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Concept of transverse deflection probability of a parton that travels through strongly interacting medium, 
recently introduced by D’Eramo, Liu and Rajagopal, has been used to derive high energy evolution 
equation for the jet quenching parameter in stochastic multiple scatterings regime. Jet quenching 
parameter, q̂(x), appears to evolve with x, with an exponent 0.9ᾱs , which is slightly less than that of 
xG(x) where G(x) is the gluon distribution function.
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1. Introduction

The heavy-ion collision programs at CERN’s Large Hadron Col-
lider have opened new access for exploration of extreme hot and 
dense nuclear matter. Precision tomography of the nuclear mat-
ter is now becoming feasible as an accurate test of the underlying 
quantum chromodynamic (QCD) theory. This is instrumental in dis-
covering yet unexplored characteristics of various nuclear effects 
and collective phenomena that the nuclear matter may possess. 
One possibility is to explore the QCD scale/energy evolution of var-
ious observables in this extreme ambiance. Advancement of study 
for hard sector observables at the LHC elevated the medium mod-
ification of high energy jets as prevailing topic of investigation. In 
this context study on scale/energy evolution of the jet quench-
ing parameter, attributed as the stopping power of the medium 
for a certain probe of the medium, is now viable. High energy 
quarks and gluons passing through the interacting nuclear mat-
ter have their transverse momentum distribution broadened due 
to multiple scatterings with the constituents of the medium. While 
travelling through the strongly coupled medium the hard parton 
loses energy as well as its direction of momentum changes. Change 
in the direction of momentum is referred to as ‘transverse mo-
mentum broadening’ for the travelling parton. In the context of 
jet-medium interaction the broadening refers to the effect on the 
jet when the direction of the momenta of an ensemble of par-
tons changes due to the random kicks. Even though there is no 
apparent change in mean momenta, the spread of the momentum 
distribution of individual parton within that ensemble broadens.

Evolution of the momentum broadening was first studied by 
Liou, Mueller and Wu [3] by introducing radiative modification 
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over the leading order momentum broadening effect. The authors 
showed that average momentum broadening 〈p2⊥〉 has both double 
and single logarithmic terms. Both the double logarithmic terms, 
ln2(L/l0), and single logarithmic terms, ln(L/l0) are coming from 
gluon radiation induced by the medium interactions. Here the 
length of the nuclear matter is L and l0 is the size of constituents 
of the matter. Their estimation showed that the radiative contri-
bution is to be a sizeable correction to the nonradiative leading 
value of 〈p2⊥〉. Later an evolution equation has been obtained for 
the inclusive one-gluon distribution, through the concepts of clas-
sical branching process and cascade of partons [4]. This explicitly 
takes into account the dependence of the observed gluon spectrum 
upon the energy and the transverse momentum. The explicit trans-
verse momentum dependence of the splitting kernel then enables
one to identify large corrections to the jet quenching parameter. 
Subsequent studies on non-linear evolution lead to prescribe the 
renormalization of the jet-quenching parameter [5,6].

In this paper, in order to study the energy evolution of jet 
quenching parameter, we have adopted the idea of transverse de-
flection probability of a parton, that travels through the nuclear 
medium. Following a recent work by D’Eramo, Liu and Rajagopal 
[1] we then relate the momentum broadening to the S-matrix
of the nuclear interaction for a dipole. The Balitsky–Kovchegov 
equation as the evolution equation of the S-matrix is then used 
to derive high energy evolution equation for the jet quenching 
parameter in stochastic multiple scatterings regime. The known 
result of double log enhancement emerges as a special case in 
the limit when the single scattering is only contributing. Power-
counting techniques borrowed from Soft-Collinear-Effective-Theory 
(SCET) [17–20] have been used to identify the leading contribu-
tions in the stochastic multiple scatterings region. For an almost 
constant q̂(ω) we recovered the double log result (in the limit 
Q 2

s → q̂L) first derived in [3] and subsequent other studies [4–6]. 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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We have also shown that the double log enhancement gets diluted
when we go beyond single scattering limit as previously argued 
in [3]. Jet quenching parameter q̂(x) is found to evolve with x, 
slightly weaker than xG(x) where G(x) is the gluon distribution 
function.

2. Probability density for transverse deflection P (k⊥)

The transverse momentum broadening of a parton can be stud-
ied by introducing concept of a probability density, denoted in this 
article as P (k⊥). It signifies the probabilistic weight for the event 
where, after travelling a medium of length L, amount of transverse 
momentum that the parton acquired is k⊥ [1]. The probability den-
sity P (k⊥) is chosen to be normalized in the following way,∫

d2k⊥
(2π)2

P (k⊥) = 1

4π

∫
dk2⊥ P (k⊥) = 1. (1)

Using this probability density one can quickly estimate mean 
transverse momentum picked up by the hard parton per unit dis-
tance travelled,

q̂ ≡ 〈k2⊥〉
L

= 1

4π L

∫
dk2⊥ k2⊥ P (k⊥). (2)

This defines the jet broadening (or quenching) parameter q̂ that 
may have intrinsic dependence on x and Q of the probe through 
P (k⊥).

Its important to make a certain caveat when defining the jet 
quenching parameter, q̂, as done in Eq. (2). In absence of any finite 
upper bound to the integral, the right-hand side of Eq. (2) could be 
diverging, e.g., when P (k⊥) behaves as power law, P (k⊥) ∼ 1/k4⊥
in the event of lowest order perturbative gluon production at 
large-k⊥ . This gives a logarithmic UV divergence, resulting both 
average transverse momentum 〈k2⊥〉 as well as jet quenching pa-
rameter, q̂, infinite. Although, in the case of multiple scattering 
with Sudakov like form factor or in the event of multiple stochastic 
scatterings where P (k⊥) takes the form of an exponentially damp-
ing factor, right hand side of Eq. (2) should be finite even without 
any apparent upper bound in the integral.

In this paper we will discuss the event of multiple stochastic 
scatterings, where the probe receives random transverse kicks and 
P (k⊥) takes the form of a Gaussian with a variance of q̂L/2,

P (k⊥) = 4π

q̂L
exp

(
−k2⊥

q̂L

)
. (3)

In this study we are looking for transverse momentum broad-
ening of the hard parton that has initial light cone momentum 
p(p+, p−, p⊥) ∼ Q (0, 1, 0) and enters in a brick of strongly inter-
acting medium of length L. In order to do the power counting, 
we have introduced the dimensionless small parameter λ. Power 
corrections in λ to some hard process are generally suppressed in 
the presence of a hard scale, Q 2 � �2

QCD , which act as base for 
the power corrections. This is a concept borrowed from the soft
collinear effective theory (SCET) studies [17–20]. In SCET studies 
the power counting protocol is as follows, terms that are sub-
leading in two orders of magnitude can be dropped but the terms 
that are suppressed by one order of magnitude should be kept. 
While travelling through nuclear medium the hard partons inter-
act repeatedly with the Glauber gluons which scale as Q (λ2, λ2, λ). 
After a first few scatterings the hard parton’s momentum becomes 
of order Q (λ2, 1, λ), though still quite collinear. In this scenario 
of high energy regime where Glauber gluons are mostly effective, 
it has been shown in Ref. [1] that P (k⊥) can be expressed as the 
Fourier transform in r⊥ of the expectation value of two light-like 
path-ordered Wilson lines transversely separated by r⊥ ,
P (k⊥) =
∫

d2r⊥ e−ik⊥r⊥ S(r⊥), (4)

where,

S(r⊥) ≡ 1

Nc
〈 Tr [W (0, r⊥)W (0,0)] 〉, (5)

with,

W(y+, y⊥) ≡ P

⎧⎪⎨
⎪⎩exp

⎡
⎢⎣ig

L−∫
0

dy− A+ (
y+, y−, y⊥

)
⎤
⎥⎦
⎫⎪⎬
⎪⎭ . (6)

Within a dipole picture transverse separation y⊥ − y′⊥ can be 
taken as the transverse size of the dipole r⊥ . The length of the 
medium is L = L−/

√
2. In this work we have assumed that P (k⊥)

as the Fourier transform of S(r⊥) is well valid while in high en-
ergy regime i.e. at small-x and all the evolution characteristics for 
P (k⊥) exclusively contained in S(r⊥), so that we may write,

P (k⊥, Y ) =
∫

d2r⊥ e−ik⊥r⊥ S(r⊥, Y ), (7)

and,

∂ P (k⊥, Y )

∂Y
=
∫

d2r⊥ e−ik⊥r⊥ ∂S(k⊥, Y )

∂Y
, (8)

and therefore from Eq. (2),

∂q̂(Y )

∂Y
= 1

4π L

∫
dk2⊥ k2⊥

∫
d2r⊥ e−ik⊥r⊥ ∂S(r⊥, Y )

∂Y

= F̂[k⊥,r⊥]
[

∂S(r⊥, Y )

∂Y

]
. (9)

Where for brevity in notations we have introduced F̂ ,

F̂[k⊥,r⊥][O] ≡ 1

4π L

∫
dk2⊥ k2⊥

∫
d2r⊥ e−ik⊥r⊥ O. (10)

It can also be shown that,

F̂[k⊥,r⊥]
[

r2⊥ exp

(
− q̂

4
Lr2⊥

)]
= −4

L
, (11)

F̂[k⊥,r⊥]
[

r4⊥ exp

(
− q̂

4
Lr2⊥

)]
= 0. (12)

Now, the non-linear evolution of the S-matrix, S(r⊥ = y⊥ − y′⊥), 
is governed by the Balitsky–Kovchegov equation (BK) [2,7–9], in 
large-Nc limit as,

∂S(y⊥, y′⊥; Y )

∂Y
= −αs Nc

2π2

∫
d2z⊥

(y⊥ − y′⊥)2

(y⊥ − z⊥)2(z⊥ − y′⊥)2[
S(y⊥, y′⊥; Y ) − S(y⊥, z⊥; Y )S(z⊥, y′⊥, Y )

]
.

(13)

Using Eq. (9) and Eq. (13) with r⊥ = y⊥ − y′⊥ , together with fact 
that the medium is transnationally invariant, evolution equation 
for q̂(Y ), can now be written as,

∂q̂(Y )

∂Y
= −αs Nc

2π2
F̂[k⊥,r⊥][M(r⊥)], (14)

where M(r⊥) is an integral over the daughter dipoles’ transverse 
coordinates,

M(r⊥) =
∫

d2 B⊥
r2⊥

(r⊥ − B⊥)2 B2⊥
[S(r⊥, Y ) − S(r⊥ − B⊥, Y )S(B⊥, Y )] (15)
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The Balitsky–Kovchegov (BK) equation results from summing up 
long-lived soft gluon emissions, off almost onshell hard quark, 
where the gluon lifetimes usually much longer than the size of 
the target, which is taken to be a brick of size L here. The integral 
in Eq. (6) should therefore run from −∞ to +∞, which means 
that the quark, scattering on the brick, is created at time, τi = −∞, 
flies through semi-infinite empty space almost onshell while devel-
oping the gluon cascade giving the evolution of Eq. (13), scatters 
on the brick, and flies off until τ f = +∞ again developing the 
cascade [11]. Such a physical picture certainly does not apply in 
the context of jet quenching in heavy ion collisions where quark 
jets, are produced in the actual collision (at τ = 0), with a high 
virtuality Q and quickly losses the virtuality by ordered emission 
through (medium modified) DGLAP [12–14] evolution and have no 
time to develop a gluon cascade accordance with Eq. (13) before 
interacting with the plasma. In the present discussion we therefore 
presume q̂ as momentum broadening long after the quark leaves 
the brick when it again becomes almost onshell.

In the event when Y ∼ 0 the jet quenching parameter q̂0 and 
the saturation momentum Q s0 are approximately related as q̂0 ∼
4Q 2

s0/L. In the rest of the article we will evaluate Eq. (14) inside or 
around saturation region which is the region of interest relevant in 
the context of transverse momentum broadening and energy loss 
phenomenology in relativistic heavy-ion collision studies.

3. Evolution of q̂ in stochastic multiple scatterings regime

Kinematic domains where in-medium interactions can be ap-
proximated by stochastic multiple scatterings, S(r⊥) appears to be 
a Gaussian in r⊥ with variance 2/q̂L [1],

S[r⊥] = exp

[
− q̂

4
Lr2⊥

]
. (16)

Above form of S(r⊥) in terms of q̂L and r2⊥ is limited, if not 
unique, in the sense that its Fourier transform leaves again a Gaus-
sian form of P (k⊥) as given in Eq. (3) and also returns q̂ once F̂
acts over it,

F̂[k⊥,r⊥]
[

exp

(
− q̂

4
Lr2⊥

)]
= q̂. (17)

The imaginary part of the forward scattering amplitude N (r⊥) in 
the Glauber–Gribov–Mueller (GGM) multi-rescattering model [15]
also has a similar form,

N (r⊥) = 1 − exp

{
−αsπ

2

2Nc
T (b⊥)xG N

(
x,

1

r2⊥

)
r2⊥

}
, (18)

where imaginary part of the forward scattering amplitude N is 
related with S-matrix element, S(r⊥) as,

N (r⊥) = 1 − S(r⊥). (19)

As long as one is not deep inside the saturation region Eq. (18)
provides the correct form of saturation scale with the identification 
[10],

Q 2
s (b⊥) = αsπ

2

2Nc
T (b⊥)xG N

(
x,

1

r2⊥

)
∼ 1

4
q̂L. (20)

In order to calculate q̂ at strong coupling via AdS/CFT correspon-
dence, form of S as given in Eq. (16) was even taken to define 
nonperturbative, quantum field theoretic definition of jet quench-
ing parameter: q̂ is the coefficient of Lr2⊥/4 in logS for small r⊥
[16]. In this paper we have assumed form of all S in Eq. (15) as 
Gaussian in dipoles’ transverse size, with a variance of 2/q̂L, re-
tains while it goes through high-energy evolution, with the caveat 
that deep inside the saturation region this may not true. We there-
fore take S-matrices in Eq. (15) as,

S(r⊥, Y ) = exp

[
− q̂(Y )

4
Lr2⊥

]
(21)

S(r⊥ − B⊥, Y ) = exp

[
− q̂(Y )

4
L(r⊥ − B⊥)2

]
(22)

S(B⊥, Y ) = exp

[
− q̂(Y )

4
LB2⊥

]
. (23)

Its important to recall that in this region of interest just inside 
the saturation region (and multiple stochastic scatterings works 
as well) S-matrices are small, S � 1 and transverse width of 
daughter dipoles are large B⊥, B⊥ − r⊥ ≥ 1/Q s . Once we replace 
Eq. (21)–(23) in Eq. (15), M(r⊥) becomes,

M(r⊥) = exp

(
− q̂(Y )

4
Lr2⊥

)∫
d2 B⊥

r2⊥
(r⊥ − B⊥)2 B2⊥[

1 − e− 1
2 q̂(Y )L(B⊥−r⊥)B⊥

]
. (24)

However, the Gaussian assumptions of Eq. (21)–Eq. (23) may 
not correct at low-x both at small and large r⊥ . Small-x evolution 
leads to anomalous dimension modifying the power of r⊥ from r2⊥ . 
This means that q̂ in Eq. (21)–Eq. (23) is not a function of Y , 
but more appropriately is the initial condition of q̂(Y ) at Y = 0. 
Therefore, Eq. (24) should be understood as one step of BK evolu-
tion, where daughter dipoles interact through Glauber gluons are 
approximated by Gaussians in Eq. (21)–Eq. (23). The subsequent 
evolution equations should then be understood as a fairly crude 
approximation of the actual evolution.

Now, around the saturation line, the dipole size r⊥ ∼ 1/Q s0, 
and B⊥, (B⊥ − r⊥) � 1/Q s(Y ) (however they are still well be-
low 1/�QCD). We will further assume that transverse size of the 
daughter dipole (∼ inverse of the gluon’s transverse momen-
tum) is much larger than the transverse size of the parent dipole 
i.e. B⊥, (B⊥ − r⊥) � r⊥ . With appropriate limits in the integral, 
Eq. (24) then can be written as,

M(r⊥) = exp

(
− q̂(Y )

4
Lr2⊥

)
π r2⊥

1/�2
QCD∫

1/Q 2
s (Y )

dB2⊥
B4⊥

[
1 − e− 1

2 q̂(Y )LB2⊥
]
. (25)

Integral in Eq. (25) is so converging that the upper limit may be 
taken at infinity instead of 1/�2

QCD , leaving the integral Idip as,

Idip ≡
∞∫

1/Q 2
s (Y )

dB2⊥
B4⊥

[
1 − e− 1

2 q̂(Y )LB2⊥
]

= Q 2
s (Y )

{
1 − exp

(
−1

2

q̂(Y )L

Q 2
s (Y )

)

−1

2

q̂(Y )L

Q 2
s (Y )

Er

(
−1

2

q̂L

Q 2
s (Y )

)}
, (26)

where ‘Er’ is the Exponential Integral function. Using Eq. (26) one 
can now derive the evolution equation of the jet quenching pa-
rameter in stochastic multiple scatterings regime just around satu-
ration line as,
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∂q̂(Y )

∂Y
= αs Nc

π

2Q 2
s (Y )

L

[
1 − exp

(
− q̂(Y )L

2Q 2
s (Y )

)

− q̂(Y )L

2Q 2
s (Y )

Ei

(
− q̂(Y )L

2Q 2
s (Y )

)]
.

(27)

Eq. (27) can be written in terms of incomplete gamma function
	(n, a),

∂ ln q̂(Y )

∂Y
= ᾱs

[
1

2E

(
1 − e−2E

)
+ 	(0,2E)

]

= ᾱs

[
ln 2+γE − ln

1

E
+ 1

2E

(
1 − e−2E

)
+

∞∑
k=1

(−E)k

k(k!)

]

(28)

where,

E = 1

4

q̂(Y )L

Q 2
s (Y )

, (29)

with ᾱs = αs Nc/π . Around E ∼ 1, solution of Eq. (28) can be ap-
proximately estimated as,

q̂(x) ∝
(

1

x

)0.9ᾱs

. (30)

Jet quenching parameter q̂(x) therefore evolves with x, with an ex-
ponent 0.9 ᾱs , which is just slightly less than that of xG(x) where 
G(x) is the gluon distribution function.

3.1. Special case: double log enhancement

For smaller dipole with r⊥ � 1/Q s the imaginary part of for-
ward scattering amplitude N is small, and saturation and unitar-
ity bound effects are not that very important. Principle of color 
transparency ensures that the forward scattering amplitude N ap-
proaches to zero (S-matrix, S , goes to one). This allows us to take 
that N � 1 for small dipole size even when small-x evolution is 
included. For N � 1 we can linearise Eq. (24) as,

M(r⊥) = q̂(Y )

2
L exp

(
− q̂(Y )

4
Lr2⊥

)
∫

d2 B⊥
r2⊥

(r⊥ − B⊥)2 B2⊥
[(B⊥ − r⊥)B⊥] . (31)

In the limit of r⊥ � B⊥ , Eq. (31) can be further simplified,

M(r⊥) = π
q̂(Y )

2
Lr2⊥ exp

(
− q̂(Y )

4
Lr2⊥

)∫
dB2⊥
B4⊥

B2⊥. (32)

In a dipole system when a single real gluon emits, the gluon can 
be characterized by its energy, ω, and transverse size, B⊥ , that 
it makes with the (anti)-quark legs of the parent dipole having 
transverse size r⊥ . When B⊥ � r⊥ the probability of emitting a 
gluon with given energy ω goes as r2⊥dB2⊥/B4⊥ . Despite being non 
logarithmic and converging, the integral becomes logarithmically 
diverging once the single scattering in included which gives an ad-
ditional B2⊥ in the numerator [3]. This is evident from Eq. (32)
which together with the logarithm coming from energy ω inte-
gral gives double logarithmic contribution to the modification in 
transverse momentum broadening and so as for the jet quenching 
parameter. Substituting Eq. (17) and Eq. (32) in Eq. (14) gives the 
Y evolution of jet quenching parameter,

∂q̂(Y )

∂Y
= αs Nc

π

∫
dB2⊥
B2

. (33)

⊥

Integral Eq. (33) can be compared with Eq. (26) of [3] and 
Eq. (4.35) of [5]. This double log enhancement, first derived in [3]
and subsequent later studies [4–6], need to be supplemented with 
appropriate kinematic limits of the integral both for B⊥ and ω.

In order to fix the kinematic limits for the energy w and B⊥
here we follow the arguments made in [3] to isolate the region 
of double log enhancement. Two conditions have to be satisfied in 
order to achieve the double log enhancement. Firstly, the inverse 
transverse size of the daughter dipole 1/B2⊥ (∼ transverse mo-
mentum of the emitted gluon) needs to be just below saturation 
momentum Q s but sufficient large that the multiple scattering is 
not important and one can linearise Eq. (15) with confidence. Sec-
ondly lifetime of the fluctuations (∼ formation time of the emitted 
gluon) τ ∼ ωB2⊥ has to be greater than nucleon size l0, and less 
than the length of the medium L. Inverse transverse size of the 
daughter dipole is however well above the saturation scale Q s

which ensures r2⊥ � B2⊥ .

r2⊥ � 1

Q 2
s

≤ B2⊥ ≤ 1

q̂l0
� 1

�2
QCD

(34)

l0 ≤ ωB2⊥ ≤ L (35)

Eq. (35), together with the condition that B⊥ have to be suffi-
ciently small so that one can linearise Eq. (15), q̂LB2⊥ ≤ 1, implies,

l0
B2⊥

≤ ω ≤ 1

q̂B4⊥
. (36)

As ∂/∂Y ≡ ω∂/∂ω double logarithmic enhancement of jet quench-
ing parameter in high energy would be,

�q̂ = αs Nc

π

1/q̂(ω)B4⊥∫
l0/B2⊥

dω

ω
q̂(ω)

1/q̂(ω)l0∫
1/Q 2

s

dB2⊥
B2⊥

= ᾱs

2
q̂(0) log2 Q 2

s

q̂l0
, (37)

where ω integration has been performed before the B⊥ integra-
tion. For an almost constant q̂(ω) we recovered in Eq. (37) the 
double log result (in the limit Q 2

s → q̂L) first derived in [3] and 
subsequent other studies [4–6]. This double log enhancement how-
ever diluted by multiple scattering effects [3] as evident from 
Eq. (28).

4. Summary and outlook

There are ongoing phenomenological efforts to extract val-
ues for the jet transport parameter q̂ at various central heavy-
ion collisions done at various energies for prevailing energy loss 
models. Here parameters for the medium properties are con-
strained by experimental data on the nuclear modification fac-
tor R A A [21]. Following a recent work by D’Eramo, Liu and Ra-
jagopal [1] we have introduced the concept of transverse deflec-
tion probability of a parton, that travels through strongly interact-
ing medium, and derived high energy evolution equation for the 
jet quenching parameter in stochastic multiple scatterings regime, 
which is the region of interest in the context of jet quenching 
phenomenology of the heavy-ion collider experiments. The Bal-
itsky–Kovchegov (BK) equation, as the evolution equation of the 
S-matrix, is used to derive high energy evolution equation for 
the jet quenching parameter. We have shown that q̂(x) evolves 
with small x, with an exponent ∼ 0.9 ᾱs , which is just slightly 
less than that of xG(x) where G(x) is the gluon distribution func-
tion. The known result of double log enhancement emerges as a 
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special case in the limit when the single scattering is only con-
tributing.

In this article Eq. (7)–Eq. (10) constitute a complete set of 
equations needed to determine the energy dependence of q̂. To 
date there is no complete exact analytical solution of BK equa-
tion. Although there are several approximate analytical solutions, 
along with some numerical solutions. One can therefore use the 
approximate analytical solutions, e.g., solution outside the satura-
tion region which exhibits extended geometric scaling or solution 
inside the saturation region, the Levin–Tuchin solution [22], that 
exhibits complete geometric scaling [23] to calculate the energy 
evolution of jet quenching parameter. As an obvious consequence 
of the scaling, one could end up finding energy-dependence is 
proportional to saturation momentum, Q s(Y ), i.e., q̂(Y ) ∼ Q 2

s (Y ). 
The result could therefore modify at deep inside the saturation 
regions and also in the event when the LPM effect modifies the 
spectrum strongly. Both the issues which may farther squeeze the 
evolution of jet quenching parameter, will be explore in a future 
effort.
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