Background: Inflammation in carotid atherosclerotic plaques poses an increased risk for subsequent ischemic stroke. Microwave Radiometry (MWR) allows the in vivo noninvasive assessment of carotid atherosclerotic plaque temperatures that reflects their inflammatory status. The aim of the present study was to evaluate the role of carotid plaque inflammatory status, as assessed by MWR, in the pathogenesis of acute ischemic stroke.

Methods: Consecutive patients (n=30) with acute noncardioembolic anterior circulation ischemic stroke and bilateral carotid artery disease (symptomatic group) and 15 patients with asymptomatic bilateral carotid artery plaques (asymptomatic group) were included in the study. Carotid artery disease was defined as intima-media thickening (IMT) > 1.2 mm in carotid ultrasound. Stenosis severity was evaluated according to appropriate Doppler criteria. During MR measurements, temperature difference (∆T) was assigned as maximal temperature along the carotid artery minus minimum.

Results: Carotid arteries of patients in symptomatic group had higher ∆T values, compared to carotid arteries of patients in asymptomatic group (0.97±0.06 vs 0.29±0.04°C, p<0.001). The two patient groups exhibited similar carotid artery stenosis (52.78±3.32 vs 38.33±13.97%, p=0.11). Culprit carotid atherosclerotic plaques exhibited higher ∆T and IMT values, compared to nonculprit contralateral carotid plaques (0.96±0.63 vs 0.53±0.26°C, p=0.001 and 3.35±2.01 vs 2.05±1.88 mm, p=0.006, respectively). On the contrary, carotid plaques of asymptomatic group had similar ∆T and IMT values bilaterally (0.24±0.06 vs 0.25±0.07°C, p=0.82 and 2.03±0.56 vs 2.34±0.81 mm, p=0.20, respectively).

Conclusions: Symptomatic carotid arteries in patients with recent ischemic stroke exhibit higher inflammation, as assessed by MR, compared with asymptomatic patients with carotid atherosclerosis. The role, however, of this new method, in stratification of the risk of patients with intermediate carotid stenosis for ischemic stroke, needs to be evaluated in large prospective studies.

TCT-295
Temporal Evolution Of Coronary Vasomotor Function In Infarcted And Remote Myocardium Following Percutaneous Coronary Intervention For Acute Myocardial Infarction – A H215O PET Study
Paul F. Teunissen1, Stefan A. Timmer1, Ibrahim Danad1, Lourens F. Robbers1, Hendrik J. Harms1, Pieter G. Raaymakers1, Adriaan A. Lammertsma1, Albert C. van Rossum1, Niels van Royen1, Paul Knapen1
1VU University Medical Center, Amsterdam, Netherlands.

Background: In patients with acute myocardial infarction (AMI), coronary vasomotor function is not only impaired in the myocardial territory supplied by the culprit-artery but also in remote myocardium supplied by angiographically normal vessels. The aim was to investigate the temporal evolution of coronary vasodilatory reserve in patients with AMI by use of H215O PET, after successful percutaneous coronary intervention (PCI).

Methods: Forty-four patients with AMI and successful revascularization by PCI were included (i.e. TIMI II or III flow after coronary stenting). Subjects were examined one week and three months after AMI with H215O PET, after successful percutaneous coronary intervention (PCI).

Results: At baseline, CPR averaged 1.77 ± 0.63 in infarcted myocardium versus 2.41 ± 0.79 in remote myocardium (p < 0.001). In comparison, CPR in the control group averaged 1.41 ± 1.45 (p = 0.001 versus both). During follow-up, the CPR increased from 1.77 ± 0.63 to 2.75 ± 0.89 in infarcted myocardium (p < 0.001), and from 2.41 ± 0.79 to 2.85 ± 0.75 in remote myocardium (p = 0.001). This was predominantly due to an increase in MBF, from 1.64 ± 0.54 to 2.19 ± 0.74 mL/min/g in infarcted myocardium (p < 0.001), and 2.20 ± 0.56 to 2.61 ± 0.65 mL/min/g in remote myocardium (p = 0.001).

Conclusions: Coronary vasodilatory reserve is impaired in both ischemic and remote myocardium directly after AMI. Following successful revascularization, the coronary vasodilatory reserve significantly improved in both regions. As a consequence, these early and late post-infarct alterations in remote myocardium may also affect temporal infarct evolution and recovery of left ventricular function.

TCT-296
Routine Screening Of Coronary Artery Disease With Computed Tomography Coronary Angiography In Place Of Invasive Coronary Angiography In Patients Undergoing Transcatheter Aortic Valve Implantation
Gennaro Giustino1, Alade Chieffo2, Pietro Spagnolo2, Vasilios F. Panoulas3, Matteo Mattoranco4, Acem Lebah4, Filippo Figini5, Eastachio Acioglu6, Annalisa Franco7, Ottavio Alfieri1, Antonio Colombo1
1San Raffaele Scientific Institute, Milan, Italy, 2San Raffaiel Scientific Institute, Milan, Italy, 3San Raffaele Scientific Institute, Milano, Sleep, Milan, Italy, 4Ospedale San Raffaele, Milan, Italy, 5San Raffaele Scientific Institute, Milano, Italy, 6N/A, Milan, Italy, 7EM (GVM Centro Cuore Columbus)San Raffaele Hospital, Milan, Italy.

Background: Coronary artery disease (CAD) screening is required prior to transcatheter aortic valve implantation (TAVI). Although coronary angiography (CA) remains the gold standard for CA assessment, computed tomography coronary angiography (CTCA) could be a safe and effective non-invasive alternative. The aim of this study was to evaluate the use of computed tomography coronary angiography (CTCA) in place of invasive coronary angiography (CA) for coronary artery disease (CAD) screening in patients referred for transcatheter aortic valve implantation (TAVI).

Methods: From November 2007 to May 2013 all patients undergoing TAVI at our Institution were included in the study cohort. CTCA was used as first-line imaging tool for preoperative CAD screening. Invasive CA was only performed when any of the following were present: extensive coronary calcifications or moving artefacts not allowing proper coronary anatomy evaluation. CTCA, presence of significant CAD at CTCA and contraindications to CTCA. Outcomes were assessed according to the valvular academic research consortium (VARC-2) criteria at 30 days and 1 year.

Results: Out of 525 patients that were treated with TAVI, 482/525 (91.8%) underwent cardiac CT/CTA. Among these, 363/482 (75.3%) performed only CTCA (Group A) while 119/482 (24.6%) underwent also CA (Group B). Only 46 (8.7%) performed CA alone (Group C). Incidence of major cardiac complications such as myocardial infarction, aortic dissection and cardiac tamponade was similar among groups.

Conclusions: Cardiac CT/CTCA performed as a routine non-invasive imaging tool in patients undergoing TAVI appears safe and effective allowing, with a single test, acquisition of information on aortic annulus anatomy, peripheral access sites and evaluation of coronary anatomy.

TCT-297
CT in congenital heart disease: Novel Technique for Evaluation the bicaval pulmonary shunt
Pablo M. Pollono1, DIEGO D. GRINFELD1, Ignacio Rifourcat1
1HOSPITAL ESPANOL DE LA PLATA, LA PLATA, Argentina, 2Hospital Espanol de La Plata, La Plata, Argentina.

Background: Patients with complex congenital heart diseases requires multiple surgeries. Bicaval pulmonary shunt (Glenn and Fontan) can improve life expectancy. Sometimes dyspnea, cyanosis and severe desaturations arise from the same dysfunction. Multislice computed tomography is has been more frequently utilized in patients who underwent this surgery but indications and acquisition protocol are still not clear.

Methods: We evaluated 14 patients with antecedents of Bicaval pulmonary shunt since 2010 to April 2014. The median age was 12.8 Y/O. We used a 64 detectors CT scan Philips Medical Systems. All the patients were placed two IV line; one in a right arm and other in the leg. Infusion rates of media contrast varies depends IV line gauches (2.0 to 3.5 mL/sec). The acquisition set was divided in two: first the upper torax (Subclavuian until 2 cm below Carina) to visualize Glenn anastomosis and second the inferior torax (2 cm below diaphragm until Carina) to visualize the extracardiac conduit. Contrast media used was a 2.3±0.8 mL/Kg. With these double acquisition we tried to decrease the total radiation dose. The protocols used were done with retrospective gating reducing de mAs depends patient weight. In one procedure we can see Glenn, Fontan anatomy and function.

Results: All the studies were done without complications. We observe 7 patients with open fenestration, in one of them closure device was displaced into the atrium. In 6 patients fenestration was closed spontaneously by thrombus and calculus. In one patient anomalous suprahepatic veins drain direct in the atrium. In 2 patients venovenous fistula was detected in Azigos vein territory. 1 pte has stenting the extracardiac conduit and stent was patent. In 3 patients aorto-pulmonary collateral vessels were detected. Mean radiation dose was 7.8 mSv.

Conclusions: This acquisition of technique is safe. Its very important to perform the injection of contrast from inferior limb IV line to acquire best Fontan imagines. It can be perform in centers with trained personnel. Radiation dose and contrast media used was acceptable. Diagnostic accuracy is high and allows therapeutic decisions. More experience is needed in large patients series.

TCT-298
Predictive value of Carotid Inflammation for the Presence of Multivessel Coronary Artery Disease
Georgios Benetos1, Konstantinos Toutouzakis2, Maria Drakopoulou3, Georgios Trantalis1, Archontoulia Michelougiona1, Andreas Katrouras1, Evangelina1, Eleftherios4, Christodoulos Stefanidis4
1Athens Medical School, University of Athens, Athens, Greece, 2N/A, Holargos, Greece, 3Hippokration, Athens, IL, 4First Department of Cardiology, Athens Medical School, Athens, Greece, 5Hippokration Hospital, Athens, Attica, 6Department of Cardiac Surgery, Hippocration Hospital, Athens, Greece, 7Hippokratio Hospital, Athens, Greece, 8University of Bolton, Bolton, IL, 9Athens Medical Center, Athens, Greece.

Background: Ultrasound evaluation of carotid artery plaques has incremental value for the prediction of the presence of coronary artery disease (CAD). However, it does not provide information regarding the functional properties of carotid atheroscleros. Microwave Radiometry (MWR), a noninvasive method,