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Chronic alcohol consumption results in hepatotoxicity, steatosis, hypoxia, increased expression of inducible
nitric oxide synthase (iNOS) and decreased activities of mitochondrial respiratory enzymes. The impact of
these changes on cellular respiration and their interaction in a cellular setting is not well understood. In
the present study we tested the hypothesis that nitric oxide (•NO)-dependent modulation of cellular respira-
tion and the sensitivity to hypoxic stress is increased following chronic alcohol consumption. This is impor-
tant since •NO has been shown to regulate mitochondrial function through its interaction with cytochrome c
oxidase, although at higher concentrations, and in combination with reactive oxygen species, can result in
mitochondrial dysfunction. We found that hepatocytes isolated from alcohol-fed rats had decreased mito-
chondrial bioenergetic reserve capacity and were more sensitive to •NO-dependent inhibition of respiration
under room air and hypoxic conditions. We reasoned that this would result in greater hypoxic stress in vivo,
and to test this, wild-type and iNOS−/− mice were administered alcohol-containing diets. Chronic alcohol
consumption resulted in liver hypoxia in the wild-type mice and increased levels of hypoxia-inducible factor
1α in the peri-venular region of the liver lobule. These effects were attenuated in the alcohol-fed iNOS−/−

mice suggesting that increased mitochondrial sensitivity to •NO and reactive nitrogen species in hepatocytes
and iNOS plays a critical role in determining the response to hypoxic stress in vivo. These data support the
concept that the combined effects of •NO and ethanol contribute to an increased susceptibility to hypoxia
and the deleterious effects of alcohol consumption on liver.
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1. Introduction

It has been shown that nitric oxide (•NO) regulates several mito-
chondrial functions, including respiration and biogenesis. These new in-
sights have led to a deeper understanding of the cross talk between •NO
signaling pathways and major regulatory and metabolic pathways in
the cell [1,2]. For example, mitochondrial biogenesis can be regulated
by the soluble guanylate cyclase pathway and •NO can modulate the
response to hypoxia, depending on its concentration, through both
mitochondrial-dependent and independent pathways [3–5]. However,
under conditions associatedwith inflammation, increased reactive oxy-
gen species (ROS)will decrease the concentration of •NOavailable to in-
teractwith cytochrome c oxidase and participate in reactionswith other
reactive species to generate secondary products that impair mitochon-
drial function through oxidation, nitration, and inactivation of mito-
chondrial proteins [6–8]. Chronic exposure to alcohol is particularly
interesting in this respect since hepatotoxicity is associatedwith hypox-
ia, increased reactive nitrogen species (RNS) through induction of iNOS,
protein nitration and lipid oxidation [9–12]. These oxidants are associ-
ated with oxidative damage to the mitochondrial respiratory chain
and mtDNA particularly complexes I and II [7,10–15].

A role for the •NO-cytochrome c oxidase pathway in regulating
oxygen (O2) gradients has also been proposed based upon both theoreti-
cal modeling and the observation that •NO is a more effective inhibitor of
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the most actively respiring (State 3) mitochondria [16,17]. This suggests
that under normal conditions, the binding of •NO to cytochrome c oxidase
limits O2 consumption in themost actively respiring tissues, extendingO2

gradients in organs such as the heart or liver [7,16,17]. Since alcohol-
dependent hepatotoxicity is associated with increased superoxide and
induction of iNOS it is likely that peroxynitrite is formed [10–12,18].
Indeed, we have recently shown that amelioration of mitochondrial
oxidant stress with a mitochondrial antioxidant, probably through scav-
enging peroxynitrite, can inhibit HIF-1α activation in response to chronic
alcohol (EtOH) consumption [19]. Moreover, in response to ethanol
(EtOH)-dependent hepatotoxicity, isolated liver mitochondria become
more sensitive to respiratory inhibition by •NO [12,15]. This will further
contribute to tissue hypoxia and oxidative stress through increasing
production of superoxide within the respiratory chain [20]. In addition,
it is now clear that as the tissue becomes hypoxic the respiratory chain
is capable of generating superoxide at complex III which is also modified
in ethanol-dependent hepatotoxicity [21,22].

Previous studies have shown that chronic EtOH consumption causes
marked bioenergetic defects in both peri-venous and peri-portal hepato-
cytes. Upon exposure to hypoxia, which occurs in EtOH-induced hepato-
toxicity, these defects becomemore pronounced and are associated with
decreased aerobic and anaerobic ATP production [23–26]. Interestingly, it
is now clear that mitochondria do not generally function close to their
maximal respiratory function (State 3 in isolated mitochondria) in cells
but a more intermediate respiratory state we have termed “state appar-
ent” [27–29]. We have proposed that decreases in the specific activity of
mitochondrial respiratory chain proteins decrease the bioenergetic
reserve or spare capacity but this has not been shown in vivo. This is im-
portant given that it makes the cell potentially more susceptible to stress
since we and others have shown reserve capacity is used at times of
oxidative stress or increased work load [28–30]. Previous studies have
shownwith isolatedmitochondria that the specific activities and respira-
tory control ratio of mitochondria isolated from alcohol treated animals
are decreased [15,31]. Based on this, we hypothesized that hepatocytes
from chronic ethanol-fed animals will have a decreased reserve capacity.
Furthermore, since the reserve capacity is decreased then mitochondria
will be metabolically more active and closer to State 3 to maintain
bioenergetic homeostasis under which conditions mitochondria are
more sensitive to NO [29]. We hypothesized that the sensitivity to NO-
dependent inhibition would therefore increase and this would be
exacerbated by hypoxia (which is a feature of alcohol-dependent hepato-
toxicity). In support of this it has been shown that inducible nitric oxide
synthase (iNOS) is known to be increased in response to EtOH consump-
tion, andmitochondria isolated from EtOH-treated animals aremore sus-
ceptible to •NO-dependent inhibition of respiration [12,15]. Given that
induction of iNOS is also associated with protein nitration, we reasoned
that ˙NO would exacerbate the effects of hypoxia and pathological
effects of alcohol in the hepatocytes from EtOH-exposed animals
[6,9,10,32].

In support of this concept, we and others have demonstrated that
EtOH-dependent hepatotoxicity is suppressed in iNOS−/− animals
[10,12]. These data suggest an important link between increased
•NO formation from iNOS during chronic EtOH intoxication, enhanced
sensitivity of mitochondrial respiration to •NO, and hypoxia. The
adaptive response to hypoxia is orchestrated through hypoxia-inducible
factor-1 (HIF-1), [33]. The effects of NO and iNOS on hypoxia and cellular
bioenergeticswere tested in amodel of chronic EtOH-induced hepatotox-
icity using hepatocytes isolated from Sprague–Dawley rats and studies
examining effects in liver tissue from C57BL/6 and iNOS−/− mice.

2. Materials and methods

2.1. Reagents and antibodies

All chemicals were purchased from Sigma-Aldrich (St.-Louis, MO)
unless stated otherwise and were of the highest grade available.
2.2. Alcohol feeding

Male Sprague–Dawley rats or wild type (C57BL/6) and iNOS−/−

(B6.129P2-NOS2 tm/lau) mice were pair-fed an isocaloric liquid
diet, with and without ethanol (4% for mice and 5% for rats), for 5–
6 weeks as described previously [12,22]. EtOH consumption was uni-
form throughout the study between wild type and iNOS−/− mice
(data not shown). Animals were handled in accordance to “The
Guide for the Care and Use of Laboratory Animals” approved by the
Institutional Animal Care and Use Committee at the University of
Alabama at Birmingham.
2.3. Hepatocyte preparations

Primary rat hepatocytes were isolated as previously described
[23]. The viability of hepatocytes at isolation was 93±1% and was
not different between control and EtOH-fed rats. In initial experi-
ments we found that the efficiency of adherence for the ethanol trea-
ted cells was variable and compensated for this difference by seeding
with a higher number of cells than the control. However, this resulted
in experimental variation in the basal O2 consumption between hepa-
tocyte preparations. Where feasible, this was corrected for by mea-
surement of protein levels in the wells. To allow comparison of the
data between conditions, changes are therefore expressed as a% of
the basal OCR in each case and the range of OCR consumption in the
individual experiments reported in the text.
2.4. Immunoblot analysis

Briefly, hepatocyte homogenates (20 μg) were separated using
12.5% SDS-PAGE followed by immunoblotting onto nitrocellulose.
Antibody dilutions were 1/3000 for CYP2E1 (Millipore, Billerica,
MA), 1/5000 for porin/VDAC (Invitrogen Carlsbad, CA), and 1/2000
for cytochrome c oxidase subunit IV (CcOX-IV) (Invitrogen Carlsbad,
CA) in Tris-buffered saline containing 0.05% Tween-20 followed by
HRP-conjugated anti-rabbit or anti-mouse secondary antibodies (GE
Healthcare, Piscataway, NJ). The efficiency of protein loading and pro-
tein transfer was monitored using Ponceau S staining which was then
used for normalization. The intensities of protein bands were quanti-
fied prior to image saturation using AlphaEaseFC software (Alpha
Innotech, Santa Clara, CA).
2.5. Mitochondrial bioenergetics and enzyme activities

Citrate synthase and CcOX activities were measured as previously
described [13,22]. Citrate synthase activities are expressed in units of
enzyme activity, where 1 unit=1 μmol thionitrobenzoate generated/
min. CcOX activities are expressed in k/s, where k is the first order
rate constant for the oxidation of cytochrome c. An XF24 analyzer
(Seahorse Bioscience, Billerica, MA) was used to measure hepatocyte
O2 consumption [29]. Hepatocytes from control and EtOH-fed rats
were adhered to collagen-coated V7 plates (Seahorse Bioscience)
for 24 h. The seeding density was optimized for both control and
EtOH-fed rat hepatocytes (Supplemental Fig. 1), with 20,000
and 40,000 cells/well chosen for control and EtOH groups, respectively.
XF24 assayswere performed in unbufferedDMEM(pH7.4) supplemen-
ted with 5.5 mM D-glucose, 1 mM sodium pyruvate, and 4 mM L-
glutamine. Cellular mitochondrial function was measured as described
previously using sequential injections of oligomycin (1 μg/mL),
carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP, 0.3 μM),
and antimycin A (10 μM) plus rotenone (1 μM) [29]. The concentrations
used were determined by titrating to yield their optimal effects (data
not shown).
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2.6. Hypoxia exposure

To measure the effect of changing O2 tension on hepatocyte respi-
ration, an XF24 analyzer was placed in a sealed glove box (Plas-Labs,
Lansing, MI) equilibrated to 1% O2 (11.5 μM O2) via repeated cycles of
vacuuming the chamber and refilling it with argon. The OCR of hepa-
tocytes was then measured over time as the O2 tension of the media
decreased during equilibration from room air to 1% O2.

2.7. Immunohistochemistry

After EtOH treatment, mice were administered pimonidazole
(120 mg/kg) in saline (1 mL/kg) via tail vein injection and then anes-
thetized after 60 min with ketamine:xylazine (60:10 mg/kg i.p) [34].
Livers were harvested, fixed in 10% buffered formalin and paraffin-
embedded. Five micron sections were deparaffinized with xylene
and rehydrated with a graded series of EtOH washes. After briefly
treating with 0.01% protease (pronase E) and blocking with serum-free
protein block, sectionswere incubatedwithmouse anti-pimonidazole an-
tibody (1:50) for 40 min at room temperature. Sections were then
blocked again for 10 min with 5% BSA in PBS, washed, and incubated
with Alexa Fluor® 350-conjugated anti-mouse secondary (Invitrogen).
Nuclei were counterstained with Oregon Green® 488-conjugated anti-
rabbit antibody (Invitrogen). Images were acquired using a Leica fluores-
cent microscope with IPLAB Spectrum (Scanylytics, CA). The intensity of
fluorescence was quantified by using SIMPLEPCI software (Compix,
Cranberry Township, PA). HIF-1α levels were also assessed using
formalin-fixed sections. Antigen unmaskingwas performed by incubat-
ing with 0.1 M sodium citrate (pH 6.0). Sections were washed,
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Fig. 1. Effect of alcohol (EtOH) consumption on mitochondrial protein levels and activity. (A
fed rats. The activity is expressed as the first order rate constant for the oxidation of reduce
EtOH-fed rats and the activity is expressed as the formation of thionitrobenzoate (TNB). (
(CcOX-IV), voltage-dependent anion channel (VDAC), and β-actin from primary hepatocytes
etry for the different proteins normalized to total protein and expressed as the fold change vs
incubated for 1 h with 10% goat serum, followed by overnight incuba-
tion at 4 °C with anti-HIF-1α antibody (1:50, Novus Biologicals, Little-
ton, CO). Sections were then blocked and developed with secondary
antibody as described above.

2.8. Nitric oxide measurement

The initial rates of NO production from DetaNONOate were
measured polarographically after addition to the media used for the
bioenergetics experiments as described in [35] and shown in Supple-
mental Fig. 3. Since NO reacts with oxygen, the initial rate was select-
ed to estimate the levels of NO being produced since this is essentially
insensitive to oxygen in the media.

2.9. Statistics

Data are expressed as mean±SEM. Experiments were performed
using primary hepatocytes or liver tissue isolated from 6 pairs of con-
trol and EtOH-fed rats or wild type and iNOS−/− mice, respectively.
Statistical significance was determined using Student's t-test, with
statistical significance set at pb0.05.

3. Results

3.1. Indices of chronic EtOH consumption in isolated hepatocytes

The activity and levels of key enzymes were determined from
hepatocytes isolated from control and EtOH-fed rats. As reported pre-
viously for total liver homogenates and isolated mitochondria, EtOH
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consumption causes a decrease in the activity of cytochrome c
oxidase (CcOX) and protein subunits whereas the levels of citrate
synthase are unchanged (Fig. 1A, B, C). Protein levels of the outer
mitochondrial membrane protein VDAC were not changed by EtOH
consumption (Fig. 1C, D). Liver cytochrome P450 2E1 (CYP2E1) pro-
tein levels increased in response to chronic EtOH consumption, as
expected (Fig. 1C, D).

3.2. Primary hepatocytes show altered cellular bioenergetics in response
to chronic EtOH exposure

In order to determine if chronic EtOH consumption causes alter-
ations in hepatocyte bioenergetics, mitochondrial function was mea-
sured using the XF24 analyzer. Chronic EtOH consumption had no
effect on the basal OCR, ATP-linked OCR, or proton leak of hepato-
cytes (Fig. 2A, B, C). The proton ionophore FCCP (0.3 μM) was then
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Fig. 2. Chronic alcohol (EtOH) consumption decreases mitochondrial respiratory function
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assuming that the OCR in the presence of oligomycin represents
State 4 respiration (limited by availability of ADP) and the rate
after FCCP an estimate of State 3 respiration (unconstrained by
ADP). This value we have termed state apparent [29] and is 3.8±
0.02 (mean±S.E.M, n=5) in control hepatocytes, which is very
close to 4 (equivalent to State 4 in isolated mitochondria), and de-
creases to 3.5±0.01 (mean±S.E.M., n=3, p≤0.001) in hepatocytes
isolated from rats after chronic ethanol consumption.

3.3. Chronic EtOH exposure increases the sensitivity of hepatocytes to
˙NO-mediated inhibition of respiration

We and others have previously shown that isolated mitochondria
in State 3 respiration are substantially more sensitive to inhibition by
•NO than those in State 4 and that liver mitochondria isolated after
chronic ethanol consumption are more sensitive to inhibition of
respiration by •NO [16,36,37]. The effect of •NO on mitochondrial re-
spiratory function of primary hepatocytes isolated from control and
EtOH-fed rats was then assessed using the •NO donor DetaNONOate
(DetaNO). Under these conditions the rate of •NO release was deter-
mined using an •NO electrode and found to be dependent on the con-
centration of DetaNONOate and ranged from 1.8±0.4 to 6.1±
0.06 nM/s (supplementary Fig. 3). This is similar to the values
(approximately 3.5 nM/s) reported for iNOS-dependent •NO release
in Kupffer cells which are a major source of NO in the liver [38–40].
Concentrations of •NO metabolites in liver and plasma are elevated
in the μM range after alcohol consumption and have been reported
to be as high as 2.5 μM [11,41]. As shown in Fig. 3A, hepatocytes
from control and EtOH-fed rats were exposed to 500 μM DetaNO
(4.3±0.6 •NO nM/s) for 4 h while monitoring the OCR, followed by
the evaluation of mitochondrial function. As shown in Fig. 3, EtOH
consumption did not change basal OCR (Fig. 3B) but decreased the
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maximal respiration (Fig. 3D). However, hepatocytes from EtOH-fed
rats treated with DetaNO exhibited a progressive decrease in the
basal OCR after approximately 2 h exposure to the •NO donor, result-
ing in a 40% inhibition after 4 h (Fig. 3A, B). Following oligomycin
injection, the EtOH-exposed hepatocytes treated with DetaNO also
showed a significant decrease in ATP-linked OCR and proton leak
(Fig. 3C), while EtOH consumption alone had no effect.

The maximal OCR and reserve capacity of primary hepatocytes
isolated from control and EtOH-fed rats was assessed using FCCP,
and was severely suppressed by •NO in the EtOH treated animals
(Fig. 3D, E). Chronic EtOH consumption again resulted in a slight
decrease in non-mitochondrial OCR (Fig. 3F) which was insensitive
to the addition of DetaNO. Viability of the hepatocytes was assessed
following the experiments and was found to be unaltered by DetaNO
treatment (data not shown).

3.4. Alterations in hepatocyte respiration in response to hypoxia and ˙NO
are exacerbated by chronic EtOH consumption

The effect of hypoxia on the mitochondrial bioenergetics of prima-
ry hepatocytes was also determined using the XF24 analyzer. To
achieve this, cells were plated with media equilibrated to room air
and then placed into an XF24 analyzer positioned in a sealed chamber
with an atmosphere of 1% O2. The O2 levels in the cell culture plate
were then allowed to reach equilibrium with the atmosphere in the
hypoxia chamber. The media O2 concentration was measured every
8 min in the individual wells containing cells and decreased exponen-
tially over 2–3 h as the media reached equilibrium with the atmo-
sphere in the hypoxia chamber (Fig. 4A). After approximately
160 min, the rate of change in O2 concentration was slower resulting
in minimal level of approximately 20 μM for the course of the exper-
iment. Over the same time course, the basal OCR of control hepato-
cytes was measured and remained unchanged for the first 60 min
corresponding to an O2 concentration of approximately 60 μM, after
which it began to decrease progressively (Fig. 4B). In contrast, hepa-
tocytes from EtOH-fed animals showed less dependence on changing
O2 concentrations and a higher rate of oxygen consumption com-
pared to controls at all oxygen tensions below 40 μM (Fig. 4 C). To
determine the effect of •NO on the OCR of control hepatocytes in hyp-
oxia, 250 μM–1 mM DetaNO was added to the cells immediately prior
to beginning the XF assay. Control hepatocytes were essentially resis-
tant to exposure to •NOunder hypoxic conditions, with only the highest
levels of DetaNO (500 μM–1 mM) modestly decreasing OCR below
untreated control hepatocyte levels after 2 h. In contrast, hepatocytes
isolated from EtOH-fed rats were much more sensitive to •NO-induced
inhibition of OCR at lower O2 tensions than the control hepatocytes.

Changes in OCR in control and EtOH hepatocytes were then plot-
ted as a function of the O2 measured in the media at the indicated
time points. As shown in Fig. 5A, •NO treatment caused a right shift
of the O2 dependency curve in control cells and was independent of
the rate of NO release. As shown in Fig. 5B hepatocytes isolated
from EtOH-fed animals showed a dose-dependent shift of OCR inhibi-
tion by DetaNO under low O2 tensions. While increasing concentra-
tions of DetaNO caused a slight increase in the EC50 for the
dependence of OCR on O2 in control hepatocytes, the EC50 of EtOH-
fed hepatocytes was significantly higher in response to increasing
concentrations of ˙NO released from DetaNO (Fig. 5C).

3.5. EtOH-induced hypoxia in the liver is iNOS-dependent

Because •NO inhibits O2 consumption in primary hepatocytes
isolated from EtOH-fed rats, we determined the effect of endogenous
•NO production on chronic EtOH-mediated hypoxia. In order to
manipulate •NO levels in vivo, we fed wild-type C57BL/6 and iNOS−/−

mice on a C57BL/6 background control and EtOH-containing diets[12].
Using the hypoxiamarker pimonidazole,weused immunohistochemistry
to visualize the in vivo O2 gradients in liver sections isolated from control
and EtOH-fed wild type and iNOS−/− mice.

In normal, healthy liver, the most hypoxic zone is zone 3, the peri-
central zone. A significant increase in pimonidazole binding was seen
in the zone 3 region in liver of EtOH-fed wild-type mice, which
extended into the mid-zonal and peri-portal regions compared to
controls (Fig. 6A). These data are indicative of the development of
peri-portal and peri-central hypoxia due to chronic EtOH consump-
tion. In contrast, livers from EtOH-fed iNOS−/− mice exhibited a sig-
nificant decrease in pimonidazole binding (i.e., less zonal hypoxia)
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in the peri-portal regions, and when staining was present it was local-
ized in the peri-central region of the liver lobule (Fig. 6A). Livers from
control-fed wild type and iNOS−/− mice showed minimal pimonida-
zole staining, indicating that there is a lower level of hypoxia in the
absence of chronic EtOH exposure. Sections incubated with pre-
immune sera or without the primary antibody for pimonidazole
adducts showed less background staining as seen in control livers
(data not shown). Quantitative analysis of images showed a 5.5 fold
increase in pimonidazole staining in wild-type mice on the EtOH
diet compared to their pair-fed controls, whereas the lack of iNOS
expression attenuated the EtOH-dependent pimonidazole staining
by 60% as compared to wild-type animal consuming EtOH (Fig. 6B).

Given that HIF-1α stabilization has also been shown to be modu-
lated by •NO [42], we used immunohistochemistry to examine HIF-1α
in liver from iNOS−/− and wild-type mice fed the control and EtOH
diets. Consistent with pimonidazole staining, there was increased
HIF-1α staining in the liver peri-central region from EtOH-fed wild-
type mice as compared to pair-fed controls (Fig. 6C). Interestingly,
there was a significant decrease in HIF-1α staining in the liver peri-
central region from EtOH-fed iNOS−/− mice as compared to EtOH-
fed wild-type mice (Fig. 6C). These results implicate a role of iNOS
in the response to chronic EtOH consumption and the development
of tissue hypoxia in vivo. Both controls had negligible background
staining. Fig. 6D depicts the quantitative analysis of HIF-1α levels in
liver of all treatment groups.

EtOH is metabolized predominantly by the enzymes CYP2E1 and
alcohol dehydrogenase; acetaldehyde, the main product of EtOH me-
tabolism, is then metabolized by aldehyde dehydrogenase 2 (ALDH2)
[43,44]. We therefore examined the effect of chronic EtOH consump-
tion on CYP2E1 and ALDH2 expression in iNOS−/− and wild-type
mice to rule out any potential alterations in the expression of these
enzymes. CYP2E1 expression was significantly increased after EtOH
feeding in wild-type and iNOS−/− mice (Supplemental Fig. 2A).
ALDH2 protein was equal between control and EtOH groups and ge-
notypes (Supplemental Fig. 2B). As expected the expression of these
proteins did not change in the iNOS−/− animals consuming
ethanol, confirming that nitric oxide does not play a role in the
metabolism of ethanol.

4. Discussion

Mitochondrial dysfunction is an important feature of chronic
EtOH-induced hepatotoxicity and is associated with changes in the
mitochondrial proteome and damage to mitochondrial DNA [22,45].
These changes result in decreased mitochondrial ATP production
which, when combined with an EtOH-dependent decrease in glyco-
gen levels and utilization, lead to compromised liver bioenergetics
[23–25]. While chronic EtOH consumption causes mitochondrial dys-
function [46,47], the effects of EtOH toxicity on different parameters
of mitochondrial function and the impact of •NO on mitochondrial
function within intact hepatocytes remain unclear. Previously, we
have shown that after chronic ethanol consumption respiration in
isolated mitochondria is more sensitive to •NO-dependent inhibition
[15]. Interestingly, this effect is likely a consequence of the long
term exposure of mitochondria in vivo to ROS/RNS, particularly per-
oxynitrite, since increased mitochondrial sensitivity to •NO is absent
in iNOS−/− mice after chronic alcohol consumption (23).

In the first series of experiments we demonstrated that the hepa-
tocyte isolation procedure used did not preferentially select for a
healthy population of cells because hepatocytes from ethanol-fed
rats exhibited decreased mitochondrial function and induction of
CYP2E1. In both cases, the decrease in CcOX and increased levels of
CYP2E1 are essentially identical to those found in liver homogenates
from ethanol-fed rats. In the current study, we found basal mitochon-
dria respiration was unaffected by chronic EtOH consumption;
however, hepatocytes from EtOH-fed rats exhibited a significant
decrease in maximal OCR and reserve capacity in air-equilibrated
buffer (Fig. 2E, F). The fact that the basal OCR is not affected by
EtOH consumption suggests that in the absence of an additional
stressor such as •NO, the bioenergetic needs of the cell can be met,
even though the mitochondria are in a more activated respiratory
state with a state apparent much closer to State 3. It is now clear
that in a cellular context, mitochondria function at an intermediate
respiratory state which is below the maximal capacity of respiratory
chain and in control hepatocytes this is close to State 4 [28,29]. This
bioenergetic reserve capacity can be used for any energetic process
that makes demands upon the cell including protection against oxida-
tive stress. We have shown that if reserve capacity is diminished then
cells become more susceptible to toxicity mediated by RNS or toxic
lipids such as 4-hydroxynonenal [28,29]. Importantly, we and others
have shown that mitochondria in the State 3 respiratory condition
are more sensitive to •NO-dependent inhibition of respiration
[16,36,37,48]. Because chronic EtOH consumption is associated with
increased ROS/RNS from different sources within the cell, this finding
leads to the hypothesis that hepatocytes from EtOH-fed animals are
less tolerant to the secondary stress of increased •NO generated by
the activated Kupfer cells in the liver.

Importantly, increased iNOS leads to the increased production of
•NO, which can inhibit mitochondrial respiration reversibly at CcOX
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and irreversibly once combined with superoxide to form peroxyni-
trite. This generation of peroxynitrite leads to post-translational mod-
ifications of other respiratory complex proteins, which can inhibit
function and/or respiration [32,49,50]. We found that the inhibition
of mitochondrial function by chronic EtOH consumption was further
exacerbated by exposure to •NO (Fig. 3). The combination of chronic
EtOH and •NO decreased the total available mitochondrial function
to the point that there was only negligible reserve capacity remaining
(Fig. 3E, F). Moreover, the basal OCR was also decreased significantly
below the unstressed hepatocytes or those which were stressed with
either •NO or chronic EtOH exposure alone (Fig. 3B). We have previ-
ously reported the loss of reserve capacity after acute exposure of
cells to •NO in endothelial cells and demonstrated that this is revers-
ible and due to the inhibition at CcOX [29]. In the present study we
did not test the reversibility of the loss of reserve capacity and cannot
rule out an affect of peroxynitrite in irreversibly modifying the respi-
ratory chain. With this said, these data support the concept that the
reserve capacity may indeed serve as a protective buffer of available
mitochondrial function, enabling the cells to maintain the bioenergetic
function necessary tomaintain overall cellular function even after being
exposed to acute stressors.
This loss of reserve capacity in EtOH-exposed hepatocytes upon
treatment with •NO becomes even more important when hepatocytes
are subjected to low O2 tensions, (Fig. 4). Chronic EtOH consumption
is known to cause liver hypoxia, particularly in zone 3 of the liver
[51]. Importantly, the rate of oxygen consumption was sustained at
near maximal basal rates in the hepatocytes from the EtOH-treated an-
imals compared to control (Fig. 4). This result would be consistent with
increased hypoxia in response to EtOH consumption due to increased
mitochondrial respiration. The mechanisms which contribute to this
differential regulation of respiration in the EtOH treated animals are
consistent with a decreased level of CcOX and the increased reductive
stress which occurs as a consequence of alcohol consumption.

We hypothesized that since isolated mitochondria from chronic
ethanol-fed rats are more sensitive to inhibition by •NO and that in
the hepatocytes the mitochondria are closer to a State 3 condition,
basal respiration will be more sensitive to •NO. While control hepato-
cytes were essentially resistant to the effects of •NO under decreasing
O2 tensions (Fig. 5A), the EtOH-exposed hepatocytes exhibited a sig-
nificant inhibition of mitochondrial respiration by •NO in hypoxia
(Fig. 5B). This is consistent with the finding that hepatocytes isolated
from EtOH-fed animals have less reserve capacity and respire closer
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to State 3 than those from control animals (Fig. 2), which is then
further diminished by exposure to •NO and enhanced at lower O2

tensions (Fig. 3).
Cells respond to low O2 availability by initiating a series of adap-

tive responses through transcriptional activation and stabilization of
HIF-1α [52]. Accumulation of HIF-1α is an important step in the acti-
vation of HIF-1 during hypoxia. Regulation of HIF-1α by •NO is an ad-
ditional mechanism by which •NO might modulate cellular responses
to hypoxia [3]. The modulation of the hypoxic response by •NO is
believed to have wide pathophysiological significance [53]. The
susceptibility of the peri-central region of the liver to low O2 tensions
is predominantly due to an O2 gradient between the peri-portal and
peri-central regions in vivo [54]. It is well established that EtOH
consumption causes hypoxia and increased expression of iNOS in
zone 3 of the liver lobule in vivo [12,34,55], and here we have
shown that •NO inhibits mitochondrial function in EtOH-exposed
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Fig. 7. Chronic alcohol consumption induces mitochondrial dysfunction mediated by
nitric oxide and hypoxia. (A) Ethanol consumption causes increased cytochrome
P450 2E1 (CYP2E1), NADPH oxidase (NOX) and inducible nitric oxide synthase
(iNOS) via kupffer cell activation as well increased oxygen (O2) consumption thereby
decreasing the O2 gradient within the liver leading to hypoxic regions, specifically
the central lobular region. CYP2E1 and hypoxia causes increases in ROS production
such as superoxide (O2•

−) which inhibits mitochondrial respiration directly and
through the production of peroxynitrite (ONOO−). Hypoxic signaling has been
reported to be increased by ONOO− through mechanisms which are still unclear (B)
At higher O2 tensions, in normal liver, the lower basal activity of CcOX results in less
inhibition and •NO is metabolized. In response to ethanol the levels of •NO increase
and the higher metabolic turnover of the enzyme increases the susceptibility of cyto-
chrome c oxidase (CcOX) to inhibition by •NO. In addition at the lower O2 tensions
caused by alcohol exposure to the hepatocyte, more •NO is available to be able to
bind to CcOX. The inhibition of electron flow results in increased production of super-
oxide at other sites in the respiratory chain and through damage mediated by RNS
results in amplification of the bioenergetic deficit.
hepatocytes. We therefore used iNOS−/− mice to test the role of
•NO in the formation of hypoxia in the liver following chronic EtOH
consumption. In agreement with earlier studies, chronic EtOH
consumption significantly increased the binding of the hypoxia marker
pimonidazole in liver tissue, predominantly in the O2-poor (zone 3)
region of the liver lobule (Fig. 6A, B) [9,34,55,56]. In addition, we dem-
onstrate that chronic EtOH consumption can lead to increased HIF-1α
levels in the O2 deprived region of the liver lobule (Fig. 6C,D). Interest-
ingly, absence of iNOS prevented the accumulation of HIF-1α and pimo-
nidazole staining in mice on the EtOH diet (Fig. 6). In addition, we and
others have also demonstrated that genetic ablation of iNOS attenuates
EtOH-dependent hepatotoxicity [10,12].

5. Conclusions

Taken together, these data provide evidence for the role of •NO as
an important regulator of mitochondrial respiration at CcOX in EtOH-
induced hepatotoxicity which is shown in the context of current con-
cepts of alcohol-dependent hepatotoxicity in Fig. 7. The microsomal
ethanol oxidizing system, specifically, CYP2E1 is responsible, in part,
for the oxidation of ethanol. Alcohol-dependent increases in CYP2E1
or NADPH oxidase have been shown to lead to oxidative stress from
the production of ethanol derived radicals, O2•

− and H2O2 [57–59].
The activation of resident macrophages or Kupffer cells is a result of
gut derived endotoxin release from ethanol exposure causing an
increase in iNOS expression and activity [10,58]. The introduction of
both •NO from iNOS and superoxide from several sources in this
environment damages the mitochondrial respiratory chain and so
contributes to hypoxia. In the present study we have shown that
the addition of •NO to hepatocytes isolated from EtOH-fed rats
exhibits diminished basal and ATP-linked OCR, increased proton
leak, and decreased reserve capacity. We have also shown that
under conditions of hypoxic stress, the addition of •NO to EtOH hepa-
tocytes resulted in increased inhibition of respiration. Taken together
these data integrate changes in mitochondrial bioenergetics that
previously were only observed in isolated mitochondria with the
pathological changes that occur in ethanol-dependent hepatotoxicity
(Fig. 7).

Supplementary materials related to this article can be found
online at doi:10.1016/j.bbabio.2011.09.011.
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