, 1
6 core enzyme, and 1

2 able to assume that core enzyme containing AD5 has the
AD5-C. Thus, the concentration of holoenzyme dropped same activity and substrate specificity as core enzyme
twofold and the concentration of core enzyme (A-C plus containing wild-type A subunit. Furthermore, since the
AD5-C) increased twofold in transfected cells. holoenzyme is 100 times more active than the core en-

The monomer region contained free AD5 and free A. zyme in dephosphorylating the Rb peptide (Agostinis et
The latter was presumably displaced from core and holo- al., 1992), we expected that extracts from AD5-trans-
enzyme or was newly synthesized after transfection and fected cells would be less active than control extracts
unable to bind C subunit because of competition by ex- toward the Rb peptide. As shown in Table 1, AD5 trans-
cess AD5. Untransfected or control vector-transfected fection reduced the Rb peptide phosphatase activity to
cells contained no free A subunit (data not shown). How- 71% in comparison to vector control. Taking into account
ever, it is unclear why extracts from AD5-transfected a transfection efficiency of 40% in this experiment (data
cells contained so much free A subunit in comparison to not shown), the activity toward the Rb peptide was re-

duced to 27% in transfected cells. This fourfold reductionthe amount of AD5-C. If free A subunit is only generated
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437CONTROL OF HIV-1 BY PP2A

TABLE 1 activity was investigated. COS cells were cotransfected
with an HIV-1 LTR-luciferase reporter plasmid, mutantRelative PP2A Activity in Cell Extracts and Transfected Cells
AD5 expression plasmid, and increasing amounts of Tat

Extract Transfected cells expression vector, pTat. Wild-type A subunit and empty
vector were used as controls. As shown in Fig. 3, upper

Phos a Rb peptide Phos a Rb peptide panel, grey bars, increasing amounts of Tat resulted in
increased activity of the HIV-1 LTR up to a maximal stimu-Empty vector 100 100 100 100
lation of 50-fold in accordance with published reportsA subunit 98 { 0.5 91 { 2.5 95 { 1.2 77 { 6.2

AD5 111 { 2.5 71 { 3.0 128 { 6.2 27 { 7.5 (Dayton et al., 1986; Fisher et al., 1986; Gaynor, 1995;
Jones and Peterlin, 1994; Sodroski et al., 1985a, 1985b).

Note. COS cells were transfected with empty vector or vector encod- Presenting the same data as a percentage of vector con-
ing wild-type A subunit or AD5, extracted after 48 h with Triton X-100

trol, the lower panel of Fig. 3 shows the relative suppres-buffer, and assayed for PP2A phosphatase activity using phosphorylase
sion of LTR activity by the A subunit and AD5. AD5a (Phos a) and an Rb peptide as substrates. Values are expressed as

percentages of the PP2A activity in vector-transfected samples. Two inhibited LTR activity 4-fold in the absence of Tat and at
transfections were assayed, one in duplicate and one in triplicate phos- low concentration of Tat (0 to 0.001% pTat). This suggests
phatase assays, and the standard deviations are indicated. The experi- that AD5 has an effect on general transcription factors
ment was repeated several times with similar results. The activity in

or upstream enhancer-binding factors. As Tat levels in-transfected cells was calculated by multiplying the inhibition in the
extract by 2.5 to compensate for the 40% transfection efficiency.

of holoenzyme activity suggests that the bulk of holoen-
zyme was converted to AD5-C. The cell fractionation
showed a twofold reduction of holoenzyme (Fig. 2). Con-
sidering that two different methods were used, these
values are in good agreement. The PP2A activity toward
phosphorylase a was slightly stimulated by AD5, consis-
tent with an increase in core enzyme, which is slightly
more active toward this substrate than holoenzyme (Ka-
mibayashi et al., 1991). Expression of wild-type A subunit
did not significantly change the PP2A activity toward
phosphorylase a but reduced the Rb peptide activity to
77% in transfected cells. This effect may be caused by
the large excess of A subunit (see below). In summary,
expression of AD5 changed the specificity of PP2A in
accordance with an increased ratio of core to holoen-
zyme.

A potential concern is whether the PP2A phosphatase
activity measured in cell extracts truly reflects the activity
in cells and to what extent an exchange of the wild-type
A subunit in core and holoenzyme by AD5 takes place
in the cell lysate. Although subunit exchange in extracts
does occur (Ruediger et al., 1992, 1994), this process is

FIG. 3. Inhibition of Tat-enhanced HIV-1 LTR activity by mutant andvery slow, increasing continuously during a 24-h incuba-
wild-type A subunits of PP2A. COS cells were cotransfected with antion and occurring faster at room temperature than on
HIV-1 LTR luciferase reporter construct (5% of total DNA), increasing

ice (unpublished). In order to minimize exchange, all amounts of a Tat expression vector (pTat, 0 to 4%), and with effector
phosphatase assays were carried out within 1 h after the plasmids encoding the wild-type A subunit (A) or mutant AD5 (80%).

Effector plasmid without insert (Vector) served as control. A b-galactosi-preparation of extracts, which were kept on ice except
dase-expressing reporter (pSV-bGal, 15%) was also cotransfected tofor the actual assay period.
demonstrate equal transfection efficiencies of the various samples (see
Materials and Methods). Cells were harvested 48 h after transfection.Inhibition of gene expression from the HIV-1 LTR by
The upper panel shows absolute luciferase activities, while the lower

mutant AD5 panel shows relative luciferase activities (vector 100%) at each percent-
age of pTat. The lowest values, which resulted from transfections with-Having established that mutant AD5 causes a marked
out Tat and with AD5, were 800 counts with a background of 200

change in the core enzyme to holoenzyme ratio and in counts. This experiment is representative of two; experiments without
the corresponding phosphatase activity, the possible Tat and under fully Tat-stimulatory conditions were carried out numer-

ous times with the same result.involvement of this change in the control of HIV-1 LTR
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demonstrated by Western blotting (data not shown).
When corrected for equal levels of A subunit and AD5,
the A subunit had essentially no effect (see A1/4 , Fig. 4,
upper panel). To explain the lower expression of AD5,
we assume that AD5, but not the A subunit, inhibited its
own expression from the CMV promoter in pcDNA3, the
expression vector for the A subunit constructs. This as-
sumption is supported by the finding of reduced b-galac-
tosidase production from CMV-driven reporter constructs
due to AD5 coexpression (data not shown).

PP2A is an abundant protein in cells, each subunit
accounting for approximately 0.1% of the total protein
(Ruediger et al., 1991). To determine the level of AD5
expression, transfections were carried out as described
for Fig. 3 and the amounts of A subunit and AD5 were
determined by Western blotting. Considering the trans-
fection efficiency, there was a 40-fold excess of AD5
over endogenous A subunit and a 140-fold excess of
exogenous over endogenous A subunit (data not shown).
The AD5 overexpression resulted in the 2-fold increase

FIG. 4. Inhibition of Tat-enhanced HIV-1 LTR activity by mutant and
in core enzyme and a corresponding decrease in holoen-wild-type A subunits is not due to inhibition of Tat expression. COS cells
zyme, as shown in Fig. 2.were cotransfected with an HIV-1 LTR luciferase reporter construct (1%

of total DNA), increasing amounts of a Tat expression vector (pTat, 2.5
to 20%), and effector plasmids encoding the wild-type A subunit (A) or Mutant AD5 inhibits LTR- but not actin promoter-
mutant AD5 (95%). Effector plasmid without insert (Vector) served as driven mRNA accumulation
control. A1/4 designates an effector plasmid mix containing 1/4 A sub-
unit-encoding plasmid and 3/4 empty vector to adjust the amount of A To investigate whether AD5 inhibits HIV-1 LTR ex-
subunit expressed to that of AD5. Cells were harvested 48 h after pression at the level of transcription, luciferase mRNA
transfection with 150 ml of 11 Passive Lysis Buffer (Promega). An

levels were determined. Since quantitating luciferasealiquot of 80 ml was mixed and boiled with 40 ml of 61 SDS–PAGE
mRNA levels by Northern blotting or primer extensionsample buffer. Gradient gels with 4 to 20% polyacrylamide (Novex)

were used and Western blotted for Tat (lower panel). The upper panel was not sensitive enough, we developed a new method
shows the corresponding luciferase activities at various percentages involving isolation of total RNA from transfected cells,
of pTat. The experiment was repeated once showing the same result. translation of the in vivo-produced RNA in vitro and

measuring the activity of the in vitro-synthesized lucif-
erase. As shown in Fig. 5, AD5 inhibited HIV-1 LTR-

creased up to full stimulation of the HIV-1 LTR, the inhibi-
driven mRNA accumulation 2-fold in the absence and

tory potency of AD5 increased to 8-fold. This doubling
5-fold in the presence of Tat. In contrast, it had no

of the inhibitory effect suggests that there might be a
effect on actin promoter-driven mRNA levels. The in-

specific interference of AD5 with the transcriptional en-
creased effect of AD5 on LTR transcription in the pres-

hancer function of Tat (see also Fig. 5). The inhibition
ence of Tat provides direct support for the hypothesis

of Tat-dependent transcription by AD5 was not due to
mentioned earlier that AD5 interferes with the tran-

reduced expression of Tat, as demonstrated by Western
scriptional enhancer function of Tat.

blotting with Tat-specific antibodies. As shown in Fig. 4,
cells transfected with AD5 and 10 or 20% pTat expres- Inhibition of HIV-1 production
sion vector contained more Tat protein than cells trans-
fected with vector and 2.5 or 5% pTat (lower panel). None- To investigate whether N-terminal A subunit mutants

inhibit virus production, COS cells were cotransfectedtheless, the AD5-transfected cells suppressed LTR ex-
pression by a factor of 10 (upper panel). with the AD5 expression vector and pNL4-3, a full-length

molecular clone of HIV-1. As shown in Fig. 6, left panel,Figure 3 also shows that a two- to threefold inhibition
of LTR activity was caused by wild-type A subunit in the p24 accumulation in the cell culture medium, a measure

of virus yield, was inhibited 45-fold by AD5 in comparisonabsence of Tat stimulation (0 to 0.001% pTat). This effect
disappeared almost completely at increasing Tat levels to the vector control. The strongest inhibition was seen

at 3 and 4 days after transfection. Wild-type A subunit(0.01 to 4% pTat). These experiments were carried out
using equal amounts of expression vector for A subunit inhibited HIV-1 production only 4-fold as compared to

the 45-fold inhibition by AD5. The amounts of virus pro-and AD5. However, under these conditions A subunit
was expressed at four times higher levels than AD5 as duced on day 1 were very low (see Legend to Fig. 6).
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vector control. Wild-type A subunit inhibited 2-fold. Pre-
sumably, this effect of the A subunit would be smaller if
its amount was adjusted to that of AD5 (cf. Fig. 4). In
Jurkat T cells we observed a 3-fold suppression of HIV-
1 production due to AD5 expression (right panel). It
should be noted that the expression levels of AD5 are
much lower in HeLa and Jurkat T cells as compared to
COS cells, since no episomal replication of the A subunit
vectors occurs. This explains why effects of AD5 are
smaller in HeLa and Jurkat T cells.

DISCUSSION

We have demonstrated that increasing the amount of
PP2A core enzyme while decreasing the amount of holo-FIG. 5. Mutant AD5 inhibits Tat-enhanced HIV-1 LTR luciferase ex-
enzyme inhibited Tat-dependent HIV-1 gene expressionpression at the level of mRNA synthesis. COS cells were cotransfected
5-fold at the level of mRNA synthesis. This perturbationwith an HIV-1 LTR luciferase reporter construct (pLTR-luc, 8% of total

DNA) in the absence and in the presence of a Tat expression vector of equilibrium between the two major forms of PP2A also
(pHbA-Tat, 8%), or with an actin luciferase reporter construct (pActin- inhibited HIV-1 virion production in COS, HeLa, and Jurkat
luc, 8%), and with effector plasmid encoding mutant AD5 (92 or 84%)

T cells. Expression of N-terminal mutants of the A subunitor wild-type A subunit (1/4 A-encoding vector plus 3/4 empty vector).
altered the balance between holoenzyme and core en-Effector plasmid without insert (empty vector) served as control. Cells
zyme toward core enzyme and changed phosphatasewere lysed with guanidinium isothiocyanate buffer, and RNA was iso-

lated for in vitro translations followed by luciferase assays. This deter- specificity correspondingly. We found that in AD5-trans-
mines the extent of in vivo reporter gene inhibition up to the level of fected COS cells the activity for a holoenzyme-specific
mRNA accumulation. Luciferase activities compared to vector transfec-

substrate (Rb peptide) was decreased approximately 4-tions (100%) are shown. The values are the average of triplicates from
fold, whereas that for a core enzyme-specific substratetwo independent experiments. The absolute luciferase values from in
(phosphorylase a) was slightly increased. In parallel, thevitro translations of AD5 samples were about 7,000 (pLTR-luc), 70,000

(pLTR-luc / Tat), and 200,000 (pActin-luc) with a background of 2,000 amount of holoenzyme dropped 2-fold, whereas that of
counts. core enzyme (A-C plus AD5-C combined) increased 2-

fold. The reason why the 2-fold increase in core enzyme
produced only a slight increase in phosphorylase a phos-Therefore, the apparent 10-fold inhibition by the A subunit
phatase activity is that the core enzyme is only slightlyon day 1 is not meaningful. Since the same amounts of
more active toward this particular substrate than the ho-the A subunit and AD5 expression vectors were used
loenzyme and that the total amount of core enzyme plusfor transfection, 4 times more A subunit than AD5 was
holoenzyme remains constant. We assume that core en-produced (see above). Therefore, at equal expression
zyme and AD5-C have the same activity and substratelevels the specific inhibition by the A subunit would be
specificity, although this has not been directly proven.very low. To test whether other mutants with similar bind-
The quantitative effect of AD5 depends on the preex-ing properties as AD5 also inhibit HIV-1 production, we
isting ratio of holoenzyme to core enzyme in cells. It isused mutant AD1–4. This mutant has repeats 1 to 4
commonly believed that the holoenzyme is the predomi-deleted and binds the C but not the B subunit in vitro
nant form, whereas the core enzyme is an artifact of(Ruediger et al., 1994) and in vivo (data not shown). As
dissociation and degradation of the B subunit occurringshown in Fig. 6, second panel, AD1–4 inhibited HIV-1
after cell lysis (Cohen, 1989; Shenolikar and Nairn, 1991;production 9-fold and AD5 24-fold. As additional controls,
Zolnierowicz et al., 1994). In this case AD5 would causewe used mutants A8 and AD11–15. A8 with a deletion
a many-fold increase in the amount of core enzyme (fromof amino acids 2 to 7 from the N terminus behaved like
zero to ú50%). However, we have recently shown for awild-type A subunit, which inhibited 3-fold. This result
number of cell lines that the amounts of endogenouswas expected because A8 and wild-type A subunit bind
holoenzyme and core enzyme are similar (Kremmer etthe B and C subunits equally well (Ruediger et al., 1994).
al., 1996). Therefore, the increase in core enzyme due toMutant AD11–15, which has a deletion of repeats 11 to
AD5 expression is approximately 2-fold (from 1

3 to 2
3 in15 and binds neither the C nor the B subunit in vitro

(Ruediger et al., 1994), also behaved like wild-type A COS cells). The finding that a 40-fold overexpression of
AD5 was required to obtain 2-fold effects on the levelssubunit.

We also tested whether AD5 inhibits virus production of core and holoenzyme may be surprising. One reason
for this observation could be that there was only a 24-hin HeLa cells. As shown in Fig. 6, third panel, AD5 inhib-

ited HIV-1 production by a factor of 5 compared to the time span, from one day posttransfection until harvest at
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FIG. 6. Inhibition of HIV-1 production by mutant and wild-type A subunits. (Left panel) COS cells were cotransfected with a full-length, wild-type
molecular clone of HIV-1, pNL4-3 (20% of total DNA transfected), and with effector plasmids encoding the wild-type A subunit (A) or mutant AD5.
Effector plasmid without insert (Vector) served as control. Cell growth medium was sampled at different time points to determine the amount of
p24 as a measure of HIV-1 released from the cells. The experiment was repeated four more times with a total of six independent sample sets
yielding the same result. Inhibition by the A subunit ranged from 2- to 6-fold, and by AD5 from 10- to 45-fold. The amounts of p24 released for
vector were 10 pg (day 1), 520 pg (day 2), 1300 pg (day 3), 4950 pg (day 4), 10200 pg (day 7). (Second panel) COS cells were transfected as
described for the left panel, including additional mutants of the A subunit as indicated. The experiment was performed twice with the same result.
The values shown are from the harvest at day 4; vector, 3200 pg of p24. (Third panel) HeLa cells were transfected as described for the left panel,
except that pNL4-3 comprised 2% and the effector constructs 98% of the total DNA. The experiment was performed twice with the same result. The
values shown are from the harvest at day 3; vector, 300 pg of p24. (Right panel) Jurkat T cells were transfected as described for the left panel and
under Materials and Methods, except that pNL4-3 comprised 10% and the effector constructs 90% of the total DNA. At 24 h after transfection the
cells were stimulated with PMA (Fluka) (60 ng/ml final), which was necessary to induce expression of the A subunit constructs. The experiment
was performed three times with the same result. The values shown are from the harvest at day 2; vector, 240 pg of p24.

48 h, for replacement of endogenous A subunit by AD5. wild-type A subunit expression may be caused by some
interaction with B subunit in the absence of C subunit.In this case one would predict that constant expression

of AD5 in a permanent cell line would yield strong effects This would also result in an increase of core enzyme
and a decrease of holoenzyme. The N-terminal mutantson the core to holoenzyme ratio at a significantly lower

level of overexpression. The fact that a 2-fold change in changed the concentration of both major forms of PP2A.
Therefore, the question arises whether the inhibition ofthe level of core and holoenzyme caused a 5-fold inhibi-

tion of transcription demonstrates that mutant AD5 is a HIV-1 LTR activity and virus production resulted from the
decrease in holoenzyme or the increase in core enzyme.powerful tool to study gene expression.

AD5 inhibited luciferase expression controlled by the Because of the observation that general phosphatase
inhibition stimulates HIV-1 gene expression (Thevenin etHIV-1 LTR up to 88% and virus production up to 98%.

Other A subunit mutants behaved as expected based on al., 1990; Vlach et al., 1995) we favor the hypothesis that
the increase in core enzyme rather than the decrease intheir B and C subunit binding properties observed in

vitro. AD1–4 (deletion of repeats 1 to 4) had similar holoenzyme was responsible for the observed inhibition.
The finding that the transcriptional inhibition of theinhibitory effects as AD5, whereas AD11–15 (deletion

of repeats 11 to 15), and mutant 8 (deletion of amino HIV-1 LTR by AD5 increased from 2-fold in the absence
to 5-fold in the presence of Tat suggests that AD5 inter-acids 2 to 7) behaved like the wild-type A subunit. These

results confirm our hypothesis that the N-terminal mu- feres with the functional activity of Tat as a transcriptional
enhancer. It is possible that AD5 expression leads to atants AD5 and AD1–4 are inhibitory because they bind

the C subunit but not the B subunit (Ruediger et al., 1994). change in the phosphorylation state of Tat or of the Tat-
associated kinase, TAK. However, at present neither TatIt is highly unlikely that the inhibition by AD5 and AD1–

4 occurred for reasons other than those proposed, e.g., nor TAK have been shown to be phosphorylated in vivo
(Herrmann and Rice, 1993, 1995). Our study shows thatsome nonspecific effect on transcription. If nonspecific

effects had occurred, they should be similar for all mu- alterations in the core to holoenzyme ratio affect HIV-1
gene expression. Whether such changes occur in the lifetants and also affect transcription from the actin pro-

moter. The small inhibition at extremely high levels of cycle of HIV-1, e.g., during mitogenic activation of HIV-1
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