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This research introduces a numerical approach called IsoGeometric Analysis (IGA) to solve the Laplace
equation. Non-Uniform Rational B-Splines (NURBS) basis function is applied for approximation of
the anisotropic saturated porous media of dam foundation field, as for description of the geometry. The
discretized form of the governing Laplace equation is obtained using the standard Galerkin method. The
present results consist of uplift pressure, seepage discharge and exit gradient which are validated with
existing experimental data based on a physical model. The obtained data are also compared with
empirical data. The computed results show a satisfactory agreement with the experimental measure-
ments in the wide ranges of upstream flow conditions. In addition, it was found that the mentioned
numerical method improves the convergency and accuracy of parameters compared to traditional
methods.
© 2014 Karabuk University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Dams usually are built on permeable foundations. Seepage
through the dam foundation occurs due to the difference in water
levels between the upstream and downstream sides and its effects
on permeable foundations include the uplift force, seepage
discharge and exit gradient. The uplift force reduces the shear
resistance between the dam and its foundation. In addition, this
process can provide strain, tension and finally decreasing safety
factor against sliding or overturning of the dam structure. The exit
gradient is the main design criterion in determining the safety of
hydraulic structures against the piping phenomenon. Bligh (1910)
introduced the creep length theory of the flow passing under hy-
draulic structures. He defined the creep length as the route of the
first line of seepage which is in contact with the dam foundation.
Also, Bligh stated that hydraulic gradient is constant along the
creep line and energy loss along this path varies linearly with creep
length. Thus, uplift pressure distribution is linear under the dam
foundation [1,2].

Lane (1935) investigated the exit gradient for more than 200
damaged hydraulic structures and reported that there is a differ-
ence between horizontal and vertical creep paths. Consequently, he
c.ir (M. Shahrbanozadeh),
uk.ac.ir (S. Shojaee).
ersity.
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presented weighted creep theory in which coefficients of 0.33 and
1.0 for total horizontal and vertical percolation lengths were
assigned, respectively (Fig. 1). Therefore, according to Lane's
weighted creep theory, the equivalent creep length is defined in
form of [2]:

Leq ¼ 1
3

X
LH þ

X
LV (1)

in which Leq is the total equivalent length,
P

LH is the total hori-
zontal percolation length (walls with slope less than 45�) and

P
LV

is the total vertical percolation length (walls with slope more than
45�). According to the Bligh's method, the uplift pressure distri-
bution under the dam foundation is linear. To prevent undermining
phenomenon at downstream toe of the structure, the available exit
gradient (ix) should be less than the allowable exit gradient (C) in
following term:

ix ¼ Dh
Leq

� C/
Leq
Dh

� 1
C
0Leq � Dh

C
(2)

where Dh is difference between upstream and downstream heads:
Khosla et al. (1936) presented a method to estimate the distri-

bution of uplift pressure under foundations through solving com-
plex potential functions. They investigated the flow network under
a hydraulic structure which was constructed on a permeable
foundation. Khosla assumed that flow and potential lines are
concentric ellipses and hyperbolic, respectively. Considering no
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Fig. 1. A schematic definition for characterization of parameters in creep theory
(Tokaldani and Shayan, 2012).

Fig. 2. Comparison of uplift distribution according to the Bligh and Khosla et al.
Theories (Tokaldani and Shayan, 2012).
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cutoff wall, the relationship of Khosla to estimate the uplift pres-
sure distribution along the floor is [2,4].

P ¼ H gw

p
cos�12x

b
for � b

2
� x � b

2
(3)

and the exit gradient as:

iexit ¼
H

pd
ffiffiffiffi
Y

p (4)

Here,H is upstreamhead and the parameters Y ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
=2

and a ¼ b=d varied by the length of foundation (b) and the length of
cutoff wall(d) [2].

Fig. 2 illustrates the uplift distribution predicted by Bligh and
Khosla theories. Although the theory of Khosla is generally more
reliable than the creep theories of Bligh and Lane, in cases dealing
with a compound foundation it is required to solve very compli-
cated equations and also has a low accuracy when applied to
anisotropic foundations [3].

The other methods for estimation of the uplift pressure under
hydraulic structures are suggested based on solving the governing
equations on problem condition. During the past century, various
efforts were conducted to develop numerical modeling using the
Darcy law and Richard equation. In a case study, Abedi Koupaei
(1991) predicted the distribution of uplift pressure using the finite
difference method [5].

In the recent decades, due to the high complexity of flow in
porous media and in most cases, all domains of porous media were
considered as a control system to be possible measuring the
different hydraulic parameters between the particles. In this way,
several investigators proposed the empirical relationships between
hydraulic gradient and flux rate based on experimental data sets
[6e10].

Also, due to the essential needs for investigations of 2D-(or 3D)
dimensional problems and limitations of previous empirical
models, applications of improved models have been studied by
few researchers [11,12]. The IGA is a recently developed compu-
tational approach that offers the possibility of integrating finite
element analysis (FEA) into conventional NURBS-based Computer
Aided Design (CAD) tools. The IGA-based approaches have
constantly developed and shown many great advantages on
solving many different problems in a wide range of research areas
such as fluidestructure interaction, shells, structural analysis and
so on [14e18]. The concept of the IGA in mechanic problems is
pioneered by Hughes and his co-workers as a novel technique for
the discretization of partial differential equations [13]. Within
recent years, the IGA has been applied to various flow problems
and proved its value within the field of fluid mechanics. The first
studies were in field of steady-state incompressible Stokes flow in
the benchmarking lid-driven square cavity [14]. Subsequent
analysis of the full time dependent Navier-Stokes equations using
the IGA has shown its advantages for both variables continuity and
complicated dynamic flow domains [15,16]. The basic idea of the
IGA method is to utilize the basis functions that are able to model
geometries exactly from the CAD points of view for numerical
simulations of physical phenomena. It can be achieved using the
B-splines or Non Uniform Rational B-splines (NURBS) for the
geometrical description and invoke the isoparametric concepts to
define the unknown field variables. The IGA-based approaches
have constantly developed and shown several important advan-
tages in solving different problems such as fluid-structure inter-
action, shells, and structural analysis [17e20]. Imposing essential
boundary conditions in time dependent problems are applied in
IGA with Hughes et al. [21].

In this paper, the numerical algorithm based on the IGA has been
used to estimate the solution of the Laplace equation in anisotropic
porous media. The results of the numerical model was compared
with those obtained using the physical model based on experi-
mental conditions and traditional methods.
2. Specifications of experimental model

In this study, data reported from experimental set up were
applied to validate the proposed numerical model. The experi-
mentswere carried out in a flumewith a length of 1.70m andwidth
of 0.18 m. The flume was located in the Hydraulic Laboratory of the
Department of Irrigation and Reclamation Engineering, University
of Tehran. To obtain hydraulic parameters and also the accuracy and
the convergency of the proposed method, the experimental set
consisted of an upstream impervious bed, an impervious wall as a
dam body, various cutoff walls and a piezometric network. A
schematic sketch of physical model was illustrated in Fig. 3. The
length of cutoff walls varied from 2.5 cm to 30 cm and were located
in different positions beginning from 40 cm upstream to 115 cm
downstream from the impervious wall. The upstream head water
was taken from 2.5 cm to 20 cm and the upstream water level was
fixed by using a floating body. The downstreamwater level was set
to zero. Distribution of uplift pressure was measured by the
piezometric network, which consisted of 39 piezometers (13 rows
with each row including 3 piezometers, Fig. 3) [3].

To prevent uncontrolled piping, a gravel filter (D50 ¼ 2 mm) was
dumped in both upstream and downstream beds. Beach sand,
classified as the most unsuitable type of soil from the point of view
of stability of hydraulic structures, was selected as pervious bed
material. The hydraulic conductivity of the soil was measured using



Fig. 3. Dimensions of the physical model: (a) Plan; (b). Section A-A. (Tokaldani and Shayan, 2012)
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the constant-headmethod and injected dye. The soil horizontal and
vertical hydraulic conductivities were estimated as 0.00143 m/s
and 0.001202 m/s, respectively. A total of 110 experiments were
conducted in various conditions of upstream heads, cutoff depths
and cutoff wall positions. In each experiment, the seepage
discharge was measured based on a volumetric method. Uplift
pressure distribution was taken by reading water levels in piezo-
meteric tubes [3].

3. The governing equation

Consider the time independent equation governing the flow in
the two dimensional anisotropic region U with total boundary
G≡vU,

kx
v2u
vx2

þ ky
v2u
vy2

¼ 0 (5)

With boundary conditions as8><>:
u ¼ g on GD

kx
vu
vx

nx þ ky
vu
vy

ny ¼ h on GN
(6)

Where u is the total head at any point (x, y), GD is the essential
boundary condition, GN is the natural boundary condition, g is the
amount of u over essential boundary condition, h is the derivative
of u over natural boundary condition, nx and ny are the components
of the unit normal to the boundary, kx and ky are the horizontal and
vertical hydraulic conductivity, respectively.

4. The isogeometric analysis

The concept of IGA is based on applying the NURBS basis func-
tions in accurate modeling of geometry and approximation of so-
lution space. The NURBS basis functions are weighted functions
which originate from B-spline interpolation. The B-spline functions
are defined on a knot vector. A knot vector is a suite of non-
descending real numbers, which is presented by,

X ¼ �x1; x2; x3;…; xnþpþ1
�

(7)
where xi is the ith knot value, n and p are respectively the number
and the order of basic functions defined in the knot vector. The first
order B-spline is defined in the knot vector by,

Ni;0ðxÞ ¼
�
1 if xi � x< xiþ1
0 otherwise

(8)

and higher order basis functions are recursively defined by,

Ni;pðxÞ ¼
x� xi

xiþp � xi
Ni;p�1ðxÞ þ

xiþpþ1 � x

xiþpþ1 � xiþ1
Niþ1;p�1ðxÞ (9)

In which Ni;p is the ith basis function with p order. The NURBS
basis functions are made from B-spline functions for two dimen-
sional by equation in form of:

Rp;q
i;j ðx;hÞ ¼ Ni;pðxÞ Mj;qðhÞ ui;j

WðxÞ (10)

In which ui;j is the weight corresponding to i,jth control point.
Also, WðxÞ is weight function that formulated by:

WðxÞ ¼
Xn
i¼1

Xm
j¼1

Ni;pðxÞMj;qðhÞui;j (11)

The derivatives of B-spline basis functions are efficiently rep-
resented in terms of B-spline lower order basis. For a given poly-
nomial order p and knot vector X, the derivative of the ith basis
function is given as follows:

d
dx

Ni;pðxÞ ¼
p

xiþp � xi
Ni;p�1ðxÞ �

p
xiþpþ1 � xiþ1

Niþ1;p�1ðxÞ (12)

The higher derivatives wasmet by continual differentiating each
side of Eq. (12) as

dk

dkx
Ni;pðxÞ ¼

p
xiþp � xi

 
dk�1

dk�1x
Ni;p�1ðxÞ

!

� p
xiþpþ1 � xiþ1

 
dk�1

dk�1x
Niþ1;p�1ðxÞ

!
(13)

Making use of control net Bi,j i ¼ 1, 2,…,n, j ¼ 1, 2,…, m,



)(a)� )(b)

Fig. 5. (a) Domain of dam foundation without cutoff wall (b) with cutoff wall.

Fig. 4. Layout of space solution IGA(Hughes et al., 2005).
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polynomial order p and q, and knot vectors X ¼ {x1, x2,…, xnþpþ1},
and H ¼ {h1, h2,…, hmþqþ1}, a tensor product spline surface is
defined as:

Sðx;hÞ ¼
Xn
i¼0

Xm
j¼0

Ni;pðxÞ Mj;qðhÞ Bi;j (14)

Where Ni; pðxÞ andMj;qðhÞ are univariate B-spline basis functions of
order p and q, corresponding to knot vectors X and H, respectively.

As seen in Fig. 4, we have denoted the element in the physical
space by Ue and in the parameter space by bUe

, and so let us
denote the parent element by ~U

e. The integrals are pulled back,
first onto the parametric domain and then onto a bi-unit parent
element. The actual integration is performed by the Gaussian
quadrature.
4.1. Discretization of governing equation

It was assumed that S and V are the subspaces of function space
with continuous second derivative,
Table 1
Specifications of the geometric analysis.

a. Dam foundation without cutoff wall
Degree p ¼ q ¼ 2
Knots X ¼ {0,0,0,.5,.5,1,1,2,2,2}, H ¼ {0,0,0,1,1,1}
Points 1 2 3 4 5 6 7 8 9 10 11
xi 0 0 0 2 .2 .2 .4 .4 .4 .85 .85
yi 0 .2 .4 0 .2 .4 0 .2 .4 0 .2
u 1 1 1 1 1 1 1 1 1 1 1

b. Dam foundation with cutoff wall
Degree p ¼ q ¼ 2
Knots X ¼ {0,0,0,.5,.5,1,1,2,2,2}, H ¼ {0,0,0,1,1,1}
Points 1 2 3 4 5 6 7 8 9 10 11
xi .825 .4 0 .825 .4 0 .825 .4 0 .85 .85
yi .4 .4 .4 .3 .24 .2 .825 .4 0 .85 .85
u 1 1 1 1 1 1 1 1 1 1 1
S ¼
n
f
���f2H1ðUÞ; f

���
GD

¼ g
o

(15a)

V ¼
n
r
���r2H1ðUÞ; r

���
GD

¼ 0
o

(15b)

Where H1ðUÞ is Sobolev space and can be defined as follows:

H1ðUÞ ¼
n
ujDau ε L2ðUÞ; jaj � 1

o
(16)

The Eq. (5) is a strong form of the boundary value problem that
governs the state of the fluid. The semi discrete weak variational
formulation of Eq. (5) over U can be expressed by multiplying Eq.
(5) at an arbitrary test functionw and applying Green-Gauss theory
is given by

Z
G

w
�
kx

vu
vx

nx þ ky
vu
vy

ny

�
dG�

Z
U

Vw$

2664 kx
vu
vx

ky
vu
vy

3775dU ¼ 0 (17)

or

Z
GD

w
�
kx

vu
vx

nx þ ky
vu
vy

ny

�
dG�

Z
GN

w
�
kx

vu
vx

nx þ ky
vu
vy

ny

�
dG

�
Z
U

Vw$

26664
kx

vu
vx

ky
vu
vy

37775dU ¼ 0

(18)

Where
12 13 14 15 16 17 18 19 20 21
.85 1.3 1.3 1.3 1.5 1.5 1.5 1.7 1.7 1.7
.4 0 .2 .4 0 .2 .4 0 .2 .4

1 1 1 1 1 1 1 1 1 1

12 13 14 15 16 17 18 19 20 21
.85 .875 1.3 1.7 .875 1.3 1.7 .875 1.3 1.7
.85 .875 1.3 1.7 .875 1.3 1.7 .875 1.3 1.7

1 1 1 1 1 1 1 1 1 1



Fig. 6. Control mesh and physical mesh model of the dam foundation. (Left) no cutoff wall with cubic NURBS basis functions with 21, 264 and 924 control points and 6, 200 and 800
elements (Right) with cutoff wall with cubic NURBS basis functions with 21, 288 and 968 control points and 6, 200 and 800 elements. Blue lines mark the element boundaries and
red circles are control points.
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Fig. 7. Convergence of the relative error in the L2-norm of seepage and uplift force for
IGA and FEM discretizations.
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Z
GD

w
�
kx

vu
vx

nx þ ky
vu
vy

ny

�
dG ¼ 0 ;

Z
GN

w
�
kx

vu
vx

nx þ ky
vu
vy

ny

�
dG ¼

Z
GN

whdG
(19)

Using the essential boundary condition, u can be defined as,

u ¼ vþ g 2S; g2V (20)

Inserting this function into Eq. (18) yields:

Z
GN

whdG�
Z
U

Vw$

2664kx
vv
vx

ky
vv
vy

3775dU�
Z
U

Vw$

2664 kx
vg
vx

ky
vg
vy

3775dU ¼ 0 (21)

or

Z
GN

whdG�
Z
U

Vw$

�	
kx 0
0 ky



Vv
�
dU

�
Z
U

Vw$

�	
kx 0
0 ky



Vg
�
dU ¼ 0

(22)

To convert the weak form of Eq. (22) to matrix form, the func-
tions of w, v and g are approximated by NURBS basis functions and
k are given by



Fig. 8. Evaluation of different methods to estimate total uplift force.
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w ¼ RIw; v ¼ RIv; g ¼ RDg ; k ¼
	
kx 0
0 ky



(23)

Where RI and RD are the inner and essential boundary NURBS basis
functions, respectively. Thus, the matrix form of equations can be
obtained as,

Kv ¼ FN þ FD (24)

Where

K ¼
Z
U

VRT
I $
�
kVRI

�
dU; FN ¼

Z
G

RT
I hdG;

FD ¼ �
Z
U

VRT
I $
�
k VRD

�
dUg

(25)

In Eq. (25), g can be estimated from two approaches. In first
approach, the head of boundary control points is imposed by
evaluating the function of boundary condition at the spatial loca-
tions of the control points. This method suffers from two essential
drawbacks. When the position of boundary control points is not
0.0
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Fig. 9. Evaluation of different meth
located on the desired boundary, it is not reasonable to enforce the
given boundary heads to the corresponding boundary control var-
iables. In the second approach, the vector of g is obtained based on
interpolation of a function on the boundary. It offers a far higher
rate of convergence in comparison with the first approach.
Whereas in this research amount of essential boundary condition
was located on control points, the first technique was utilized to
apply essential boundary condition.

4.2. Data for geometry parametrisations

The IGA approach was developed for the dam foundation using
dimensions and specifications of an experimental model. For all
discretizations equally spaced open knot vectors are used in each
direction. The polynomial degrees, knot vectors and control points
for the geometry of the analytical problem were given in Table 1.
Fig. 5 shows domain of the dam foundation for both without and
with cutoff wall. Furthermore, the model definition where there is
an vertical impermeable partition to flow beneath of the dam was
illustrated in Fig. 5(b). The boundary condition on the upstream
side of the dam is a total head value equal to the elevation of the
water in the reservoir. On the downstream side, the boundary
0.5 0.6 0.7

Bligh theory
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Khosla's method

IsoGeometric

MAEIGA=0.04

MAEL=0.13
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MAEKh=0.043

ods to estimate exit gradient.



Table 2
Statistical error parameters given by different models based on experimental data
sets.

MAE RSQ

Hydraulic gradient Bligh 0.05 0.81
Lane 0.13 0.756
Khosla 0.043 0.978
IsoGeometric 0.046 0.966

Seepage discharge Bligh 2.4E-6 0.985
Lane 1.23E-5 0.854
Finite element 9.92E-7 0.992
IsoGeometric 8.54E-7 0.998

Uplift force Bligh 5.807 0.962
Lane 98.816 0.849
Finite element 1.719 0.997
Khosla 11.974 0.942
IsoGeometric 2.258 0.983

R² = 0.876
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R² = 0.8606
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Fig. 10. Evaluation of different methods to estimate seepage discharge.

M. Shahrbanozadeh et al. / Engineering Science and Technology, an International Journal 18 (2015) 185e193 191
condition is set to a head value that can be equal to zero or other
amount which indicates downstream any value for tail water
elevation.

A view of the meshwithin the dam foundation in two cases with
and without cutoff wall was shown in Fig. 6.

5. Results and discussion

5.1. The realibility and accuracy of IGA and FE methods

In order to obtain the realibility and accuracy of the IGA and FE
methods, the sequence of meshes were used for modeling of dam
foundation. The meshes consist of coarse, medium and fine
meshes by 6, 200 and 800 elements for IGA and 69, 266 and 1064
elements for FE methods, respectively. Also, we defined the rela-
tive error as the error normalized by the corresponding value of
the numerical solution for seepage discharge and uplift force
parameters. Convergence results for the relative error are shown
in Fig. 7.

5.2. Experimental versus theorical and numerical results

In Figs. 8e10 the results of uplift force, exit gradient and seepage
discharge obtained from experimental tests versus the results ob-
tained from Bligh, Lane, Khosla et al., IGA and FE methods are
indicated. As shown in Fig. 8, the accuracy of IGA and FEmethods to
estimate uplift force are nearly equal, while the accuracy of Lane's
method is the least amount.

Since it is impossible to obtain experimentally the amount of
exit gradient, the FE method employed in Geostudio2007 software
was used to determine exit gradient. In Fig. 9, the results for exit
gradient obtained from FEmethod versus the results obtained from
Bligh, Khosla et al., Lane and IGA methods are indicated. As shown
in Fig. 9, the accuracy of IGA method is greater of other methods
and the results of Khosla's method is near to IGA method.

Also, Fig. 10 shows that the accuracy of IGA method on esti-
mating of seepage discharge is excellent.

To make a quantitative evaluation of the accuracy of the pro-
posed methods, two statistical error parameters were used: mean
absolute error (MAE) and correlation coefficient (RSQ) defined as

RSQ ¼ 1�
Pn

i¼1 ðxi � bxÞ2Pn
i¼1 ðxi � xÞ2

(26)
MAE ¼ 1
n

jxi � bxij (27)

Xn
i¼1

Where xi is the observed data, bxi is the calculated data and xi is the
average of observed data. The amounts of MSE and RSQ parameters
for different parameters were represented in Table 2.

5.3. Estimating exit gradient using Khosla et al. Equation, FEM and
IGA

To obtain results of Eq. (4) with more accurate prediction of the
exit gradient, in the no cutoff wall case at downstream, the exit
gradient is assumed to be infinite. Therefore a cutoff wall at the
downstream end with various heights of 5, 10, 15, 20 and 30 cm
under the upstream fixed head of 2.5, 5, 7.5, 10, 12.5, 15, 17.5 and
20 cm are considered and compared the obtained IGA results with
the results achieved from Khosla method. The performance of re-
sults were indicated in Fig. 11. From the Fig. 11, it can be seen that
predicting the exit gradient by Khosla method is nearly 27% and
33% lower than those estimated by the IGA and FE method,
respectively. Considering Fig. 10, a new equation is introduced in
the form of Eq. (4) to estimate exit gradient using IGA as

iexit d
H

¼ 1
p
ffiffiffiffi
Y

p ¼ 0:5586a�0:528 (28)



Fig. 12. Graphical results of computed heads of 20 cm at upstream and 0 at downstream for fine mesh.
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Fig. 11. Estimated exit gradient using the Khosla et al., IGA and FE Methods.
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The Eq. (28) refers to the exit gradient predicted by the Eq. (4).
Also, the Eq. (29) expresses the simple form of the Eq. (28).
5.4. The graphical results of computed head from IGA model

The graphical results of the head are yielded by the IGA model
for both with and without cutoff wall is shown in Fig. 12. As shown
in Fig. 12, the efficacy of the cutoff wall in the reduction of pressure
head is indicated.
6. Conclusion

In this study, uplift pressure, seepage discharge and exit
gradient were calculated using the IGA approach. The IGA model
was validated using the available experimental data. For compari-
son conveniently, the experimental data were used to preserve the
information on the relative magnitude of the different empirical
and theoretical prediction such as Khosla et al., Lane and Bligh
methods.

Performances of empirical, theoretical and numerical methods
indicated that the IGA and FEmethod produced the best estimation
of seepage effects. But due to size and numbers of the elements
expressed in IGA compared with the FE method can be noted that
the obtained results of IGA are a conceptual relationship in speed
and accuracy ratio of FE method. Beside, the maximum and the
minimum amount of uplift forces for the corresponding cutoff wall
were characterized at the downstream and upstream of dam,
respectively.

In summary, the proposed IGA method was established as a
useful tool for the analysis of a wide variety of seepage problems in
terms of seepage discharge, exit gradient and distribution of uplift
pressure under the foundation of hydraulic structures.
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