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Abstract

In this paper we study a class of fractional elliptic problems of the form{
(−�)su = f (x,u) in Ω,

u = 0 in RN \ Ω,

where s ∈ (0,1). We prove nonexistence of positive solutions when Ω is star-shaped and f is supercritical.
We also derive a nonexistence result for subcritical f in some unbounded domains. The argument relies on
the method of moving spheres applied to a reformulated problem using the Caffarelli–Silvestre extension
(Caffarelli and Silvestre (2007) [11]) of a solution of the above problem.
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1. Introduction

Let s ∈ (0,1) and N > 2s. In the present paper, we are concerned with the nonexistence of
positive functions solving the fractional elliptic semilinear problem{

(−�)su = f (x,u) in Ω,

u = 0 in RN \ Ω,
(1.1)

in a domain Ω ⊂ RN . Problems of this type received immensely growing attention recently,
while different versions of the nonlocal operator (−�)s related to Dirichlet boundary conditions
are studied (see e.g. [5,8,12,15,29,32]). The version we consider in (1.1) is the one most com-
monly considered in analysis and probability theory. In probabilistic terms, it can be defined as
the generator of the 2s-stable process in Ω killed upon leaving Ω . For our purposes, it is more
convenient to give an analytic definition. We define (−�)s for any ϕ ∈ C∞

c (RN) by

(−�)sϕ(x) = P.V.

∫
RN

ϕ(x) − ϕ(y)

|x − y|N+2s
dy = lim

ε→0

∫
|x−y|>ε

ϕ(x) − ϕ(y)

|x − y|N+2s
dy (1.2)

for x ∈ RN , where P.V. stands for the principle value integral. We point out that this definition
differs from the standard definition by a multiplicative constant. Via Fourier transform, (1.2) is
equivalent to

CN,s
̂(−�)sϕ(ξ) = |ξ |2s ϕ̂(ξ) for ξ ∈RN

with the normalization constant CN,s = s(1 − s)π−N/222s Γ ( N+2s
2 )

Γ (2−s)
, see e.g. [7, Remark 3.11].

Thanks to Lemma 2.1 below, for any ϕ ∈ C∞
c (RN) we have the estimate

∣∣(−�)sϕ(x)
∣∣ � C

‖ϕ‖C2(RN)

1 + |x|N+2s
for all x ∈RN, (1.3)

where C only depends on the support of ϕ. Let L1
s denote the space of all measurable functions

u : RN → R such that
∫
RN

|u|
1+|x|N+2s dx < ∞, and let Ω be an open set of RN . We define the

Hilbert space Ds,2(Ω) as the completion of C∞
c (Ω) with respect to the norm ‖ · ‖Ds,2 induced

by the scalar product 〈·,·〉Ds,2 given by

〈u,v〉Ds,2 =
∫

R2N

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s
dx dy. (1.4)

We note that if Ω is a bounded Lipschitz domain, then Ds,2(Ω) coincides with the Sobolev space
{u ∈ Hs(RN): u = 0 a.e. in RN \ Ω}. We also observe that – for any u ∈ Ds,2(Ω) – the Hölder
and the Hardy–Littlewood–Sobolev inequalities imply that∫

N

|u|
1 + |x|N+2s

dx � C‖u‖Ds,2 for all u ∈Ds,2(Ω)
R
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with a constant C > 0. In other words, Ds,2(Ω) is continuously embedded in L1
s . As a conse-

quence, by recalling (1.3) we may define (−�)su for every u ∈Ds,2(Ω) as a distribution by

〈
(−�)su,ϕ

〉 := ∫
RN

u(−�)sϕ dx = 〈u,ϕ〉Ds,2 for all ϕ ∈ C∞
c (Ω).

In particular, given f ∈ L1
loc(Ω), we note that u ∈ Ds,2(Ω) solves the problem (−�)su = f if

and only if

〈u,ϕ〉Ds,2 =
∫
Ω

f ϕ dx for all ϕ ∈ C∞
c (Ω). (1.5)

Throughout the paper, when we refer to solution of (1.1), we mean distributional solutions u ∈
Ds,2(Ω) in the sense of (1.5) with f = f (·, u(·)) ∈ L1

loc(Ω). In order to state the main result
of the present paper, we need to introduce a definition of a star domain which is slightly more
general than usually considered in the literature. We say that an open set Ω ⊂RN is star-shaped
(or a star domain) with respect to the origin 0 ∈ Ω if for every x ∈ Ω we have tx ∈ Ω for
0 < t � 1. So in contrast to the standard definition, we also allow the star center to lie on the
boundary of Ω . This will be crucial in deriving results in unbounded domains. In particular, the
punctured open unit ball B1(0) \ {0} is star-shaped with respect to the origin according to our
definition. Our main result is the following.

Theorem 1.1. Assume that Ω is bounded and star-shaped with respect to the origin 0 ∈ Ω .
Suppose that f : Ω \ {0} × [0,∞) → R is locally Lipschitz in its second variable uniformly in
compact subsets of Ω \ {0} and is supercritical in the sense that{

the function λ 
→ λ−(N+2s)/(N−2s)f (λ−2/(N−2s)x, λu)

is non-decreasing on [1,∞) for every x ∈ Ω \ {0}, u � 0.
(1.6)

Then (1.1) has no positive solution u ∈ C(RN \ {0}) ∩Ds,2(Ω).

We remark that for C1-nonlinearities f : Ω \ {0} × R → R the supercriticality assumption
(1.6) is equivalent to

Hf (x,u)� 0 for all (x,u) ∈ Ω \ {0} × [0,∞), (1.7)

where

Hf (x,u) := u
∂

∂u
f (x,u) − N + 2s

N − 2s
f (x,u) − 2

N − 2s
x · ∇xf (x,u). (1.8)

As a first consequence of Theorem 1.1 we have the following Pohozaev type result.

Corollary 1.2. Assume that Ω is bounded and star-shaped with respect to the origin, and let
V ∈ C1(Ω \ {0}) satisfy
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sV (x) + 1

2
∇V (x) · x � 0 for all x ∈ Ω \ {0}.

Let u ∈Ds,2(Ω) ∩ C(RN \ {0}), u � 0 in RN be such that{
(−�)su + V (x)u = up in Ω,

u = 0 in RN \ Ω
(1.9)

for some p � N+2s
N−2s

. Then u = 0 in RN .

In the case where Ω is the unit ball in RN and V ≡ 0, this gives an affirmative answer to a
conjecture of Birkner, López-Mimbela and Wakolbinger, see [3, p. 91]. We note that existence
results for problem (1.9) in the subcritical range 1 < p < N+2s

N−2s
and for more general subcrit-

ical nonlinearities have been obtained recently by the first author in [17] and by Servadei and
Valdinoci in [29].

In our next result the linear term is related to the relativistic Hardy inequality, see [18]
and [17].

Corollary 1.3. Assume that Ω is bounded and star-shaped with respect to the origin and let
u ∈Ds,2(Ω) ∩ C(RN \ {0}), u � 0 in RN be such that{

(−�)su − γ |x|−2su = up in Ω,

u = 0 in RN \ Ω
(1.10)

for some γ ∈R and p � N+2s
N−2s

. Then u = 0 in RN .

Our next result is concerned with a singular nonlinearity.

Corollary 1.4. Assume that Ω is bounded and star-shaped with respect to the origin and let
u ∈Ds,2(Ω) ∩ C(RN \ {0}), u � 0 in RN be such that{

(−�)su = |x|−σ up in Ω,

u = 0 in RN \ Ω
(1.11)

for some σ ∈R and p � max{1, N+2s−2σ
N−2s

}. Then u = 0 in RN .

This result should be seen in the context of the criticality of q = 2(N−σ)
N−2s

= N+2s−2σ
N−2s

+1 for the

embedding of the Sobolev space Ds,2(Ω) in the weighted space Lq(Ω; |x|−σ ). More precisely,
if N > max(σ,2s) and the underlying domain is bounded, Ds,2(Ω) is continuously embedded
in Lq(Ω; |x|−σ ) if and only if q � 2(N−σ)

N−2s
, and the embedding is compact iff q <

2(N−σ)
N−2s

. Note
also that the existence of the embeddings in the subcritical range follows from the fact that

Ds,2(RN
)
↪→ L2(N−σ)/(N−2s)

(
RN ; |x|−σ

)
,

and this latter embedding can be seen as a version of the Stein–Weiss inequality [31].
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Our next result is concerned with a class of unbounded domains. Slightly extending a notion
from [27], we say that an open set Ω is star-shaped with respect to infinity if there exists a point
e ∈ RN \Ω such that for every point x ∈ Ω the half-line {e + t (x − e): t � 1} is contained in Ω .
Up to suitable translation, it is equivalent to require 0 /∈ Ω and that RN \ Ω is star-shaped with
respect to 0 in the sense defined earlier.

Theorem 1.5. Assume that Ω is star-shaped with respect to infinity. Let u ∈ Ds,2(Ω) ∩ C(RN)

be nonnegative and such that

{
(−�)su = up in Ω,

u = 0 in RN \ Ω
(1.12)

for some 1 � p � N+2s
N−2s

. Then u = 0 in RN .

In fact, we will deduce Theorem 1.5 from Theorem 1.1 via a variant of the classical Kelvin
transform, see Sections 2 and 3 below for details.

Theorem 1.5 in particular applies to the cone-like domains Ωτ := {x ∈ RN \ {0}: xN|x| > τ }
for τ ∈ (−1,1). Here one may take e = −eN , where eN is the N -th coordinate vector, in the
definition of star-shapedness at infinity. Since the half-space RN+ is a particular case with τ = 0,
we deduce the following corollary.

Corollary 1.6. Let u ∈Ds,2(RN+) ∩ C(RN) be nonnegative and such that

{
(−�)su = up in RN+ ,

u = 0 in RN \RN+
(1.13)

for some 1 � p � N+2s
N−2s

. Then u = 0 in RN .

We remark that Theorem 1.5 does not apply to the case Ω = RN . Indeed, in this case the
critical problem with p = N+2s

N−2s
admits positive solutions which have been classified completely

in [14]. Moreover, in the case Ω = RN , s ∈ [1/2,1) and 1 < p < N+2s
N−2s

, a nonexistence result
has been obtained very recently and independently in [15] by de Pablo and Sánchez, see also
[23] for s = 1/2 and 1 < p < N+2s

N−2s
.

In order to explain our approach to obtain the nonexistence results, we need to compare (1.1)
with the classical problem

{
−�u = f (x,u) in Ω,

u = 0 on ∂Ω.
(1.14)

For (1.14), the analogue of Theorem 1.1 is true, and for strictly star-shaped C1-domains Ω and
C1-nonlinearities f on Ω × [0,∞) satisfying additionally f (·,0) = 0 it can be derived from the
Pohozaev type integral identity
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∫
Ω

u(x)∫
0

Hf (x, t) dt dx + 1

N − 2

∫
∂Ω

u2
νx · ν dσ(x) = 0, (1.15)

see e.g. [26, Theorem 5.2]. Here Hf is defined as in (1.8). Indeed, by (1.7) and the star-
shapedness of Ω , the LHS of (1.15) is nonnegative, and by unique continuation it is strictly
positive if u �≡ 0. The above integral identity can be derived by multiplying (1.14) with the func-
tions u and x 
→ x · ∇u respectively and integrating by parts. The same strategy does not work
for (1.1) since the problem is nonlocal and does not allow a simple integration by parts formula
as in the case s = 1. More severely, in the case 0 < s < 1 solutions of (1.1) are not of class C1 up
to the boundary even if the underlying domain is smooth. In particular, if x 
→ f (x,u(x)) � 0
is a nonnegative nontrivial function on Ω , then any solution u of (1.1) fails to possess a finite
normal derivative uν on ∂Ω , see e.g. [3, Lemma 4.3].

The approach we follow here is inspired by Reichel and Zou [27] who used the technique
of moving spheres to prove nonexistence results for cooperative elliptic systems. The moving
sphere method can be seen as a variant of the method of moving hyperplanes (see e.g. [1,2,20,
21,28]) and has been widely used to classify positive solutions of nonlinear elliptic problems,
see e.g. [24] and the references therein. For the special case where the underlying domain is the
entire space RN , it has also been applied to problems involving the fractional Laplacian, see the
aforementioned recent paper [15] of de Pablo and Sánchez and also [14]. Unlike as in [27], we
are not able to implement a moving sphere argument directly in the present setting, so instead
– as in [15] – we first transform (1.1) to a local problem by considering the Caffarelli–Silvestre
extension of a solution u on RN+1+ , see [11] and also [7,17]. This extension satisfies w = u on Ω

and solves in some weak sense (see Section 2 for details) the boundary value problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
div

(
t1−2s∇w

) = 0 in RN+1+ ,

w = 0 on RN \ Ω,

−cN,s lim
t→0+ t1−2s ∂w

∂t
= f (x,w) on Ω,

(1.16)

with the positive normalization constant cN,s = πN/2Γ (s)

2sΓ ( N+2s
2 )

(note that this constant is different

from the one noted e.g. in [7, Remark 3.11] due to our normalization of (−�)s ). Here and in the
following we write z = (x, t) ∈ RN+1+ with x ∈ RN and t > 0, and we identify RN with ∂RN+1+ ,
so that Ω is contained in ∂RN+1+ . We will then apply the moving sphere argument to the local
problem (1.16) in place of (1.1). We note that the Caffarelli–Silvestre extension of a solution
of (1.1) has received considerable attention in recent years due to its usefulness in the context of
many different problems, see e.g. [9,10,13,16,30].

We should mention that – in contrast to the nonexistence results for (1.14) based on the Po-
hozaev type identity – our approach does not extend to sign changing solutions. The existence
resp. nonexistence of sign changing solutions of (1.1) under supercriticality and star-shapedness
assumptions therefore remains an open problem.

Finally, we would like to compare (1.1) with the related problem{
Asu = f (x,u) in Ω,

u = 0 on ∂Ω .
(1.17)
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Here A stands for the negative Laplacian as a self-adjoint operator in L2(Ω) with domain{
u ∈ H 1

0 (Ω): �u ∈ L2(Ω) as a distribution
}
,

and As is the corresponding power in spectral theoretic sense. Although problems (1.1) and
(1.17) look similar, there are crucial differences as discussed e.g. in [17]. In particular, solutions
of (1.17) have in general much better boundary regularity than solutions of (1.1), and this can
also be seen when comparing the corresponding extended problems. We point out that in [5,8,
12,15,32] a variant of the Caffarelli–Silvestre extension for solutions of (1.17) was considered
which preserves the regularity properties up to the boundary. Moreover, nonexistence results for
(1.17) have recently been proved in [5,32] via a Pohozaev type integral identity for the extended
problem. As we pointed out before, such an approach is not available for (1.1) resp. (1.16) due
to the lack of boundary regularity of solutions.

The paper is organized as follows. In Section 2 we discuss a suitable weak notion of solution
of (1.16), and we study how problems (1.1) and (1.16) transform under a Kelvin type transform.
We also formulate two versions of boundary maximum principles related to a linearized ver-
sion of problem (1.16). Since this section deals with all technical aspects of the problem, the
remaining parts of the proofs of our main results are relatively short, and they are contained in
Section 3.

2. Some preliminaries

Throughout the paper, we consider s ∈ (0,1) and assume that N > 2s. In this section we
collect preliminary tools related to (1.1) and the reformulated version (1.16). We also need to
introduce some definitions concerning notions of weak solutions. If Ω ⊂ RN is an open set and
f ∈ L1

loc(Ω), we say that u ∈Ds,2(RN) is a distributional solution of (−�)su = f in Ω if

〈u,ϕ〉Ds,2 =
∫
Ω

f ϕ dx for all ϕ ∈ C∞
c (Ω), (2.1)

where 〈·,·〉Ds,2 is defined in (1.4). Note that by considering u ∈ Ds,2(RN) we do not prescribe u

on RN \ Ω here. We start with the following result.

Lemma 2.1. Let Ω be a bounded open set. Then there exists a constant C = C(N, s,Ω) > 0
such that for all ϕ ∈ C2

c (Ω), x ∈ RN and ε ∈ (0,1) we have∣∣∣∣ ∫
|x−y|>ε

ϕ(x) − ϕ(y)

|x − y|N+2s
dy

∣∣∣∣� C‖ϕ‖C2(RN)

1 + |x|N+2s
. (2.2)

Proof. For x ∈ RN and ε > 0, integration by parts yields∫
|x−y|>ε

ϕ(x) − ϕ(y)

|x − y|N+2s
dy

=
1∫ ∫

∇ϕ
(
x + t (y − x)

) · x − y

|x − y|N+2s
dy dt
0 |x−y|>ε
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= 1

N + 2s − 2

( 1∫
0

∫
|x−y|=ε

∇ϕ
(
x + t (y − x)

) · (y − x)|x − y|−N−2s+1 dσ(y)dt

+
1∫

0

t

∫
|x−y|>ε

�ϕ
(
x + t (y − x)

)|x − y|−N−2s+2 dy dt

)
,

whereas

1∫
0

∫
|x−y|=ε

∇ϕ
(
x + t (y − x)

) · (y − x)|x − y|−N−2s+1 dσ(y)dt

= ε1−2s

1∫
0

∫
SN−1

∇ϕ(x + tεσ ) · σ dσ dt

= ε1−2s

1∫
0

∫
SN−1

∇ϕ(x) · σ dσ dt + ε2−2s

1∫
0

t

1∫
0

∫
SN−1

D2ϕ(x + εtτσ )[σ ] · σ dσ dτ dt

and, by oddness,

∫
SN−1

∇ϕ(x) · σ dσ =
N∑

i=1

∂ϕ

∂xi
(x)

∫
SN−1

σ i dσ = 0.

Consequently,

∫
|x−y|>ε

ϕ(x) − ϕ(y)

|x − y|N+2s
dy = 1

N + 2s − 2

1∫
0

t

∫
|x−y|>ε

�ϕ
(
x + t (y − x)

)|x − y|−N−2s+2 dy dt

+ ε2(1−s)

N + 2s − 2

1∫
0

t

1∫
0

∫
SN−1

D2ϕ(x + εtτσ )[σ ] · σ dσ dτ dt, (2.3)

while

∣∣∣∣∣
1∫

0

t

1∫
0

∫
SN−1

D2ϕ(x + εtτσ )[σ ] · σ dσ dτ dt

∣∣∣∣∣� C1‖ϕ‖C2(RN) (2.4)

with a constant C1 > 0 depending only on N and s. We now fix R > 0 such that Ω ⊂ B(0,R),
and we first consider x ∈RN \ B(0,4R). Then |x − y| �R + |x| for y ∈ Ω and therefore
2
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∣∣∣∣ ∫
|x−y|>ε

ϕ(x) − ϕ(y)

|x − y|N+2s
dy

∣∣∣∣� ∫
|y|�R

|ϕ(y)|
(R + |x|

2 )N+2s
dy � C2

‖ϕ‖C2(RN)

1 + |x|N+2s
(2.5)

with a constant C2 > 0 depending only on R, N and s. Next we consider x ∈ B(0,4R) and note
that, for every t ∈ (0,1),

|x − y|� R + |x|
t

� 5R

t
if

∣∣x + t (y − x)
∣∣� R,

and

�ϕ
(
x + t (y − x)

) = 0 if
∣∣x + t (y − x)

∣∣� R.

Hence for x ∈ B(0,4R) we have

∣∣∣∣∣
1∫

0

t

∫
|x−y|>ε

�ϕ
(
x + t (y − x)

)|x − y|−N−2s+2 dy dt

∣∣∣∣∣
� ‖ϕ‖C2(RN)

1∫
0

t

∫
|x+t (y−x)|<R

|x − y|−N−2s+2 dy dt

� ‖ϕ‖C2(RN)

1∫
0

t

∫
|x−y|� 5R

t

|x − y|−N−2s+2 dy dt

� ‖ϕ‖C2(RN)

∣∣SN−1
∣∣ 1∫

0

t

5R
t∫

0

r1−2s dr dt

= ‖ϕ‖C2(RN)

∣∣SN−1
∣∣ (5R)2s−2

2 − 2s

1∫
0

t−1+2s dt

= C3‖ϕ‖C2(RN), (2.6)

with a constant C3 > 0 depending only on R, N and s. Combining (2.3), (2.4), (2.5) and (2.6),
we find that there exists a constant C > 0 depending only on R′, N and s such that (2.2) holds,
as claimed. �

Next, we consider the conformal diffeomorphism

κ :RN \ {0} → RN \ {0}, κ(x) = x

|x|2 . (2.7)

It is easy to see that
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∣∣κ(x) − κ(y)
∣∣ = |x − y|

|x||y| for every x, y ∈RN \ {0}, (2.8)

and that the Jacobian determinant of κ satisfies

∣∣detJκ(x)
∣∣ = |x|−2N .

In the following, for a measurable function u on RN , we a.e. define Ku on RN by

Ku(x) = |x|2s−Nu
(
κ(x)

)
.

The map K is usually called Kelvin transform, and it is a well-known tool in potential theory and
partial differential equations. It has also been studied in detail in a probabilistic framework for
stable processes, see [4] and the references therein. Here we need the following property of K .

Lemma 2.2. The map K defines an isometry on Ds,2(RN), i.e. for every u,v ∈ Ds,2(RN) we
have Ku,Kv ∈Ds,2(RN) and

〈u,v〉Ds,2 = 〈Ku,Kv〉Ds,2 . (2.9)

Proof. Since C∞
c (RN \ {0}) is dense in C∞

c (RN) with respect to the Ds,2(RN)-norm as a con-
sequence of our general assumption N > 2s (see [25, p. 397]), it suffices to show (2.9) for
u,v ∈ C∞

c (RN \ {0}). By changing variables and using (2.8), we have

〈u,v〉Ds,2 =
∫

R2N

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s
dx dy

=
∫

R2N

(u(κ(x)) − u(κ(y)))(v(κ(x)) − v(κ(y)))

|x − y|N+2s |x|−N−2s |y|−N−2s
|x|−2N |y|−2N dx dy

=
∫

R2N

(u(κ(x)) − u(κ(y)))(v(κ(x)) − v(κ(y)))

|x − y|N+2s
|x|−N+2s |y|−N+2s dx dy.

Observe that

(
u
(
κ(x)

) − u
(
κ(y)

))(
v
(
κ(x)

) − v
(
κ(y)

))|x|−N+2s |y|−N+2s

= (
Ku(x) − Ku(y)

)(
Kv(x) − Kv(y)

) + Ku(x)v
(
κ(x)

)[|y|2s−N − |x|2s−N
]

+ Ku(y)v
(
κ(y)

)[|x|2s−N − |y|2s−N
]
.

We therefore have∫
2N

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s
dx dy
R
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=
∫

R2N

(Ku(x) − Ku(y))(Kv(x) − Kv(y))

|x − y|N+2s
dx dy

+ 2 lim
ε→0

∫
RN

∫
|x−y|>ε

Ku(x)v(κ(x))[|y|2s−N − |x|2s−N ]
|x − y|N+2s

dy dx.

It thus remains to prove that

lim
ε→0

∫
RN

∫
|x−y|>ε

Ku(x)v(κ(x))[|y|2s−N − |x|2s−N ]
|x − y|N+2s

dy dx = 0. (2.10)

To show this, we consider f ∈ C∞
c (RN \ {0}) defined by f (x) = Ku(x)v(κ(x)). Since

∫
RN

∫
|x−y|>ε

f (x)|y|2s−N

|x − y|N+2s
dy dx < ∞,

∫
RN

∫
|x−y|>ε

f (x)|x|2s−N

|x − y|N+2s
dy dx < ∞,

we have by Fubini’s theorem

∫
RN

∫
|x−y|>ε

f (x)[|y|2s−N − |x|2s−N ]
|x − y|N+2s

dy dx =
∫
RN

∫
|x−y|>ε

|x|2s−N(f (y) − f (x))

|x − y|N+2s
dy dx.

Note that x 
→ |x|2s−N ∈ L1
s . By Lemma 2.1, we have∣∣∣∣ ∫

|x−y|>ε

f (x) − f (y)

|x − y|N+2s
dy

∣∣∣∣� C

1 + |x|N+2s
for all ε ∈ (0,1),

and therefore the dominated convergence theorem implies that

lim
ε→0

∫
RN

∫
|x−y|>ε

f (x)[|y|2s−N − |x|2s−N ]
|x − y|N+2s

dy dx =
∫
RN

|x|2s−N(−�)sf (x) dx.

Since x 
→ |x|2s−N is the Riesz potential of order 2s, we have (up to a constant)∫
RN

|x|2s−N(−�)sf (x) dx = 〈
(−�)s |x|2s−N,f

〉 = 〈δ, f 〉 = 0

in distributional sense, because f is supported away from the origin and δ is the Dirac mass at
the origin. Hence we have proved (2.10) and the lemma then follows. �

As a consequence, we get the following result, which is closely related to [4, Theorem 2].
We note that, unlike in the present paper, probabilistic techniques are used in [4].
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Corollary 2.3. Let Ω ⊂RN be an open set and

Ω̃ := κ
(
Ω \ {0}) ⊂RN \ {0}.

Let f ∈ L1
loc(Ω), and let u ∈ Ds,2(RN) solve (−�)su = f in Ω in distributional sense. Then

ũ = Ku is contained in Ds,2(RN) and solves (−�)sũ = f̃ in distributional sense in Ω̃ , where
f̃ ∈ L1

loc(Ω̃) is given by f̃ (x) = |x|−(N+2s)f ( x

|x|2 ).

Moreover, if u ∈ Ds,2(Ω), then ũ ∈ Ds,2(Ω̃).

Proof. Suppose first that u ∈ Ds,2(Ω). Since, as noted before, C∞
c (Ω \{0}) is dense in Ds,2(Ω),

there exists a sequence (ψn)n in C∞
c (Ω \ {0}) with ‖u − ψn‖Ds,2 → 0 as n → ∞. By (2.2), we

then also have ‖Ku − Kψn‖Ds,2 → 0 as n → ∞. Since Kψn ∈ Ds,2(Ω̃) for all n, this implies
Ku ∈Ds,2(Ω̃).

Next we assume that u ∈Ds,2(RN) solves (−�)su = f in Ω in distributional sense. Applying
the argument above to Ω = RN yields ũ ∈ Ds,2(RN \ {0}) ⊂ Ds,2(RN). Moreover, for given
ϕ̃ ∈ C∞

c (Ω̃), we may now write ϕ̃ = Kϕ with ϕ ∈ C∞
c (Ω̃). By Lemma 2.2, we then have

〈ũ, ϕ̃〉Ds,2 = 〈u,ϕ〉Ds,2 =
∫
Ω

f ϕ dx =
∫
Ω̃

(f ◦ κ)(ϕ ◦ κ)|detJκ |dx

=
∫
Ω̃

f
(
κ(x)

)
ϕ
(
κ(x)

)|x|−2N dx =
∫
Ω̃

f̃ ϕ̃ dx.

This shows the claim. �
Next, we introduce some notations related to the reformulated problem (1.16). As before, we

write z = (x, t) ∈ RN+1+ with x ∈ RN and t ∈ (0,∞). Let D1,2(RN+1+ ; t1−2s) denote the space
of all functions w ∈ H 1

loc(R
N+1+ ) such that∫

R
N+1+

t1−2s |∇w|2 dz < ∞.

Formally introducing the operator Ls := div(t1−2s∇) on RN+1+ , we say that a function w ∈
D1,2(RN+1+ ; t1−2s) is weakly Ls -harmonic if∫

R
N+1+

t1−2s∇w∇ϕ dz = 0 for all ϕ ∈ C∞
c

(
RN+1+

)
.

By standard elliptic regularity, every weakly Ls -harmonic function w ∈ D1,2(RN+1+ ; t1−2s) be-
longs to C∞(RN+1+ ) and satisfies div(t1−2s∇w) ≡ 0 pointwise in RN+1+ . Moreover, w does not
attain an interior maximum or minimum point in RN+1+ unless w is constant. Note also that we
have a well-defined continuous trace map
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D1,2(RN+1+ ; t1−2s
) →Ds,2(RN

)
(see e.g. [5]), and for the sake of simplicity we denote the trace of a function in D1,2(RN+1+ ; t1−2s)

with the same letter as the function itself. If ϕ,ψ ∈ D1,2(RN+1+ ; t1−2s) and ϕ is weakly Ls -
harmonic, we have the identity

cN,s

∫
R

N+1+

t1−2s∇ϕ∇ψ dz =
∫

R2N

(ϕ(x) − ϕ(y))(ψ(x) − ψ(y))

|x − y|N+2s
dx dy (2.11)

with cN,s as in (1.16). Now, for an open set Ω ⊂RN , we denote by D(Ω, s) the closed subspace
of functions in D1,2(RN+1+ ; t1−2s) such that their trace on RN is contained in Ds,2(Ω). It is easy
to see that every function u ∈ Ds,2(Ω) has a unique weakly harmonic extension H(u) ∈ D(Ω, s)

which can be found by minimizing the functional

w 
→
∫

R
N+1+

t1−2s |∇w|2 dz

among all functions w ∈ D(Ω, s) satisfying w = u on RN . Using this fact in the special case
Ω =RN (in which D(RN, s) = D1,2(RN+1+ ; t1−2s)) together with (2.11), we find that

∫
R2N

(ϕ(x) − ϕ(y))2

|x − y|N+2s
dx dy � cN,s

∫
R

N+1+

t1−2s |∇ϕ|2 dz (2.12)

for all ϕ ∈ D1,2(RN+1+ ; t1−2s). Moreover, since Ds,2(RN) is continuously embedded in

L
2N

N−2s (RN), there exists a constant C > 0 such that

‖ϕ‖2

L
2N

N−2s (RN)

� C

∫
R2N

(ϕ(x) − ϕ(y))2

|x − y|N+2s
dx dy for all ϕ ∈Ds,2

(
RN

)
. (2.13)

Another fact we need is the following:

Lemma 2.4. Let Ω ⊂RN be a bounded open set, and let u ∈ D1,2(RN+1+ ; t1−2s) be such that its
trace – also denoted by u – is continuous in Ω and satisfies u ≡ 0 on RN \Ω . Then u ∈ D(Ω, s).

Proof. Consider G ∈ C∞(R) such that

G(r) = 0 if |r| � 1, G(r) = r if |r| � 2 and
∣∣G′(r)

∣∣ � 3 if 1 � |r| � 2.

Then the functions un defined by un(t, x) = 1
n
G(nu(t, x)) are clearly contained in D1,2(RN+1+ ;

t1−2s) for n ∈N. Passing to traces, we therefore have un ∈ Ds,2(RN). Note that by the dominated
convergence theorem we have un → u in D1,2(RN+1+ ; t1−2s). In addition, since the support of
the trace of un in RN , is contained in the compact subset of Ω
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{
x ∈ Ω:

∣∣un(x)
∣∣ � 1

n

}
,

it follows that un ∈ Ds,2(Ω) by the density result in [22, Theorem 1.4.2.2]. To conclude we
observe that un → u in Ds,2(Ω) and this holds true thanks to the continuity of the trace operator
D1,2(RN+1+ ; t1−2s) → Ds,2(RN). �

We remark that the continuity assumption in Lemma 2.4 is not needed if Ω has a continuous
boundary, see [22, Theorem 1.4.2.2].

Next, let qs := 2N
N+2s

be the conjugate of 2N
N−2s

. If f ∈ Lqs (Ω) is given and u ∈ Ds,2(RN)

satisfies (−�)su = f in Ω in distributional sense, then, as a consequence of the embedding

Ds,2(Ω) ↪→ L
2N

N−2s (Ω), it also satisfies this equation in weak sense, i.e.

〈u,ψ〉Ds,2 =
∫
Ω

f ψ dx for all ψ ∈Ds,2(Ω).

Moreover, by (2.11), the weakly Ls -harmonic extension w = H(u) ∈ D(Ω, s) of u then satisfies

cN,s

∫
R

N+1+

t1−2s∇w∇ψ dz =
∫
Ω

f ψ dx for all ψ ∈ D(Ω, s). (2.14)

We may summarize the discussion in the following statement.

Lemma 2.5. Let Ω ⊂ RN be an open set and f ∈ Lqs (Ω). A function w ∈ D1,2(RN+1+ ; t1−2s)

satisfies (2.14) if and only if w is weakly Ls -harmonic and its trace – also denoted by w ∈
Ds,2(RN) – solves (−�)sw = f in Ω in distributional sense.

If this holds, we say that w weakly solves the problem⎧⎨⎩ div
(
t1−2s∇w

) = 0 in RN+1+ ,

−cN,s lim
t→0

t1−2swt = f on Ω .
(2.15)

Next, we examine how problems of type (2.15) transform under generalized Kelvin inversions.

Proposition 2.6. Let w ∈ D1,2(RN+1+ ; t1−2s), let Ω ⊂ RN be an open set and let f ∈ Lqs (Ω).
Moreover, for fixed ρ > 0, consider

Ωρ :=
{

ρ2x

|x|2 : x ∈ Ω \ {0}
}

⊂RN,

and let wρ :RN+1+ → R, fρ : Ωρ → R be defined by

wρ(z) :=
(

ρ

|z|
)N−2s

w

(
ρ2z

|z|2
)

and fρ(x) =
(

ρ

|x|
)N+2s

f

(
ρ2x

|x|2
)

.

Then we have:



M.M. Fall, T. Weth / Journal of Functional Analysis 263 (2012) 2205–2227 2219
(i) wρ ∈ D1,2(RN+1+ ; t1−2s), and fρ ∈ Lqs (Ωρ).
(ii) If w weakly solves the problem

⎧⎨⎩
div

(
t1−2s∇w

) = 0 in RN+1+ ,

−cN,s lim
t→0

t1−2s ∂w

∂t
= f on Ω,

(2.16)

then wρ weakly solves the problem

⎧⎨⎩
div

(
t1−2s∇wρ

) = 0 in RN+1+ ,

−cN,s lim
t→0

t1−2s ∂wρ

∂t
= fρ on Ωρ.

(2.17)

Proof. Let w ∈ D1,2(RN+1+ ; t1−2s) and f ∈ Lqs (Ω). Note that wρ(z) = ρ2s−Nw1(
z

ρ2 ) and

fρ(x) = ρ−(N+2s)w1(
x

ρ2 ) for every ρ > 0, z ∈ RN+1+ and x ∈ RN \ {0}. Hence it suffices to

prove the claims in the case ρ = 1, and we put w̃ = w1, f̃ = f1 and Ω̃ = Ω1. Recalling the
properties of the map κ defined in (2.7), we then find

∫
Ω̃

|f̃ |qs dx =
∫
Ω̃

|x|−2N

∣∣∣∣f (
x

|x|2
)∣∣∣∣qs

dx =
∫
Ω̃

|Jκ ||f ◦ κ|qs dx =
∫
Ω

|f |qs dx.

To simplify the notations, we set

τ : RN+1+ \ {0} → RN+1+ \ {0}, τ (z) = z

|z|2 ,

so that the restriction of τ to RN \{0} coincides with κ . We note that the Jacobian Jτ of τ satisfies

JT
τ (z)Jτ (z) = |z|−4I,

where I denotes the (n + 1) × (n + 1)-identity matrix, and detJτ (z) = |z|−2N−2 for every z ∈
RN+1+ .

Next, we write w̃ = g ◦ τ with g(z) = |z|N−2sw(z). Moreover, we let ϕ ∈ C∞
c (RN+1+ \ {0})

be arbitrary, and define ϕ̃ ∈ C∞
c (RN+1+ \ {0}) by ϕ̃ = h ◦ τ with h(z) = |z|N−2sϕ(z). Considering

first the special case where w ∈ C∞
c (RN+1+ \ {0}), we then calculate

∫
R

N+1+

t1−2s∇w̃∇ϕ̃ dz =
∫

R
N+1+

t1−2s
[
Jτ (z)∇g

(
τ(z)

)] · [Jτ (z)∇h
(
τ(z)

)]
dz

=
∫

R
N+1

t1−2s |z|−4∇g
(
τ(z)

)∇h
(
τ(z)

)
dz
+



2220 M.M. Fall, T. Weth / Journal of Functional Analysis 263 (2012) 2205–2227
=
∫

R
N+1+

|z|−2N−2
(

t

|z|2
)1−2s

|z|2(N−2s)∇g
(
τ(z)

)∇h
(
τ(z)

)
dz

=
∫

R
N+1+

∣∣detJτ (z)
∣∣( t

|z|2
)1−2s∣∣τ(z)

∣∣2(2s−N)∇g
(
τ(z)

)∇h
(
τ(z)

)
dz

=
∫

R
N+1+

t1−2s |z|2(2s−N)∇g(z)∇h(z) dz.

Noting that

∇g(z) = (N − 2s)|z|N−2s−2zw(z) + |z|N−2s∇w(z)

and

∇h(z) = (N − 2s)|z|N−2s−2zϕ(z) + |z|N−2s∇ϕ(z),

we then conclude that∫
R

N+1+

t1−2s∇w̃∇ϕ̃ dz =
∫

R
N+1+

t1−2s∇w∇ϕ dz + I1 + I2 + I3

with

I1 = (N − 2s)2
∫

R
N+1+

t1−2s |z|−2w(z)ϕ(z) dz,

I2 = (N − 2s)

∫
R

N+1+

t1−2s |z|−2w(z)z∇ϕ(z) dz,

I3 = (N − 2s)

∫
R

N+1+

t1−2s |z|−2ϕ(z)z∇w(z)dz.

Since divz[t1−2s |z|−2z] = (N − 2s)t1−2s |z|−2, it follows that

I1 + I2 + I3 = (N − 2s)

∫
R

N+1+

divz

(
t1−2s |z|−2zw(z)ϕ(z)

)
dz = 0

and therefore ∫
R

N+1

t1−2s∇w̃∇ϕ̃ dz =
∫

R
N+1

t1−2s∇w∇ϕ dz. (2.18)
+ +



M.M. Fall, T. Weth / Journal of Functional Analysis 263 (2012) 2205–2227 2221
By [19], we have that C∞
c (RN+1+ \ {0}) is dense in D1,2(RN+1+ ; t1−2s) thus we deduce that

(2.18) also holds for arbitrary w,ϕ ∈ D1,2(RN+1+ ; t1−2s), while w̃, ϕ̃ are also contained in
D1,2(RN+1+ ; t1−2s). In particular, (i) is proved.

Moreover, (2.18) implies that w̃ is weakly Ls -harmonic if w is weakly Ls -harmonic. In addi-
tion, considering the traces of w and w̃ respectively, Corollary 2.3 implies that (−�)sw̃ = f̃ in
distributional sense in Ω̃ if (−�)sw = f in distributional sense in Ω . Hence (ii) follows from
Lemma 2.5. �

We will need the following version of a strong maximum principle which is essentially a
reformulation of [7, Proposition 4.11].

Lemma 2.7. Let E be an open subset of RN , and let w ∈ D1,2(RN+1+ ; t1−2s) be a weak solution
of

⎧⎨⎩
div

(
t1−2s∇w

) = 0 in RN+1+ ,

−cN,s lim
t→0+ t1−2s ∂w

∂t
= g on E

for some g ∈ Lqs (E) ∩ C(E). Suppose furthermore that w is continuous and nonnegative on
E × [0, r] for some r > 0, and that

g(x) � 0 for every x ∈ E with w(x) = 0. (2.19)

If w �≡ 0 in E, then w is strictly positive in E and therefore infK w > 0 for any compact
set K ⊂ E.

Proof. If w �≡ 0 on E, then w > 0 in E × (0, r), since w is Ls -harmonic and nonnegative in this
set. Suppose by contradiction that w(x0) = 0 for some x0 ∈ E. Then g(x0) < 0 by [7, Proposi-
tion 4.11], which contradicts (2.19). �

We will also need the following “small volume” maximum principle:

Lemma 2.8. Let γ > 0. Then there exists δ = δ(N, s, γ ) > 0 with the following property. If

(i) F ⊂RN+1+ is an open subset with ∂F ∩RN �=∅,
(ii) E is a bounded open subset of RN with E ⊂ ∂F ,

(iii) c ∈ L∞(E) is given with ‖c‖L∞(E) � γ ,
(iv) w ∈ D1,2(RN+1+ ; t1−2s) is a weak solution of

⎧⎨⎩
div

(
t1−2s∇w

)
� 0 in RN+1+ ,

−cN,s lim
t→0+ t1−2s ∂w

∂t
� c(x)w on E,

(2.20)

i.e.,
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cN,s

∫
F

t1−2s∇w∇ϕ dz �
∫
E

c(x)wϕ dx (2.21)

for all nonnegative ϕ ∈ D(E, s),
(v) w is continuous on F and satisfies w � 0 on ∂F \ E,

(vi) |{x ∈ E: w < 0}|� δ,

then w � 0 in F .

Proof. We consider the function

v : RN+1+ →R, v(x) =
{

max(−w(x),0), x ∈ F,

0, x ∈ RN+1+ \ F .

It can be deduced from assumptions (i) and (ii) that the relative boundary of F in RN+1+ is

contained in ∂F \ E, so that v is continuous on RN+1+ by assumption (v). Moreover, v ≡ 0 on
RN \ E. As a consequence, v ∈ H 1

loc(R
N+1+ ) by [6, Theorem 9.17 and Remark 19], and

∫
R

N+1+

t1−2s |∇v|2 dz �
∫

R
N+1+

t1−2s |∇w|2 dz < ∞.

Hence v ∈ D1,2(RN+1+ ; t1−2s), and Lemma 2.4 implies that v ∈ D(E, s). We also note that com-
bining (2.12) and (2.13) yields a constant C = C(N, s) > 0 such that

‖v‖2
L2N/(N−2s)(RN)

� C

∫
R

N+1+

t1−2s |∇v|2 dz.

Applying (2.21) to v, we then obtain

cN,s

∫
R

N+1+

t1−2s |∇v|2 dz = −cN,s

∫
R

N+1+

t1−2s∇w · ∇v dz � −
∫
E

c(x)wv dx

=
∫
E

c(x)v2 dx � ‖c‖L∞(E)

∣∣{x ∈ E: w < 0}∣∣N/2s‖v‖2
L2N/(N−2s)(RN)

� γ δN/2sC

∫
R

N+1+

t1−2s |∇v|2 dz.

Hence, if δ < (
cN,s

γC
)2s/N , then v ≡ 0 in RN+1+ and therefore w � 0 in F , as claimed. �
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3. Proof of the main results

In this section we complete the proof of our main results. We begin with the

Proof of Theorem 1.1. We suppose by contradiction that there exists a nontrivial solution u ∈
C(RN \ {0}) ∩ Ds,2(Ω) of (1.1), and we let w ∈ D1,2(RN+1+ ; t1−2s) denote the corresponding
Ls -harmonic extension of u which weakly solves the problem

⎧⎨⎩ div
(
t1−2s∇w

) = 0 in RN+1+ ,

−cN,s lim
t→0

t1−2swt = f (x,w) on Ω ′,

for every open subset Ω ′ ⊂ Ω which is relatively compact in RN \ {0}. Here, as before, we

also write w in place of u for the trace on RN . We clearly have w ∈ C(RN+1+ \ {0}). Let R :=
sup{|x|: x ∈ Ω} > 0. For ρ ∈ (0,R), we consider the Kelvin transform wρ of w as defined in
Proposition 2.6. We also put

Fρ := {
z ∈ RN+1+ : |z| > ρ

}
, Eρ := {

x ∈ Ω: |x| > ρ
}

and Ẽρ :=
{

ρ2x

|x|2 : x ∈ Eρ

}
.

By definition of R and since Ω is star-shaped with respect to the origin, Eρ and Ẽρ are nonempty
open subsets of Ω which are relatively compact in RN \{0} for ρ ∈ (0,R), so that the restrictions
of the map x 
→ f (x,w(x)) to Eρ and Ẽρ are bounded and continuous. By Proposition 2.6, the
difference function vρ = wρ − w ∈ D1,2(RN+1+ ; t1−2s) weakly solves the problem

⎧⎨⎩ div
(
t1−2s∇vρ

) = 0 in RN+1+ ,

−cN,s lim
t→0

t1−2s[vρ]t = gρ on Eρ ,

where gρ is the bounded and continuous function on Eρ given by

gρ(x) =
(

ρ

|x|
)N+2s

f

(
ρ2x

|x|2 ,

(
ρ

|x|
)2s−N

wρ(x)

)
− f

(
x,w(x)

)
.

Moreover, by the supercriticality assumption (1.6) we have

gρ(x) � f
(
x,wρ(x)

) − f
(
x,w(x)

) = cρ(x)vρ(x) for x in Eρ

with

cρ : Eρ →R, cρ(x) =
{

f (x,wρ(x))−f (x,w(x))

wρ(x)−w(x)
if w(x) �= wρ(x),

0 if w(x) = wρ(x).
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We also note that, since f is assumed to be locally Lipschitz in its second variable, we have
cρ ∈ L∞(Eρ) for 0 < ρ < R. Moreover, for τ ∈ (0,R) we have

γτ := sup
ρ∈[τ,R)

‖c‖L∞(Eρ) < ∞. (3.1)

We now define

ρ∗ := inf
{
ρ̄ ∈ (0,R): vρ � 0 in Fρ for ρ ∈ [ρ̄,R)

}
.

Since |Eρ ∩ {wρ < 0}| is small provided ρ is sufficiently close to R, Lemma 2.8 implies that
ρ∗ < R. We claim that ρ∗ = 0. Indeed, suppose by contradiction that ρ∗ > 0. By continuity, we
then have vρ∗ � 0 in Fρ∗ . Moreover, vρ∗ �≡ 0 in Eρ∗ since

vρ∗(x) > 0 for every x ∈ ∂Ω with |x| > ρ∗.

By Lemma 2.7, we obtain vρ∗ > 0 in Eρ∗ . We now fix τ ∈ (0, ρ∗) and choose δ > 0 as in
Lemma 2.8 according to γ = γτ as defined in (3.1). Moreover, we choose a compact set K ⊂ Eρ∗
such that |Eρ∗ \ K| < δ. Then infK wρ∗ > 0, and by continuity we also have

K ⊂ Eρ, |Eρ \ K| < δ and inf
K

wρ > 0

for ρ ∈ (τ, ρ∗) sufficiently close to ρ∗. Therefore Lemma 2.8 implies that vρ � 0 in Fρ for
ρ ∈ (τ, ρ∗) sufficiently close to ρ∗. This contradicts the definition of ρ∗. We conclude that ρ∗ = 0,
as claimed. As a consequence, for every x ∈ Ω and x �= 0 we have(

ρ

|x|
)N−2s

w

(
ρ2x

|x|2
)
� w(x) for all ρ ∈ (

0, |x|). (3.2)

Furthermore, since w ∈Ds,2(Ω) ⊂ L
2N

N−2s (RN) we have

∫
SN−1

∞∫
0

w
2N

N−2s (rσ ) dr dσ =
∫
RN

w
2N

N−2s dx < ∞

and therefore, by Fubini’s theorem,

∞∫
0

w
2N

N−2s (rσ0) dr < ∞ for a.e. σ0 ∈ SN−1. (3.3)

We now pick σ0 ∈ SN−1 and r0 > 0 such that r0σ0 ∈ Ω and (3.3) holds for σ0. By (3.2) we then
have (

ρ
)N−2s

w

(
ρ2σ0

)
�w(r0σ0) > 0 for ρ ∈ (0, r0)
r0 r0
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and consequently

w(rσ0) � Cr(2s−N)/2 for r ∈ (0, r0) with a constant C > 0.

This implies

r0∫
0

w
2N

N−2s (rσ0) dr = ∞

contrary to (3.3). The contradiction shows that there does not exist a nontrivial solution u ∈
C(RN \ {0}) ∩Ds,2(Ω) of (1.1) under the assumptions of Theorem 1.1, as claimed. �
Proof of Corollary 1.2. Problem (1.9) is a special case of (1.1) with f (x,u) = up −V (x)u, and
for this nonlinearity we calculate

Hf (x,u) =
(

p − N + 2s

N − 2s

)
up + 4u

N − 2s

(
sV (x) + 1

2
x · ∇V (x)

)
so that (1.7) is satisfied by the assumptions on p and V . Moreover, any nontrivial, nonnegative
solution of (1.9) is strictly positive in Ω \ {0}, which follows by applying Lemma 2.7 to the Ls -
harmonic extension of u and the sets Eε := {x ∈ Ω: |x| > ε} for ε > 0 small. Hence nontrivial,
nonnegative solutions of (1.9) do not exist by Theorem 1.1. �
Proof of Corollary 1.3. Problem (1.10) is a special case of (1.9) with V (x) = γ |x|−2s , so the
result follows from Corollary 1.2. �
Proof of Corollary 1.4. Problem (1.11) is a special case of (1.1) with f (x,u) = |x|−σ up , and
for this nonlinearity we calculate

Hf (x,u) =
(

p − N + 2s − 2σ

N − 2s

)
|x|−σ up.

Hence (1.7) is satisfied by the assumptions on p and σ . Moreover, by the same argument as in
the proof of Corollary 1.2 above, nontrivial and nonnegative solutions of (1.11) must be strictly
positive in Ω \ {0} and therefore cannot exist by Theorem 1.1. �

We finally give the proof of our nonexistence result in (unbounded) domains being star-shaped
at infinity.

Proof of Theorem 1.5. The definition of star-shapedness at infinity implies that, after a suitable
translation, the image Ω̃ := κ(Ω) of the domain Ω under the map κ defined in (2.7) is bounded
and star-shaped with respect to 0 ∈ ∂Ω̃ . Moreover, if u ∈ Ds,2(Ω̃) ∩ C(RN) is a nonnegative
solution of (1.12), then Corollary 2.3 implies that ũ = Ku ∈ Ds,2(Ω̃) ∩ C(RN \ {0}) solves
(−�)sũ = |x|−σ |ũ|p in Ω̃ with σ = N + 2s − p(N − 2s). Since the assumption p � N+2s

N−2s

yields p � N+2s−2σ
N−2s

, Corollary 1.4 implies that ũ ≡ 0 and hence also u ≡ 0, as claimed. �
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4. Note added in proof

After the paper was accepted, Xavier Ros and Joaquim Serra sent us a preprint where – under
additional regularity assumptions on the domain’s boundary – they prove a very interesting Po-
hozaev type identity where the normal derivatives on the boundary are replaced by other suitable
quantities.
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