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Abstract The quantitative structure activity relationship (QSAR) of the novel pyrazole derivatives

as inhibitors of p38a mitogen activated protein (MAP) kinase was studied. The suitable set of the

molecular descriptors was calculated and the important descriptors using the variable selections of

the stepwise (SW) and the genetic algorithm (GA) were selected. The predictive quality of the

QSAR models was tested for an external set of nine compounds, randomly chosen out of 44 com-

pounds. A comparison between the attained results indicated the superiority of the genetic algo-

rithm over the stepwise method in the feature selection. The genetic algorithm-multiple linear

regression (GA-MLR) model with six selected descriptors was obtained. The accuracy of the pro-

posed model is illustrated using the following evaluation techniques: cross-validation, validation

through an external test set, applicability domain, and Y-randomization. The analyses may be used

to design more potent pyrazole derivatives and predict their activity prior to synthesis.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The p38a mitogen-activated protein (MAP) kinase is a mem-
ber of the intracellular family of MAP kinases implicated in

the phosphorylation cascade leading to the release of TNFa
and other cytokines including interleukin-1beta (IL-1b), inter-
leukin-6 (IL-6) and interleukin-8 (IL-8). The p38 kinases are
activated by a variety of stress stimuli including osmotic shock,

ionizing radiation, mechanical wear, and cytokine stimulation
(Margutti and Laufer, 2007). Activation results in the release
of TNFa among other cytokines and the migration of white
blood cells to the site of inflammation. The p38a isoform is be-

lieved to be the most clinically relevant for the treatment of
rheumatoid arthritis (RA) (O’Keefe et al., 2007) hence, p38a
has emerged as an attractive target for small molecule drug dis-

covery to blockade the action of TNFa. (Pettus and Wurz,
2008; Wagner and Laufer, 2006; Westra and Limburg, 2006).
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Novel medicines and experimental measurement of inhibi-
tion activity of chemicals are typically developed using a trial
and error approach which is time-consuming and costly, thus

a great deal of effort has been put into attempting the estima-
tion of activity through statistical modeling. The application of
quantitative- structure activity relationship (QSAR) methodol-

ogies to this problem has the potential to decrease substan-
tially the time and effort required to discover new medicines
or improve current ones in terms of their efficacy. QSARs

establish mathematical relationships between physical, chemi-
cal, biological, or environmental activities of interest and mea-
surable or computable parameters such as topological,
physicochemical, stereo chemical or electronic indices. (Bhatia

et al., 2010; Habibi-Yangjeh et al., 2008a, b, 2009; Melagraki
et al., 2006; Shahlaei et al., 2011; Hemmateenejad et al.,
2011; Yousefinejad et al., 2012). A successful QSAR model is

not only constructed to correctly estimate the numerical value
of the property or biological activity, but also to give a deeper
understanding of what structural features are important for

the observed activity. The application of QSAR technique usu-
ally requires variable selection for building well-fitted models.
In this work, we employed the stepwise (SW) and the genetic

algorithm (GA) methods for the variable selection in the multi-
ple linear regression (MLR) method. A limitation of the SW
regression search approach is that it presumes that there is a
single ‘best’ subset of X variables and seeks to identify it. There

is often no unique ‘best’ subset. All the possible regression
models with a similar number of X variables to the SW regres-
sion solution should be subsequently fitted to study whether

some other X variables subsets might be better. Nowadays,
GA is well-known as an interesting and more widely used var-
iable selection method (Alsberg et al., 2000; Depczynski et al.,

2000; Jouanrimbaud et al., 1995). Genetic algorithm is a sto-
chastic method to solve the optimization problems defined
by fitness criteria, applying the evolution hypothesis of Darwin

and different genetic functions, i.e., crossover and mutation.
The aim of this work is to search for an efficient method to
build an accurate quantitative relationship between the molec-
ular structure and the p38a MAP Kinase activity of pyrazole

derivatives by SW-MLR and GA-MLR methods. The pro-
posed methodology was validated using several strategies:
cross-validation, Y-randomization, and external validation

using division of the entire data set into training and test sets.

2. Data set and methods

The data set of 44 pyrazole derivatives used for the QSAR anal-
yses was selected from the literature (Wurz et al., 2009, 2010).
The data used in this QSAR study consisted of inhibition activ-

ity data (IC50), the minimal concentration of compound which
affected one inhibitory parameter in 50% of cells. The inhibi-
tion activity data [IC50 (nM)] for pyrazole derivatives were con-
verted to the logarithmic scale pIC50 [�logIC50 (M)] and then

used for subsequent QSAR analyses as the response variables.
The chemical structures and corresponding pIC50 values for
studied compounds are presented in Table 1.

2.1. Softwares

A Pentium IV personal computer with the Windows XP oper-

ating system was used. Geometry optimization was performed
with HYPERCHEM 7.0. DRAGON 2.1 software was utilized
to calculate the molecular descriptors. The SPSS software was
employed for the simple multiple linear regression model

(MLR) analysis. The genetic algorithm (GA)-MLR regression
and the other calculations were written in the MATLAB 7.0.

2.2. Descriptor calculation and selection

The main step in every QSAR study is calculating and choosing
the structural descriptors as numerical encoded parameters rep-

resenting the chemical structures. In the present work themolec-
ular descriptors were generated using Dragon software, web
version 2.1. Dragon software has been widely used for calculat-

ing chemical descriptors inmanyQSAR studies. It is noticeable,
that calculation of these descriptors is easy and fast. An average
computing time of 1 min could be considered per structure. A
total of 1481 descriptors were calculated for eachmolecule using

this software. Descriptors with constant or almost constant val-
ues for all molecules were eliminated. Also, pairs of variables
with a correlation coefficient greater than 0.90 were classified

as intercorrelated, and only one of them with high correlation
with activity datawas considered in developing themodel. Then,
the remaining descriptors were collected in an n · m data ma-

trix, where n = 44 andm= 574 are the numbers of compounds
and descriptors, respectively. Among the descriptors mentioned
above, themost significantmolecular descriptors were identified
using the genetic algorithm method.

2.3. Genetic algorithm

Nowadays, GA is well-known as an interesting and the most

widely employed variable selection method that is used to solve
the optimization problems defined by fitness criteria, applying
the evolution hypothesis of Darwin and different genetic func-

tions, i.e. cross-over and mutation. To select the most relevant
descriptors, the evolution of the population was simu-
lated.(Ahmad and Gromiha, 2003; Hunger and Huttner, 1999;

Waller and Bradley, 1999) The population of the first generation
was selected randomly. Each individual member in the popula-
tion, defined by a chromosome of binary values, represented a
subset of descriptors. Number of the genes at each chromosome

was equal to the number of the descriptors. A gene was given the
value of 1, if its corresponding descriptor was included in the
subset; otherwise, it was given the value of zero. (Aires-de-Sousa

et al., 2002) The number of the genes with the value of 1 was kept
relatively low to have a small subset of descriptors. As a result,
the probability of generating 0 for a gene was set greater (at least

60%) than the value of 1. The operators used here were cross-
over and mutation. The application probability of these opera-
tors was varied linearly with a generation renewal (0–0.1% for

mutation and 60–90% for cross-over). The population size
was varied between 50 and 250 for different GA runs. For a typ-
ical run, the evolution of the generation was stopped when 90%
of the generations took the same fitness.

3. Results and discussion

3.1. Regression models

For the selection of the most important descriptors, both GA

and the SW multiple regression techniques were used. Firstly,



Table 1 Chemical structure and the corresponding experimental and predicted pIC50 values by SW-MLR and GA-MLR methods.

No. Ar R1 R2 X Exp. SW-MLR GA-MLR

N
N

Ar
O

HN
R1

1 2,5-Di-F-Ph

N

– – 6.35 6.35 6.31

2 2,4-Di-F-Ph

NH2

O

– – 8.59 8.49 8.49

3 2,5-Di-F-Ph

NH2

O

– – 8.43 8.45 8.62

4 2,4-Di-F-Ph

H
N

O
OMe

– – 8.96 8.95 8.82

5 2,4-Di-F-Ph

H
N

O

– – 8.49 8.68 8.50

R2

X
H
N

O

N
N
N O

Ar R1

6 3-F-Ph Me Me NH 8.48 8.53 8.56

7 3-F-Ph Me Me O 8.07 8.07 8.06

8a 4-F-Ph Me Cl NH 8.82 8.98 8.79

9 4-F-Ph Et Me NH 8.4 8.37 8.43

10 4-F-Ph Et Cl NH 8.92 8.89 8.86

11 4-F-Ph Et Me O 8.4 8.23 8.31

12 2,4-Di-F-Ph Me Me NH 8.49 8.56 8.48

13 2,4-Di-F-Ph Me Cl NH 9 9.01 8.86

14 2,4-Di-F-Ph Et Cl NH 8.96 8.98 8.96

15 2,4-Di-F-Ph Me F NH 7.89 7.80 8.09

16 2,4-Di-F-Ph Me Me O 8.11 8.32 8.09

17 2,5-Di-F-Ph Me Me NH 8.54 8.53 8.51

18 2,5-Di-F-Ph Me Cl NH 8.96 8.96 8.91

19 2,5-Di-F-Ph Me Me O 8.21 8.27 8.22

20a 2,5-Di-F-Ph Me Cl O 8.48 8.86 8.16

21 2,6-Di-F-Ph Me Me NH 8.72 8.57 8.86

22a 2,6-Di-F-Ph Me Cl NH 8.96 8.89 9.20

23a 2,6-Di-F-Ph Me F NH 8.72 7.67 8.42
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Table 1 (Continued)

No. Ar R1 R2 X Exp. SW-MLR GA-MLR

R1

X
H
N

O

N
N

N
N

Ar

24 2-Cl-Ph Cl – NH 8.8 8.89 8.87

25a 3-F-Ph Me – NH 8.34 8.09 8.26

26 3-F-Ph Cl – NH 8.3 8.24 8.42

27 4-F-Ph Cl – NH 8.07 8.42 8.43

28 2,4-Di-F-Ph Me – NH 7.92 8.10 7.97

29 2,4-Di-F-Ph Me – NH 8.52 8.48 8.50

30 2,4-Di-F-Ph F – NH 7.37 7.45 7.47

31 2,4-Di-F-Ph Me – O 8 8.11 8.06

32a 2,4-Di-F-Ph Cl – O 7.44 8.70 7.85

33a 2,5-Di-F-Ph Cl – NH 8.68 8.87 8.42

34 2,6-Di-F-Ph Me – NH 8.77 8.80 8.75

35 2,6-Di-F-Ph Cl – NH 8.85 8.90 9.02

36 2,6-Di-F-Ph Me – O 8.52 8.46 8.36

R1

X
H
N

O

N
N

N
N

Ar

R2

37 4-F-Ph Me H NH 8.39 8.25 8.26

38 4-F-Ph Cl H NH 8.64 8.42 8.43

39a 4-F-Ph Me H O 8.11 8.09 8.06

40 2,4-Di-F-Ph Me H NH 8.57 8.47 8.50

41a 2,4-Di-F-Ph Me F NH 8 8.96 8.33

42 2,4-Di-F-Ph Cl H NH 8.8 8.65 8.72

43 2,4-Di-F-Ph Me H O 8.2 8.12 8.06

44 4-F-Ph Me H NH 8.77 8.70 8.71

a Used as test set.
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the MLR analysis with a stepwise selection and the variables
elimination was employed to model the quantitative struc-

ture–activity relationships with a different set of descriptors.
In order to build and test model, a data set of 44 compounds
was randomly separated into a training set of 35 compounds

(80%), which was used to build model and a prediction set
of 9 compounds (20%), which was applied to test the built
model. The selection of the test set molecules was with respect

to distribution in the range of the biological data for the whole
set, and their structure diversity. The SW-MLR analysis led to
the derivation of one model, with six variables (the closest to
the ratio of five training molecules for each descriptor (Hansch

et al., 1990)) with low generalization and prediction ability for
the test set. It is described by the following equation:
pIC50 ¼ �25:704ð�5:288Þ þ 5:715ð�0:775ÞMWC09

þ 0:480ð�0:142ÞGGI2

� 13:916ð�1:124ÞGATS5pþ 1:500ð�0:644ÞH5v

� 3:575ð�0:546ÞR6uþ 12:632ð�1:529ÞUi ð1Þ

Ntrain ¼ 35;R2
train ¼ 0:948;RMSEtrain ¼ 0:116;Q2

LOO

¼ 0:476;Q2
LGO ¼ 0:064;Q2

BOOT ¼ 0:844;F ¼ 84:851;Ntest

¼ 9;R2
test ¼ 0:001;RMSEtest ¼ 0:656

In this equation, N is the number of compounds, R2 is the

squared correlation coefficient, RMSE is the root mean square
error, Q2

LOO, Q
2
LGO and Q2

BOOT are the squared cross-validation



6

6.5

7

7.5

8

8.5

9

9.5

6 6.5 7 7.5 8 8.5 9 9.5

P
re

di
ct

ed
 (

pI
C

50
)

Experimental (pIC50)

Training

Test

Figure 1 The predicted versus the experimental pIC50 values by

the GA-MLR modeling.
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Figure 2 William plot of GA-MLR model.
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coefficients for leave one out, leave group out and bootstrap-
ping respectively, and F is the Fisher F statistic. However, this
procedure produced acceptable results for the training set, but

it did not produce good results for the test set ðR2
test ¼ 0:001Þ.

Therefore the genetic algorithm was used to select the best set
of variables. The best model has six parameters because the in-
crease in the number of molecular descriptors has no signifi-

cant effect on the accuracy of the best model. After the
selection of the most important descriptors by genetic algo-
rithm, MLR was performed to build the linear model. This

equation and its statistical parameters are presented as:

pIC50 ¼ 10:452ð�3:759Þ þ 0:458ð�0:042ÞX2sol

� 6:257ð�1:658ÞBEHv8

þ 241:370ð�24:793ÞJGI9

þ 9:659ð�0:969ÞGATS4p

� 5:189ð�0:586ÞHATS8u

� 6:182ð�2:227ÞR4mþ ð2Þ

Ntrain ¼ 35;R2
train ¼ 0:946;RMSE2

train ¼ 0:118;Q2
LOO

¼ 0:916;Q2
LGO ¼ 0:861;Q2

BOOT ¼ 0:894;F ¼ 81:104;Ntest

¼ 9;R2
test ¼ 0:673;RMSEtest ¼ 0:259

With the test set, the prediction results were obtained. The
experimental and predicted values based on the GA-MLR

model are shown in Table 1. Also, Fig. 1 shows the predicted
versus experimental pIC50 for all of the 44 compounds studied,
the training set and the test set. As can be seen, the predicted

values for the pIC50 are in good agreement with those of the
experimental values.

As can be seen from Eqs. (1) and (2), the R2 and RMSE val-

ues in test set improved from 0.001 and 0.656 by SW-MLR
model to 0.673 and 0.259 by GA-MLR model respectively.
The results illustrated once more that the linear MLR tech-
nique combined with a successful variable selection procedure

is adequate to generate an efficient QSAR model for predicting
the pIC50 of compounds.

3.2. Evaluation of the GA-MLR model

The quality of the QSAR model was characterized by the
number of compounds used in the study (N), coefficient of
determination (R2), root mean square error (RMSE), and var-
iance ratio (F). For a more exhaustive testing of the predictive
power of the model, validation of the model was also carried

out using the leave one out (LOO) and the leave group out
(LGO) cross-validation techniques on the training set of com-
pounds. For LOO cross-validation, a data point is removed

from the set, and the model is recalculated. The predicted
pIC50 for that point is then compared with its actual value.
This is repeated until each data point has been omitted once.

For LGO, 20% of the data points are removed from the data-
set and the model was refitted; the predicted values for those
points were then compared with the experimental values.
Again, this is repeated until each data point has been omitted

once. The robustness of the proposed models and their predic-
tive ability were also guaranteed by the high Q2

BOOT based on
bootstrapping repeated 5000 times (Wehrens et al., 2002).

The results produced by the LOO (Q2 = 0.915) and the
LGO ðQ2

LGO ¼ 0:860Þ cross-validation tests and bootstrapping
ðQ2

BOOT ¼ 0:894Þ illustrated the quality of the obtained model.

Because all of the validation techniques show the obtained
GA-MLR model is a valid model so, it can be used to predict
the inhibition activity of the components.

The Williams plot, the plot of the standardized residuals
versus the leverage, was exploited to visualize the applicability
domain (AD) (Netzeva et al., 2005). Leverage indicates a com-
pound’s distance from the centroid of X. The leverage of a

compound in the original variable space is defined as:

hi ¼ xT
i ðXTXÞ�1xi ð3Þ

where xi is the descriptor vector of the considered compound

and X is the descriptor matrix derived from the training set
descriptor values. The warning leverage (h*) is defined as:

h� ¼ 3ðpþ 1Þ=n ð4Þ

Where n is the number of training compounds, p is the number
of predictor variables. From the Williams plot (Fig. 2), it is
obvious that all compounds in the test set fall inside the do-

main of the GA-MLR model (the warning leverage limit is
0.60). There are only two chemicals (No. 7 and No. 24 in the
training set) which have the leverage higher than the warning

h* value, thus they can be regarded as structural outliers. For-
tunately, in this case the data predicted by the model are good
for compound numbers 7 and 24, thus they are ‘‘good



Table 2 The R2
train and Q2

LOO values after several Y- random-

ization tests.

Iteration R2
train Q2

LOO

1 0.099 0.062

2 0.023 0.141

3 0.053 0.322

4 0.004 0.183

5 0.043 0.149

6 0.069 0.197

7 0.021 0.164

8 0.014 0.269

9 0.002 0.135

10 0.000 0.165
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leverage’’ chemicals. For all the compounds in the training and
test sets, their standardized residuals are smaller than three
standard deviation units (3d) except compound number 32.

Thus compound 32 can be as outlier. Because this compound
is one of the test set compounds, there is no need to remove
this compound from the data set.

The GA-MLR model was further validated by applying Y-
randomization. Several random shuffles of the Y vector
(pIC50) were performed and the low R2 and Q2 values that

were obtained showing that the good results in the original
model is not due to a chance correlation or structural depen-
dency of the training set. The results of the Y-randomization
test are presented in Table 2. The brief description of the se-

lected descriptors by GA-MLR model is summarized in Ta-
ble 3. The correlation matrix of the six selected descriptors is
included in Table 4. From Table 4, it can be seen that the linear

correlation coefficient value of each of the two descriptors is
Table 3 The linear model based on the six parameters selected by

Descriptor Chemical meaning

Constant Intercept

X2sol Solvation connectivity index chi-2

BEHv8 Highest eigenvalue n. 8 of Burden matrix/weighted

JGI9 Mean topological charge index of order9

GATS4p Geary autocorrelation – lag 4/weighted by atomic p

HATS8u Leverage-weighted autocorrelation of lag 8/unweigh

R4m+ R maximal autocorrelation of lag 4/weighted by at

a Mean effect.
b Variation inflation factors.

Table 4 Correlation coefficient matrix of the selected descriptors b

X2sol BEHv8 JGI9

X2sol 1

BEHv8 0.692 1

JGI9 0.194 0.144 1

GATS4p 0.052 0.319 0.09

HATS8u 0.093 0.345 0.15

R4m+ �0.172 �0.298 �0.02
<0.692, which means the descriptors are independent in the
analysis.

The multi-collinearity between the above six descriptors

was detected by calculating their variation inflation factors
(VIF), which can be calculated as follows:

VIF ¼ 1=1� r2 ð5Þ

where r is the correlation coefficient of the multiple regression
between the variables in the model. If VIF equals to 1, then no
inter-correlation exists for each variable; if VIF falls into the

range of 1–5, the related model is acceptable; and if VIF is lar-
ger than 10, the related model is unstable and a recheck is nec-
essary. The corresponding VIF values of the six descriptors are
shown in Table 3. As can be seen from this table, most of the

variables have VIF values of less than 5, indicating that the ob-
tained model has statistic significance.

3.2.1. Interpretation of the descriptors

The best six-parameter equation for prediction of pIC50 for an
unknown compound included X2sol, BEHv8, JGI9, GATS4p,
HATS8u and R4m+ descriptors. To examine the relative

importance as well as the contribution of each descriptor in
the model, the value of the mean effect (MF) was calculated
for each descriptor (Massart et al., 1997). The MF value indi-

cates the relative importance of a descriptor, compared with
the other descriptors in the model. The mean effect values
are shown in Table 3. As can be seen the BEHv8, GATS4p

and X2sol descriptors have great mean effect values than the
other descriptors which means that these descriptors have a
large effect on the pIC50 of the studied compounds.

The first descriptor is X2sol (solvation connectivity index
chi-2), which represents the linear fragment of one carbon
atom that is defined in order to model solvation entropy and
to describe dispersion interaction in solution. The descriptor
the GA-MLR method.

MFa VIFb

– –

�2.929 1.990

by atomic van der Waals volumes 8.294 2.495

�0.997 1.111

olarizabilities �4.438 1.302

ted 0.939 1.401

omic masses 0.131 1.312

y GA-MLR.

GATS4p HATS8u R4m+

9 1

7 0.073 1

6 0.206 �0.503 1
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X2sol, solvation connectivity index chi-2, has a positive regres-
sion coefficient; hence it has shown positive influence on the
activity. Thus, suggesting that a higher value of 2nd order sol-

vation connectivity index would be favorable to the activity.
The second descriptor is BEHv8 (highest eigenvalue num-

ber 8 of Burden matrix/weighted by atomic van der Waals vol-

umes), which is one of the BCUT descriptors. The BCUT
(Burden, CAS, University of Texas) descriptors are the eigen-
values of a modified connectivity matrix known as the Burden

matrix (Burden, 1989). Comparison of the mean effects of the
descriptors appearing in the GA-MLR model shows that the
BEHv8 of the molecules has the largest effect on the pIC50

of the studied compounds. The BEHv8 has a highest mean ef-

fect value with negative correlation coefficient in Eq. (2). It can
be concluded that BEHv8 displays a great effect in the model
and the atomic van der Waals volumes of a molecule are inver-

sely related to pIC50 value.
AJGI9 is the mean topological charge index of order 9

which belongs to the Galvez topological charge indices

(Todeschini and Consonni, 2000). These indices describe
charge transfer between pairs of atoms and therefore global
charge transfer in a molecule. This descriptor has a positive

sign which indicates that the pIC50 is directly related to this
descriptor.

Another descriptor in the GA-MLR model is GATS4p
(Geary autocorrelation – lag 4/weighted by atomic polarizabil-

ities). The GATS4p belongs to 2D-autocorrelation descriptors
(2D) (Todeschini and Consonni, 2000). This set consists of 96
descriptors calculated from the molecular graph by summing

the products of atom weights of the terminal atoms of all the
paths of the considered path length (the lag).The molecule
atoms represent the set of discrete points in space and the

atomic property the function evaluated at those points. The
physico-chemical property in this case is atomic polarizabili-
ties. GATS4p displays a positive sign, which indicates that

the pIC50 value is directly related to this descriptor. Hence, it
was concluded that by increasing the atomic polarizabilities
of a molecule, the value of this descriptor increased, causing
an increasing in its pIC50 value.

The HATS8u descriptor is one of the GETAWAY descrip-
tors. The GETAWAY (GEometry, Topology, and Atom-
Weights AssemblY) descriptors have been recently proposed

as chemical structure descriptors derived from a new represen-
tation of molecular structure, the molecular influence matrix
(MIM) (Consonni et al., 2002). HATS8u is the leverage-

weighted, autocorrelation of lag 8/unweighted. The negative
sign of the corresponding regression coefficient between
pIC50 and this descriptor indicates that the pIC50 increase with
the decrease of these descriptor value.

The final descriptor of the GA-MLR model was the R max-
imal autocorrelation of lag 4/weighted by atomic masses
(R4m+) which is one of the GETAWAY descriptors (Todes-

chini and Consonni, 2000). This descriptor is related to the
mass of the atoms in the molecule. The R4m+ descriptor dis-
plays a negative sign, which indicates that the pIC50 is inversely

related to this descriptor.
From the above discussion we concluded that the solvation

connectivity index, the atomic van der Waals volumes, the glo-

bal charge transfer in a molecule, the atomic polarizabilities
and the atomic masses in a molecule play a main role in the
p38a MAP kinas inhibition activity of compounds.
4. Conclusion

In the present study, two variable selection methods of step-
wise and genetic algorithm were used to construct a quantita-

tive relation between the p38a MAP kinase inhibition activity
of pyrazole derivatives and their calculated descriptors. Both
methods resulted in a training set with good statistical signifi-

cance. GA-MLR was superior to SW-MLR at external predic-
tions. Also the solvation connectivity index, atomic van der
Waals volumes, global charge transfer in a molecule, atomic
polarizabilities and atomic masses proved to be important fac-

tors controlling the inhibitory activity of p38a MAP inhibitors.
Additionally, the proposed method could also identify and
provide some insight into what structural features are related

to the inhibitory activity of compounds.
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