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Mitochondrial dysfunctions associated with amyloid-β peptide (Aβ) accumulation in mitochondria have been
observed inAlzheimer's disease (AD)patients' brains and inADmicemodels. Aβ is producedby sequential action
of β- and γ-secretases cleaving the amyloid precursor protein (APP). The γ-secretase complex was found in
mitochondria-associated endoplasmic reticulum membranes (MAM) suggesting that this could be a potential
site of Aβ production, from which Aβ is further transported into the mitochondria. In vitro, Aβ was shown to
be imported into the mitochondria through the translocase of the outer membrane (TOM) complex. The
mitochondrial presequence protease (PreP) is responsible for Aβ degradation reducing toxic effects of Aβ on
mitochondrial functions. The proteolytic activity of PreP is, however, lower in AD brain temporal lobe
mitochondria and in AD transgenic mice models, possibly due to an increased reactive oxygen species (ROS)
production. Here, we review the intracellular mechanisms of Aβ production, its mitochondrial import and the
intra-mitochondrial degradation. We also discuss the implications of a reduced efficiency of mitochondrial Aβ
clearance for AD. Understanding the underlying mechanisms may provide new insights into mitochondria
related pathogenesis of AD and development of drug therapy against AD. This article is part of a Special Issue
entitled: 18th European Bioenergetic Conference.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Alzheimer's disease (AD) is one of the most common and devastat-
ing age-related neurodegenerative disorders [1]. From the histopatho-
logical point of view, the brain of AD patients displays two major
molecular hallmarks: the intracellular fibrillar tangles composed of
hyperphosphorylated Tau and the extracellular neuritic plaques,mainly
constituted by amyloid-β peptide (Aβ) [2]. In this review we will focus
on the Aβ associated cellular interactions.
1.1. The life cycle of amyloid-β

Aβ is derived from the amyloid precursor protein (APP) by sequen-
tial proteolytic maturation steps catalyzed by the β- and γ-secretases.
APP is a type I membrane protein containing a large extracellular N-
terminal domain and the C-terminus positioned towards the intracellu-
lar space [3]. While the precise functions of APP are still unknown,
different studies have indicated that APP and its proteolytic products
could be involved in processes as diverse as axonal transport, transcrip-
tional control, cell adhesion and apoptosis [4–8].

APP can be processed by different proteases either through a non-
amyloidogenic pathway, that prevents the Aβ production, or by an
opean Bioenergetic Conference.
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amyloidogenic pathway, leading to Aβ production. The amyloidogenic
pathway starts with an initial cleavage of APP by the β-secretase/
BACE1 (β-site APP cleaving enzyme-1), giving rise to the soluble
APPsβ and the β-C-terminal fragment (β-CTF). Subsequently, the β-
CTF is cleaved by the γ-secretase complex (with the presenilins 1 and
2 (PS1/2), constituting the catalytic core of the complex) at the mem-
brane level to generate Aβ [3]. The γ-cleavage can occur under physio-
logical conditions between amino acids 37 and 43 of the Aβ sequence
generating diverse Aβ species. Aβ1–40 is the most abundant species,
but Aβ1–42 is themost toxic due to a higher hydrophobicity and there-
fore higher tendency for aggregation [9].

Throughout the years several hypotheses arose to explain AD pa-
thology. Among these, the “amyloid hypothesis” and the “mitochondrial
cascade hypothesis” have endured the test of time and are currently
well accepted and documented [10–13]. The “amyloid hypothesis”
postulates that the accumulation of Aβ in the brain is the primary
cause influencing AD pathogenesis and, therefore, factors such as the
incorrect processing of APP, increased Aβ synthesis and inefficient
clearance are of capital importance for disease progression. The amyloid
hypothesis is supported by the cases of familiar AD, FAD (around 1% of
the AD cases) where mutations in genes such as APP (10–15% of FAD
cases), PSEN-1 (18–50% of FAD cases) and PSEN-2 (rarely associated
with FAD) (coding for PS1/2) lead to higher Aβ production and result
in early onset AD [14,15]. The “mitochondrial cascade hypothesis”
proposes that genetic factors (both in the nuclear and mitochondrial
DNA) determine the efficiency of the mitochondrial electron transport
chain and also the rate of production of reactive oxygen species. A
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decline in the efficiency of mitochondrial activities (due to aging) with
concomitant increase in the concentration of ROS then triggers the pro-
duction of Aβ [11–13]. This hypothesis is especially useful to explain the
occurrence of sporadic, late-onset AD. Even though these two hypothe-
ses postulate different underlying causes, both converge in predicting
an exacerbated Aβ production and its intracellular accumulation. Thus,
it is currently accepted that an increase in the levels of Aβ (particularly
Aβ1–42) over the years or even decades is correlated with AD progres-
sion, both in familiar and sporadic cases. Considering that Aβ is a natural
product of metabolism and is present even in healthy cells, its cellular
concentration must be kept within a precise range and therefore the
balance between synthesis and degradation has to be carefully con-
trolled. In terms of synthesis, currently it is not completely understood
how the aberrant APP processing is triggered and precisely what factors
affect Aβ distribution in the cell [10,16]. However, it has been shown
that Aβ can be localized in different cellular compartments besides plas-
ma membrane, namely in the endoplasmic reticulum (ER), mitochon-
dria, endosomes, nucleus and in Golgi [17]. To balance the Aβ
production, a range of different cellular proteases, localized in different
compartments, such as neprilysin, insulin degrading enzyme, cathepsin
and human presequence protease (hPreP) [18,19], has been shown to
play an important role in the clearance of this peptide from the cell. In-
terestingly, few of these proteases were found either at lower level or
with lowered activity in AD (see Section Reduced hPreP activity in AD
brain mitochondria and AD transgenic mice models). This fact suggests
that an impaired Aβ-clearance systemwill further lead to higher Aβ ac-
cumulation in AD [20–22].
1.2. Mitochondrial dysfunction in Alzheimer's disease

While it iswell documented that AD is amultifactorial diseasewhere
many cellular components play a role, it has recently been recognized
that mitochondrial dysfunction is among the earlier observed patho-
genic alterations, detected well before the accumulation of neuritic
plaques [23,24]. A growing number of studies are emerging reporting
impaired mitochondrial functions including electron transfer, ATP syn-
thesis, mitochondrial transcription, translation and protein synthesis,
upregulation of voltage-dependent anion channel (VDAC), aswell as in-
creased production of reactive oxygen species (ROS) in AD patients and
in AD transgenic mouse models [24–31]. Mitochondria are dynamic or-
ganelles undergoing frequent fusion andfission [32,33]. Interestingly, in
AD an impaired balance between these two mechanisms was detected.
Overexpression of APPwt and APPSwe in M17 cells resulted in lower
levels of proteins associated with fusion (dynamin-related protein 1
(Drp1), optic atrophy 1 (OPA1), mitofusins-1 and -2 (Mfn1 and
Mfn2)) and higher levels of fission 1 (Fis1), a protein involved in fission.
The cells overexpressing APPwt and APPSwe exhibited fragmented mito-
chondria and perinuclear mitochondrial distribution [34,35]. Manczak
and colleagues found thatmonomeric and oligomeric Aβs could interact
with Drp1 in AD patients [36]. Interestingly, a mouse model of FAD (ex-
pressingmutant human presenilin 1, PS1M146L), showed impairedmi-
tochondrial dynamics and aberrant morphology. These dysfunctions
Table 1
Mitochondrial Aβ interactors and the effects of their interaction with Aβ.

Mitochondrial target Effect of Aβ

ABAD Blocking of the NADH binding sit
Cyclophilin D Opening of the mitochondrial pe
ATP synthase Binding to F1α of ATP synthase. I
hPreP Substrate for degradation
Cytochrome c oxidase Binding to subunit 1 impairing p
VDAC Blocking of the mitochondrial po
Drp1 Mitochondrial fragmentation, dis
could be observed even before the formation of Aβ deposits and loss
of memory [37].

The Aβ accumulation in mitochondria from postmortem AD brains,
cellular and transgenicmicemodels has beenwell documented, provid-
ing evidence that Aβ is physically localized inmitochondria and is avail-
able for interaction with mitochondrial protein targets. In addition to
Drp1, other characterized mitochondrial Aβ interactors are Aβ-binding
alcohol dehydrogenase (ABAD), cyclophilin D (CypD), cytochrome c ox-
idase, VDAC and hPreP [31,38–47]. The functional consequences of
these interactions are summarized in Table 1 and the implications for
the progression of AD have been extensively reviewed elsewhere [25].

The connection between mitochondrial dysfunction and the pro-
gression of AD is currently not fully understood. On onehandmitochon-
drial dysfunction arises as a consequence of Aβ accumulation and
through its interaction with intra-mitochondrial targets as overexpres-
sion of Aβ showed impairment of mitochondrial respiration, changed
morphology and mobility of mitochondria [27,36,48–50]. On the other
hand mitochondrial perturbations can itself act as trigger to modulate
Aβ production and therefore induce imbalanced Aβ levels. In cell
models it was shown that inhibition of mitochondrial complex I and
complex III with rotenone and antimycin resulted in ROS-dependent el-
evated levels of Aβ [51]. Moreover, several other reports showed that
inhibition of ATP production induced higher levels of BACE-1 and that
elevated ROS induced Aβ production [52–57]. Therefore, it is likely
that the pathogenic mitochondrial alterations in AD are a consequence
of a cumulative effect where mitochondrial dysfunction and Aβ accu-
mulation influence each other in a deadly vicious cycle.

Considering the central role of mitochondria for AD pathogenesis it
is not surprising that this area has been a subject of intensive research.
In the present reviewwe focus on two aspects that are currently under-
represented in the literature: the mechanisms of import of Aβ into the
mitochondria and the intra-mitochondrial degradation of this peptide
by hPreP. Additionally, we also discuss the implications of a reduced ef-
ficiency of mitochondrial Aβ clearance for AD.

2. Aβ import into mitochondria

One of the essential points to clarify the effect of Aβ onmitochondrial
physiology is to understand how Aβ reaches mitochondria, allowing the
physical interaction with protein targets. Such a process would require
Aβ to be produced eitherwithin themitochondria or in the close vicinity.

APP has an ER signal peptide followed by a cryptic mitochondrial
targeting signal, and an internal domain enriched in acidic amino
acids. It has been shown that the acidic domain in APP can form stable
complexes with the translocase of the outer mitochondrial membrane
(TOM) and the translocase of the inner mitochondrial membrane
(TIM), which causes it to accumulate in themitochondrial translocation
system [58,59]. It has been proposed that the C-terminal transmem-
brane sequence of APP becomes inserted into the mitochondrial outer
membrane. Further, APP accumulated within translocation channels is
cleaved by Omi protease located in the mitochondrial inter membrane
space (IMS), whereas the APP C-terminal part outside of mitochondria
is cleaved by α/β-secretases. That would generate an APP fragment
Reference(s)

e, ROS production [42–45]
rmeability transition pore [39,40]
nhibition of ATP synthase [31]

[38,41]
rotein activity and respiration [46]
res, interrupting metabolite transport [47]
ruption of mitochondrial dynamics [36]
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immobilized in the outermembrane thatwould be further processed by
γ-secretase, found to partially localize in mitochondria, resulting in
the production of Aβ peptides in the IMS [58]. However, the intra-
mitochondrial Aβ production remains to be experimentally proven.
Another possibility is that Aβ could be transported from the outside of
the cell through endocytosis and vesicular transport and released
close to the mitochondria. Indeed, it has been shown that extracellular
Aβ can be taken up by neuroblastoma cells and localized to the mito-
chondria [60]. Moreover, it has been demonstrated that the receptor
for advanced glycation end products (RAGE) is involved in the transport
of Aβ from the cell surface to the intracellular space [61]. Alternatively, it
has been proposed that Aβ can be directly translocated from MAM to
the mitochondria through the contact points between these organelles
[62], which will be described and discussed below.

2.1. MAM as a possible route for Aβ entry to mitochondria

Mitochondria-associated endoplasmic reticulummembranes (MAM)
are a physical connection between the ER membrane and the mitochon-
drial outer membrane and play essential roles in lipid synthesis and
transport between the twoorganelles, fatty acids, glucose and cholesterol
metabolism, Ca2+ homeostasis and apoptosis (reviewed elsewhere
[63,64]). Accordingly, proteins such as phosphatidylserine synthase-1
Amplification
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Fig. 1. A. Model of the Aβ synthesis in mitochondria-associated endoplasmic reticulum mem
interaction between ER membrane and mitochondrial outer membrane with mitofusin-2 (M
different mechanisms such as phospholipid metabolism (e.g. PSS-1/-2 and FACL4), Ca2+ tra
PACS-2). Active γ-secretase complex (PS-1/-2, nicastrin, APH1 and PS) is present in MAM, pot
mitochondria through the TOM complex, and be degraded by the matrix-localized hPreP to a
PreP leading to amplification of Aβ accumulation in mitochondria.
and -2 (PSS-1, PSS-2), long-chain fatty acid-CoA ligase type 4 (FACL-4),
Sigma1R, inositol 1,4,5-triphosphate receptor (IP3R) and phosphofurin
acidic cluster sorting protein-2 (PACS-2) were found in MAM (Fig. 1A).
The tethering between the two organelles is mainly done through
mitofusin-2 (Mfn-2) and the cytosolic chaperone Grp75, which binds to
the IP3R (ER side) and to VDAC-1 (mitochondria side) [65,66].

MAM have recently attracted considerable interest in connection
with AD research. In a recent study from our laboratory, we showed
that MAM are present in neuronal cells. When two MAM components,
Sigma1R and PACS-2, were knocked down by siRNA in primary hippo-
campal neurons the result was cell degeneration coincidingwith activa-
tion of caspase-3, supporting the idea that MAM are essential for
neuronal cell survival [67]. An altered expression of MAM-associated
proteins (PSS-1, PACS-2 and Sigma1R) in postmortem AD brains and
AD transgenic mice models was also shown [67]. Furthermore, PS-
knockout cells, PS-knockdown cells and fibroblasts from familial AD
and sporadic AD patients showed increased MAM functions and a
higher area of ER-mitochondria apposition [68]. Accordingly, SH-SY5Y
cells exposed to Aβ presented elevated MAM contact points leading to
enhanced Ca2+ transport between the organelles [67]. The altered
MAM functions in AD have been reviewed in more detail elsewhere
[68]. Interestingly, Area-Gomez et al. showed that PS1 and PS2 were
enriched in MAM and that the γ-secretase complex was active in this
doplasmic reticulum
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area [62]. Also, MAM exhibit lipid raft characteristics, which constitute a
favorable environment for γ-secretase activity against APP [69,70].
Taken together, these observations highlight MAM as a possible site of
Aβ production in close proximity to the mitochondria, suggesting this
pathway as a possible source of mitochondria-localized Aβ [62].

2.2. Import of Aβ through the translocase of the outer mitochondrial
membrane (TOM) complex

Most mitochondrial proteins are synthesized in cytosolic ribosomes
and post-translationally imported into the different organellar sub-
compartments. The precursor proteins destined to the mitochondrial
matrix are synthesizedwith anN-terminal extension (the presequence)
that is recognized by dedicated receptors in the mitochondrial outer
membrane. Following the recognition event, the pre-proteins are
translocated through the mitochondrial entry gate, the TOM complex
and then via TIM to thematrix (reviewed by [71]). Studies fromour lab-
oratory showed that Aβ1–40 and Aβ1–42 can be imported in vitro into
the mitochondria through the TOM complex in a similar fashion as a
typical mitochondrial localized protein (e.g. F1β subunit of ATP syn-
thase). Antibodies directed towards the Tom20, Tom40 and Tom70
components of the TOM complex inhibited Aβ import. Notably, the up-
take of Aβwas not affected by antibodies against theVDACnor by cyclo-
sporine A, which is an inhibitor of the mitochondrial permeability
transition pore (PTP). Even though the Aβ sequence does not resemble
a classical presequence peptide, it is possible that the helical structure,
which Aβ adopts in the membrane environment (reviewed by [72]), is
sufficient for recognition by the TOM complex. However, in contrast to
the import of matrix proteins, when valinomycin (an ionophore that
disrupts the membrane potential, ΔΨ) was applied, the peptides could
still be imported, revealing that Aβ import is independent of ΔΨ. The
imported Aβ was mostly present in the cristae and in the isolated
inner membrane fractions, but also in the matrix [60]. Considering
there are several pathways for translocation (TIM23) and insertion
(TIM23/TIM22) of proteins into the inner mitochondrial membrane it
is currently not known in mechanistic details how Aβ gains access to
the different mitochondrial sub-compartments.

3. Aβ degradation in mitochondria

3.1. Presequence protease (PreP)

To ensure a correct sorting and targeting most of the mitochondrial
proteins contain a targeting sequence, designated presequence. This
presequence is used for recognition by the translocation machinery
and is removed by the mitochondrial processing peptidase (MPP)
when the protein reaches its correct destination. The free presequence
peptides have amphipathic characteristics and have been shown to af-
fectmitochondrialmembrane integrity, uncouple oxidative phosphory-
lation and inhibit enzyme activity (e.g. MPP) (reviewed by [73]).
Presequence protease (PreP), localized in the mitochondrial matrix, is
responsible for the degradation of the presequences completing the
last step of the protein import process [41,74].

PrePwas initially identified in Arabidopsis thaliana, and shown to de-
grade targeting peptides of bothmitochondria and chloroplasts [74,75].
In addition to targeting peptides generated by processing, PreP de-
grades a wide range of unstructured peptides ranging from 10 to
65 a.a. The crystal structure of AtPreP1 revealed a large catalytic cham-
ber of 10,000 Å3, big enough to accommodate unstructured peptides up
to 65 a.a long, but precluding the degradation of larger folded proteins
[76].

Human PreP was initially identified as metalloprotease 1 [77], and
shows 31% sequence identity to AtPreP performing a similar function
in the degradation of presequences and other unstructured peptides.
Notably, hPreP can also degrade Aβ. Through immunoinactivation assays
with isolated mitochondria, it was found that hPreP is the only protease
in the mitochondria responsible for the degradation of Aβ [41]. In vitro,
hPreP can degrade Aβ1–40, Aβ1–42 and the Aβ arctic (Aβ1–40 E22G),
a peptide that causes increasedfibril formation and early onset of a famil-
ial variant of AD. Analysis of the hPreP cleavage sites on the Aβ by mass
spectrometry showed the generation of several fragments, which were
unique for hPreP (in comparison to other proteases), including the
cleavage sites in the very hydrophobic C-terminal portion of Aβ that is
prone to aggregation. There was a mild preference for hydrophobic
and small uncharged amino acids at both the P1 and P′1 positions [41].
Even though the Aβ peptides differ from presequences in terms of
both amino acid composition and physicochemical properties, the lack
of strict sequence specificity for cleavage enables hPreP to degrade a
wide range of substrates [74,75].

3.2. Reduced hPreP activity in AD brain mitochondria and AD transgenic
mice models

Considering that hPreP can degrademitochondria-localized Aβ pep-
tides, this protease is clearly an important regulator of Aβ concentration
within the mitochondria and therefore perturbation of hPreP activity
can potentially influence Aβ accumulation [41]. In collaboration with
Yan laboratory, we have analyzed the activity of hPreP inmitochondrial
matrix fractions isolated from the brain temporal lobe (an area of brain
highly susceptible to Aβ accumulation) of AD patients and age-matched
controls using three different substrates (Aβ1–40, Aβ1–42 and the F1β
presequence). The results showed a significantly lower hPreP activity
in AD temporal lobe compared to the control samples. Interestingly,
when the activity was measured in mitochondria isolated from the cer-
ebellum (an area not affected in AD) no differences in hPreP activity be-
tween AD brains and controls were observed. Similar experiments
performed using mitochondria from brains of AD transgenic mice
models overexpressing APP or APP and ABAD (ABAD overexpression
further exacerbates the mitochondrial dysfunction observed in AD
models) showed again lower hPreP activity compared to the aged-
matched non-transgenic mice. Furthermore, the proteolytic activity of
hPreP decreased in an age dependent manner showing lower activity
in twelve-month-old transgenic mice compared to five-month old
mice [38]. These results are of great importance considering that, from
the functional point of view, a reduction of hPreP activity in AD brain
mitochondria has consequences for the accumulation not only of Aβ
but also, potentially, of free presequence peptides that have themselves
toxic effects on mitochondria [73]. The potential toxic effect caused by
presequence peptide accumulation in themitochondria when hPreP ac-
tivity is reducedmight contribute to exacerbatemitochondrial dysfunc-
tion but the specific relevance of this accumulation remains to be
determined.

In a gene-wide association study, 18 single nucleotide polymor-
phisms (SNPs) present in PITRM1 (gene encoding hPreP) were geno-
typed in 673 AD cases and 649 controls in a Swedish population but
no correlation between these mutations and AD progression could be
identified. However, a functional analysis of several hPreP-SNP variants,
selected on the basis of localization of the substituted amino acid in the
enzyme structure, showed a decreased activity in comparison to wild
type hPreP [78].

3.3. Exposure to ROS inhibits hPreP activity

It is noteworthy that the lower hPreP activity in AD brain mitochon-
dria was not due to lowered protein levels, suggesting that this reduc-
tion is likely due to a functional alteration of the enzyme, for instance
through post-translational modifications such as protein oxidation
[38]. Oxidative stress is a well-documented alteration observed in AD
brains and the increase in several ROS markers has been reported
[79,80]. The levels of 4-hydroxynonenal, a by-product of lipid peroxida-
tion and a biomarker of oxidation, were found to be higher in the tem-
poral lobe of AD patients, in comparison to controls, but the levels were
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unchanged in the cerebellum [38]. These results suggest that one possi-
bility to explain the lower hPreP activity in the temporal lobe is protein
oxidation. Several biochemical analyses using purified hPreP support
this idea. hPreP activity was shown to be inhibited by exposure to
H2O2 in a concentration-dependent manner [81]. Even though the
mechanism is not completely clear, it has been shown that hPreP inac-
tivation involved the formation of disulfide bridges that could potential-
ly lock the enzyme in an inactive conformation [41]. Additionally, we
were also able to show that the lower hPreP activity could be reverted
by methionine sulfoxide reductase A (MsrA) although further studies
are necessary to clarify the exact role of MsrA in the recovery process
[81]. Additional evidence for the correlation between the accumulation
of ROS and reduced hPreP activity came from experiments performed in
a mouse model of AD overexpressing both APP and ABAD. In such
model, the formation of an ABAD–Aβ complex in the mitochondria
reduces ABAD activity leading to an increased ROS production and
exacerbating mitochondrial dysfunction [44]. Interestingly, the intro-
duction of a decoy peptide that prevents ABAD–Aβ interaction into
the ABAD overexpressor mice results in the reduction of ROS levels
and increase in hPreP activity with a concomitant reduction in Aβ levels
[45].

4. Concluding remarks

It is becoming increasingly clear that alterations in mitochondrial
function, morphology and dynamics associated with Aβ accumulation
and/or ROS production are among the earliest observed pathogenic al-
terations observed in AD, preceding the formation of amyloid plaques
[23,24]. It can be hypothesized that the accumulation of Aβ observed
at early stages of AD would lead to altered MAM activities, increased
Aβ import and ROS production in the mitochondria, as supported by
studies with transgenic AD mice models [20,21]. Elevated levels of
ROS will affect PreP lowering its activity consequently resulting in the
accumulation in themitochondria of potentially toxic presequence pep-
tides as well as Aβ (Fig. 1B). Accumulation of Aβwill allow subsequent
interactions with different mitochondrial interactors (cf. Table 1) lead-
ing to increasedmitochondrial toxicity and neuronal death that is exac-
erbated in AD. Therefore, it is important to understand the life cycle of
Aβ in mitochondria, from themechanisms underlying itsmitochondrial
import and localization to its proteolytic degradation, as these pathways
may present new targets for therapeutic intervention. From the current
knowledge, one could envisage the usefulness of drugs that would ei-
ther specifically affect the MAM region or would inhibit Aβ import
through the TOM complex or that would activate hPreP favoring Aβ
degradation, either way reducing the local concentration of Aβ. In this
context, several questions still remain open, particularly how Aβ gains
access to the mitochondrial entry gate (e.g. through localized synthesis
in theMAM region or possibly through endocytosis and vesicular trans-
port) and the mechanism for regulation of hPreP activity by ROS.
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