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SUMMARY

Small GTPase Rab6 regulates vesicle trafficking at
the level of Golgi via recruitment of numerous and
unrelated effectors. The crystal structure of Ra-
b6a(GTP) in complex with a 378-residue internal frag-
ment of the effector Rab6IP1 was solved at 3.2 Å
resolution. This Rab6IP1 region encompasses an all
a-helical RUN domain followed in tandem by a
PLAT domain that adopts a b sandwich fold. The
structure reveals that the first and last a helices of
the RUN domain mediate binding to switch I, switch
II, and the interswitch region of Rab6. It represents
the largest Rab-effector complex determined to
date. Comparisons with the recent structure of
Rab6 in complex with an unrelated effector, human
golgin GCC185, reveals significant conformational
changes in the conserved hydrophobic triad of
Rab6. Flexibility in the switch and interswitch regions
of Rab6 mediates recognition of compositionally
distinct a-helical coiled coils, thereby contributing
to Rab6 promiscuity in effector recruitment.

INTRODUCTION

The architecture of eukaryotic cells consists of a complex assort-

ment of subcellular compartments and the underlying cytoskel-

etal network. The nucleus, endoplasmic reticulum (ER), Golgi

apparatus, mitochondria, and a variety of vesicular bodies

perform coordinated exchange of cargo throughout the life cycle

of cells. The p21 Ras superfamily of small GTPases are spatial/

temporal switches that choreograph diverse processes such

as organelle dynamics, cell proliferation, chemotaxis, synaptic

transmission, and cytokinesis (Goldfinger, 2008).

The complexity of eukaryotic intracellular trafficking is re-

flected in the evolutionary diversity of rab genes, which are

considered the premier organizers of membranes and vesicle

trafficking pathways (Zerial and McBride, 2001). Rab GTPases

comprise the largest member of the Ras superfamily with nearly

70 proteins, several of which are conserved from yeast to hu-

mans (Stenmark and Olkkonen, 2001). Following biosynthesis,
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Rabs are guided to their cognate membranes via interactions

with Rab escort protein (REP), which is an essential accessory

protein for subsequent prenylation of C-terminal Cys residues

by geranylgeranyl transferase (GGTase) (Andres et al., 1993;

Farnsworth et al., 1991; Goody et al., 2005). Rabs oscillate

between inactive (GDP-bound) cytosolic, and active (GTP-

bound) membrane-associated states, and this cycle is regulated

by several accessory proteins. GDP dissociation inhibitors

(GDIs) trap Rabs in the inactive state and participate in the

membrane association/dissociation process (Wu et al., 1996),

GDP/GTP exchange factors (GEFs) activate Rabs by promoting

nucleotide exchange (Geyer and Wittinghofer, 1997), and

GTPase activating proteins (GAPs) accelerate hydrolysis of the

g-phosphate of bound GTP (Geyer and Wittinghofer, 1997).

Active Rabs interact with the Rab-binding domain (RBD) of

their cognate effectors to recruit them to specific subcellular

compartments. Each Rab interacts with a unique subset of

effector proteins, often unrelated in sequence and structure.

Effectors are typically multidomain proteins that, in addition to

the RBD, also contain additional domains that mediate biological

effects upon Rab recruitment. Thus, a snapshot of the cell would

reveal the dynamic association of innumerable Rab-effector

complexes regulating the exchange of cargo between subcel-

lular compartments. The Structural Genomics Consortium along

with independent labs has collectively determined the structures

of most Rabs in the human genome. All known Rabs except inac-

tive Rab27 (Chavas et al., 2007) share an identical a/b Ras super-

family fold. However, only seven sets of Rab-effector crystal

structures are known: (i) Rab3-Rabphilin-3 (Ostermeier and

Brunger, 1999), which delivers secretory granules in several

cell types, although the biologically relevant complex is probably

Rab27-Rabphilin-3 (Fukuda, 2006); (ii) Rab5-rabaptin5 (Zhu

et al., 2004), involved in early endosome fusion; (iii) Rab7-RILP

(Rab7-interacting lysosomal protein) (Wu et al., 2005), which

regulates fusion between lysosomes and endosomes; (iv)

Rab4/Rab22 each with rabenosyn5 (Eathiraj et al., 2005),

involved in coordinating endosomal traffic through simultaneous

complex formation with Rab5; (v) Rab11-FIP2 (Rab11-family

interacting protein 2) from our group (Jagoe et al., 2006), and

Rab11-FIP3 from two other labs (Eathiraj et al., 2006; Shiba

et al., 2006), which regulate endocytic recycling pathways; and

(vi) Rab6 in complex with the RBD of GCC185, a golgin involved

in endosome to Golgi transport and maintenance of Golgi
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structure (Burguete et al., 2008; Derby et al., 2007). Finally, the

structures of Rab27B and Rab27A in complex with the RBDs

of two different effectors (Rab27B-slac2-a/melanophilin, 140-

residue RBD; Rab27A-Slp2a, 50-residue RBD) have also

recently been deposited in the Protein Data Bank (Chavas

et al., 2008). Without exception, all known Rab-effector

complexes are characterized by one or two a helices from the

RBD of the effector in intimate contact with the GTP-sensitive

switch I/II regions from the cognate Rab. Apart from Rabphilin-3

and melanophilin (120–140 residues), the short RBDs from

Rab-effector structures (40–60 residues) might appropriately

be termed a-helical ‘‘motifs’’ rather than domains. In addition,

a strictly conserved aromatic triad from Rabs (Phe in switch I,

Trp in the interswitch, and Tyr/Phe in switch II) contributes to

the binding interface with effectors. The side-chain conforma-

tions of the triad are variable, and this conformational heteroge-

neity is believed to contribute to Rab-effector specificity (Eathiraj

et al., 2005; Merithew et al., 2001).

Rab6 regulates transport pathways at the level of Golgi. Three

members of the Rab6 family have been identified to date: Rab6a,

Rab6a0 (which is a splicing variant of a duplicated exon, differing

from Rab6A by 3 residues), and Rab6b, which is preferentially ex-

pressed in a subset of neuronal cells (Darchen and Goud, 2000;

Opdam et al., 2000). Using the transport of Shiga toxin B-subunit

as a model system, it has been shown that Rab6 regulates endo-

some-to-Golgi and Golgi-to-ER retrograde transport pathways

(Del Nery et al., 2006; Mallard et al., 2002; White et al., 1999). A

role for Rab6 in the organization of exocytic vesicles that are

delivered from the Golgi apparatus to the cell membrane has

also been recently documented (Grigoriev et al., 2007). In addi-

tion, a small interfering RNA (siRNA) screen has linked Rab6 regu-

lation of Golgi retrograde pathways to human immunodeficiency

virus entry and productive infection (Brass et al., 2008). Several

unrelated Rab6 effectors have been identified using various

genetic and biochemical approaches, including subunits of the

dynein/dynactin complex, Rabkinesin-6/MKlP2, GAPCenA, Ra-

b6IP2/ELKS, TMF/ARA160, and mint3 (Cuif et al., 1999; Echard

et al., 1998; Fridmann-Sirkis et al., 2004; Miserey-Lenkei et al.,

2006; Short et al., 2002; Teber et al., 2005).

Figure 1. Domain Organization of RUN-

Domain-Containing Signaling Proteins

DENN indicates differentially expressed in

neoplastic versus normal cells; uDENN, upstream

DENN; dDENN , downstream DENN; CC1 and

CC2, coiled coil regions; FYVE, Fab1, YOTB,

Vac1, and EEA1 zinc finger domain; SH3, Src

homology 3 domain.

Rab6IP1, originally called orf37 (open

reading frame 37), was identified as

a Rab6(GTP)-specific binding protein

using a yeast two-hybrid screen of

a mouse brain cDNA library (Janoueix-

Lerosey et al., 1995). Two isoforms,

termed Rab6IP1A and Rab6IP1B and

differing by a stretch of 24 amino-acids

at their N termini, are ubiquitously ex-

pressed in mammals (Miserey-Lenkei

et al., 2007). The relative expression of each isoform depends

on tissues and cell types (Miserey-Lenkei et al., 2007). Endoge-

nous Rab6IP1 is a cytosolic protein recruited by active Rab6

(Rab6:GTP) onto Golgi membranes (Miserey-Lenkei et al.,

2007). Rab6IP1 also binds to Rab11 in a GTP-dependent

manner, suggesting that Rab6IP1 links the functions of Rab6

and Rab11 in transport events between Golgi and endosomes

(Miserey-Lenkei et al., 2007).

The primary sequence of Rab6IP1 reveals a modular organiza-

tion typical of many Rab effectors (Figure 1). Previous deletion

studies narrowed the Rab6-binding segment to 683–1061, which

spans the first RUN domain (RUN1) of Rab6IP1, followed by

a PLAT domain (Miserey-Lenkei et al., 2007). RUN domains are

widespread in cytosolic proteins and are presumed to have

diverse roles in cellular signaling (Callebaut et al., 2001; Mori

et al., 2007). The RUN acronym was coined after three members

of the family: the RPIP8 protein, an effector of Rap2 (Bourne

et al., 1991); UNC-14, a protein that plays a role in axonal elon-

gation and guidance in C. elegans (Ogura et al., 1997); and

NESCA (new molecule containing SH3 domain at the carboxy

terminus), an SH3 domain-containing protein cloned from

human placental cells. A common feature of some of these

proteins is their link to small GTPase functions (Rab6IP1, Rap2-

IPX, Rabip4). Recently, the isolated crystal structure of the RUN

domain of Rap2IPX revealed an 8-helix bundle with a novel

topology, but the complex with its signaling partner remains to

be determined (Kukimoto-Niino et al., 2006). The PLAT domain,

also referred to as LH2 (lipoxygenase homology domain 2) (Bate-

man and Sandford, 1999), was named after three members in

which this motif was discovered: polycystin-1, the product of

polycystic kidney disease 1 (PKD1) associated with renal cysts

and kidney disease (Sandford et al., 1997); lipoxygenases, multi-

subunit enzymes involved in the biosynthetic pathway of

hormones from lipid substrates (Gillmor et al., 1997); and

alpha-toxin, a pore-forming molecule expressed by pathogenic

bacteria. The function of this b sandwich domain remains ill-

defined, although it is generally observed in proteins that interact

with phospholipid bilayers and there is experimental support for

roles in protein-protein and protein-lipid interactions (Aleem
22 Structure 17, 21–30, January 14, 2009 ª2009 Elsevier Ltd All rights reserved
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et al., 2008; Bateman and Sandford, 1999; Hu and Barr, 2005;

Ponting et al., 1999).

In order to understand the structural basis for Rab-effector

specificity and function, we have determined the crystal struc-

ture of the 378-residue RUN1-PLAT fragment of Rab6IP1 in

complex with Rab6 by single-wavelength anomalous diffraction

(SAD) methods. The structure reveals that Rab6 binding is medi-

ated by noncontiguous a1 and a8 of the RUN1 domain. Compar-

ison with the structure of Rab6 in complex with the human golgin

protein GCC185 shows similarities in the nature of the Rab-

effector interface and topology of the two effector a helices.

However, the strictly conserved aromatic triad of Rab6 reveals

conformational flexibility in adapting to the hydrophobic inter-

face presented by two unrelated effectors, which has not been

described previously in Rab-effector complexes.

RESULTS

Identification of the Rab6-Binding Segment of Rab6IP1
Yeast two-hybrid analyses and GST-pull down experiments had

previously established that the minimal Rab6 binding segment of

mouse Rab6IP1 comprises residues 683–1061 (Figure 1), which

encompass a tandem RUN1-PLAT domain organization (Mi-

serey-Lenkei et al., 2007). This segment of RUN1-PLAT, which

will henceforth be referred to as ‘‘R1P’’, is indistinguishable

between the Rab6IP1A and Rab6IP1B isoforms. We subcloned

the R1P fragment into various Escherichia coli vectors, but all

attempts at soluble expression failed. Coexpression of R1P

with human Rab6a (residues 8–195, Q72L mutant) resulted in

a soluble complex that crystallized in a hexagonal space group

P6122, with one Rab6-R1P complex in the asymmetric unit.

Static light scattering indicated a 1:1 complex of Rab6 and

R1P in solution (see Figure S1 available online). Once the crystal

structure was solved, it was evident that Rab6-R1P interactions

are mediated solely by its RUN1 domain in the final refined

model. We designed various constructs to independently

express RUN1, either alone or together with Rab6. However,

all expression strategies to generate RUN1 alone or in complex

with Rab6 failed to produce soluble RUN1 protein in E. coli.

Furthermore, yeast two-hybrid analyses of RUN1 and Rab6

failed to show an interaction (Table S2). Possible explanations

for these observations will be discussed below.

Structure of R1P
The RUN1 domain is a 9-helix bundle that is dominated along

one side by the 33-residue N-terminal a helix (Figure 2). Most

of the a helices pack together with antiparallel or perpendicular

topology, organized roughly into a Greek key resembling the

death domain family. One notable exception is the pair of helices

a1/a8 that are parallel and which form the Rab6 binding inter-

face. In the complex Rab6-R1P, interactions with Rab6 are

mediated exclusively via RUN1. The structure of RUN1 is similar

to the recently determined crystal structure of the isolated RUN

domain from Rap2IPX (Kukimoto-Niino et al., 2006), with an root-

mean-square deviation (rmsd)of 1.83 Å over 162 Ca atoms (23%

sequence identities). The structure of Rap2IPX was determined

after optimization of soluble protein expression using NMR het-

eronuclear single-quantum coherence experiments of various

fragments of the RUN domain. These NMR studies suggested
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that the globular portion of the RUN domain extends further

toward the N terminus than predicted by the initial bioinformatics

studies of the RUN domain family (Callebaut et al., 2001). Subse-

quently, the crystal structure of Rap2IPX revealed that this region

adopts the N-terminal helix that is presumably essential for

correct folding of the RUN domain, and due to poor sequence

conservation, it was overlooked in multiple sequence align-

ments. Interestingly, the equivalent N-terminal helix of R1P is

one of the two helices that binds to Rab6.

The main differences in the two RUN domains are localized to

the a3-a4 loop and the C terminus (Figure 3). The long axis of a3

in R1P is rotated about 36� relative to a3 of Rap2IPX, despite

a conserved Trp hydrophobic anchor (Trp794 in RUN1) at the

base of the helices. A tight turn linking a3-a4 in Rap2IPX, aided

by Pro159 in the loop, may explain the closer packing of the

two helices in Rap2IPX. In contrast, there is a 32-residue inser-

tion in the a3-a4 loop of R1P, the majority of which is disordered

(residues 809-830 of RUN1). Following a8, the two RUN domains

share a common C-terminal helix (a9), but their backbones

follow very different paths relative to each other. The a9 of R1P

is sandwiched between the globular RUN1 domain and the

subsequent PLAT domain (Figure 3), whereas the C-terminal

helix of Rap2IPX extends away from the globular portion of the

Figure 2. Ribbon Model of the Rab6-Rab6IP1 Complex

Switch I is colored blue, and switch II is red. Interactions with Rab6 are

restricted to a1 and a8 of the RUN1 domain. The intervening helix a9 (residues

919–926) mediates intimate contacts with the all-helical RUN1 domain and

loops from the PLAT b sandwich.
, 21–30, January 14, 2009 ª2009 Elsevier Ltd All rights reserved 23
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molecule. Intriguingly, in R1P there are extensive hydrophobic

interactions between the loops from PLAT and a9, a4, and a5

of the RUN1 domain. Furthermore, part of the loop preceding

a4 (residues 831–836) has been modeled on the surface of the

PLAT domain (Figure 3), guided by a continuous stretch of elec-

tron density and the presence of a SeMet (Met833) as an anchor

upon inspection of electron density maps. These interactions

lead to a tight association of RUN1 and PLAT domains, so that

the tandem RUN1-PLAT segment of Rab6IP1 can be considered

a rigid two-domain module. These structural properties might

explain the apparent instability of smaller R1P fragments, in

particular the inability to express a soluble complex of the

RUN1 domain with Rab6.

Rab6 Interface with RUN1 and Rab-Effector Specificity
A hydrophobic interface involving residues from switch I/II and

the interswitch of Rab6 (Ile46, Ile48, Phe50, Trp68, Phe75,

Leu78, and Tyr82) packs against the parallel a1/a8 helices of

RUN1 (Figures 4 and 5). Both RUN1 a helices supply charge

complementarity with Rab6, forming ion pairs Lys13-Asp901,

Arg74-Glu749, whereas Asp49 is in the neighborhood of both

Arg735 and Lys739. The key determinant in GTP specificity is

the ‘‘IGIDF’’ motif of switch I, whose conformation is influenced

by the presence of g-phosphate, and which resides in the a1/

a8 interface, contributing both hydrophobic interactions and

a salt bridge. The overall buried surface area in the complex is

1506 Å2 . The nature of the binding interface can be described

as a central hydrophobic core, bordered by charge complemen-

tarity (Figure 6). In this respect, the complex resembles very much

the complexes Rab11-FIP2 and Rab11-FIP3 in the overall mode

of recognition. However, the Rab6-R1P complex is organized

Figure 3. Superposition of the RUN

Domains of Rab6IP1 and Rap2IPX

The PLAT domain of Rab6IP1 is colored blue (resi-

dues Ile928–Val1048) to distinguish it from the

RUN1 domain (Asn713–Thr927) of Rab6IP1.

Extensive polar and nonpolar interactions are

evident between the loops connecting the b sand-

wich of the PLAT domain with the short intervening

helix (a9) that packs against the globular RUN1

domain. This intervening a helix, which buffers

the interactions with PLAT, is not conserved in

the RUN domain of Rap2IPX (red).

(Right, bottom) Part of the loop connecting a3 and

a4 of RUN1 (residues 831–837) is modeled on the

surface of the b sheet of the PLAT domain, thereby

reinforcing the interactions between the two

domains. The electron density (2Fo-Fc) is con-

toured at 1s.

Figure 4. Electron Density (2Fo-Fc, 1.0s) at the Rab6-R1P Interface

Rab6 is gray (left), a1/a8 helices of R1P are green, and the blue Mg2+ ion, adja-

cent to GTP (magenta), is represented as a sphere.

such that two noncontiguous a helices

a1/a8 of Rab6IP1 form the Rab-binding

interface, unlike Rab11-FIP2, Rab6-

GCC185, and Rab5-rabaptin5 in which

parallel a helices are formed through

dimerization of the effectors. Rab7-RILP,

like the present structure, is a 1:1

complex, but the RBD is a contiguous

segment of polypeptide in which the two

a helices have antiparallel topology, and only one helix interacts

with Rab7.

The switch and interswitch residues of Rab6 that recognize

Rab6IP1 are highly conserved among human Rabs. However,

one of the key determinants of specificity is Lys13 of Rab6, which

resides on b1 and forms a salt bridge with Asp901. Lys13 is

a hydrophobic residue in other human Rabs (Figure 5), but apart

from this, all other residues that interact with R1P are either

identical or conservative changes in other Rab proteins. The

apparent dilemma in Rab-effector specificity is resolved by vari-

ability in the three-dimensional spatial position and conformation
24 Structure 17, 21–30, January 14, 2009 ª2009 Elsevier Ltd All rights reserved
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of conserved switch and interswitch residues, which cannot be

deduced from phylogenetic relationships in their DNA and

protein sequences (Collins, 2005). Conformational variability in

the switch and interswitch regions of active Rabs is now well

documented in numerous crystal structures, despite their high

sequence conservation (Eathiraj et al., 2005, 2006; Jagoe

et al., 2006; Shiba et al., 2006). Thus, the overall scaffold sup-

porting the switch regions influences the ‘‘exquisitely’’ specific

interactions with effectors.

Mutations in the RUN1 Domain Impair Recruitment
of Rab6IP1 to Golgi Membranes
When expressed in HeLa cells, green fluorescent protein (GFP)-

tagged wild-type Rab6IP1 is targeted to Golgi membranes

Figure 5. Sequence Alignments of RUN1,

PLAT, and Human Rabs

The secondary structures corresponding to the

Rab6-R1P structure are marked above the

sequences. The two a helices that interact with

Rab6 (A) are labeled RBD (Rab-binding domain)

for convenience. The arrows (B) mark the b strands

of the PLAT domain. The residues from Rab6 (C)

that interact with R1P are indicated with black

dots (d) above the single-letter codes. The smaller

black dots indicate every tenth residue in the

sequences (1, 11, 21, etc.). The variable tails of

Rabs have been excluded from the alignment.

(Miserey-Lenkei et al., 2007) (Figure 7,

upper panel). Depletion of Rab6 by siRNA

results in a cytosolic localization of GFP-

Rab6IP1, suggesting that Rab6 recruits

Rab6IP1 on Golgi membranes. In support

of the structural model of Rab6-R1P, we

have introduced a single site mutation

on a8 (K739E) in full-length Rab6IP1,

as well as a double mutation on a1

(Y908S+L911A). Tyr908 interacts with

the invariant Trp67 of the Rab6 aromatic

triad, and along with Leu911, forms part

of the hydrophobic interface. Lys739 of

Rab6IP1 forms a salt bridge with Asp49

from switch I. As shown in Figure 7

(middle and lower panels), the two

mutants failed to be efficiently targeted

to Golgi membranes and remained cyto-

solic, indicating that Lys739, Tyr908,

and Leu911 are crucial for Rab6-R1P

interaction in vivo. In addition, yeast

two-hybrid analyses revealed that the

mutant Rab6(I46E) failed to interact with

Rab6IP1 (Table S2). Ile46 from switch I is

located at the interface of helices a1/a8

of Rab6IP1 in the complex, thus forming

key hydrophobic contacts that would be

destabilized in the mutant protein. Alto-

gether, the above experiments indicate

that the interactions between Rab6 and

the RUN1 domain of Rab6IP1 are required for Rab6-dependent

recruitment of Rab6IP1 on Golgi membranes.

DISCUSSION

Comparisons of Rab6-Rab6IP1 with Rab6-GCC185
The structure of human Rab6a (Q72L, GTP-bound) was recently

determined in complex with the golgin GCC185. This complex

is organized as a heterotetrameric Rab6-(GCC185)2-Rab6

complex with the 37 residues of GCC185 forming the central

parallel coiled coil (Figure 8). Therefore, the two complexes allow

an unprecedented opportunity to compare the structural basis

for recruitment of two unrelated effectors. There are similarities

in the two complexes: both involve two parallel a helices in
Structure 17, 21–30, January 14, 2009 ª2009 Elsevier Ltd All rights reserved 25
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roughly the same arrangement against the switch and inter-

switch regions of Rab6. Arg74 makes electrostatic contacts in

both complexes, although to different a helices upon structural

alignment, and there is a hydrophobic interface formed by both

a helices from the effector (Figure 6). Tyr908 of Rab6IP1 is

roughly the equivalent of Ile1588 in GCC185, mediating hydro-

phobic contacts with switch II. The buried surface is 1250 Å2

for each side of the Rab6-GCC185 complex, compared with

1506 Å2 for the single Rab6-R1P interface.

Despite a general resemblance in the mode of binding, the

Rab6-complementary patches of RUN1 and GCC185 bear no

compositional or structural resemblance to each other. In order

to recruit two unrelated effectors, there is a conformational rear-

rangement in the hydrophobic triad of Rab6 (Phe50, Trp67,

Tyr82; Figure 9 and Table S1). These dramatic changes take

place in the context of modest conformational changes in the

other interacting residues from Rab6. The rmsd for the backbone

of 158 aligned Rab6 residues by secondary structure matching

Figure 6. Electrostatic and Hydrophobic

Complementarity in Rab6-Effector Com-

plexes

Rab6A in the Rab6-R1P complex is on the left

(yellow ribbons/sticks), whereas Rab6A in the

Rab6-GCC185 complex is on the right side (green

ribbons/sticks). The Rabs are docked onto the

electrostatic surface of the effectors (red, negative

charge; blue, positive charge).

was 1.07 Å. Phe50 in the Rab6-R1P

complex is packed between Gln905 and

Tyr908 from one helix (a8), whereas

Phe50 in the Rab6-GCC185 complex

packs against the other helix of GCC185

(Met1590). Trp67 forms a key hydro-

phobic interface with the equivalent a helix in both complexes,

forming interactions with Tyr908 of R1P (a8) and Thr1585/

Ile1588 in GCC185. Comparisons with uncomplexed Rab6(GTP)

reveal that the triad conformation resembles that found in the

Rab6-GCC185 complex. Binding of Rab6(GTP) to R1P would

entail large rotations about the c1 dihedral angle for Phe50 and

Trp67 (Table S1). Although there are also significant conforma-

tional changes in Tyr82 (switch II), analyses of this region are

complicated by the well-documented intrinsic flexibility of switch

II (Bergbrede et al., 2005). Indeed, there is a rigid-body movement

of the switch II helix in the aligned Rab6 molecules from the two

complexes, placing the Ca atoms of Tyr82 about 1.8 Å apart

from each other.

Previously, conformational heterogeneity in the triad has been

observed between different Rabs in their active state, presum-

ably as a consequence of the compositional and structural diver-

sity in the underlying hydrophobic core (Merithew et al., 2001).

Here we find conformational flexibility within the hydrophobic

Figure 7. Mutagenesis of Rab6IP1 and

Cellular Localization

Hela cells were transfected with GFP-Rab6IP1A

wild-type (WT), GFP-Rab6IP1A(K739E), or GFP-

Rab6Ip1A(Y908S+L911A) for 48 hr. Cells were

fixed and labeled with an antibody directed

against the Golgi marker.
26 Structure 17, 21–30, January 14, 2009 ª2009 Elsevier Ltd All rights reserved
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triad of Rab6, enabling recruitment of unrelated effectors to Golgi.

Currently, the structural basis for the conformational rearrange-

ments is unknown. It is unclear whether effector binding shapes

the conformation of the triad, or whether the aromatic residues

are inherently flexible and a particular conformation is captured

by the distinctive interface of the effector. As an example,

Phe48 of Rab11 is observed in two distinct conformations, de-

pending on the presence of GTPgs or GppNHp at the nucleotide

binding site (Figure 9). Detailed thermodynamic and biophysical

studies may distinguish the underlying mechanisms involved in

effector recruitment. In concert with the apparent intrinsic flexi-

bility of switch II regions in many Rabs (Bergbrede et al., 2005;

Jagoe et al., 2006), these structural properties might explain the

promiscuity of Rabs in binding unrelated effector proteins.

Rab6-Rab6IP1-Rab11 Complex and the PLAT Domain
Beyond effector recruitment, an understanding of the biological

function of Rab-effector complexes requires the crystallization

Figure 8. Comparisons of the Structures of Rab6-R1P and Rab6-

GCC185

The R1P model has been stripped of the PLAT domain for clarity. A similar

orientation and color scheme is shown to emphasize the similarities and differ-

ences in the overall organization of the two complexes.
Structure 1
of more complete fragments of effector proteins. The Rab6-R1P

complex, the largest Rab-effector structure determined to date,

provides an opportunity to glean the possible contribution of the

PLAT domain to Rab6IP1 function. The various roles ascribed to

PLAT domains include binding to the b subunit of ATP synthase

in sensory cilia of C. elegans (Hu and Barr, 2005) and membrane

localization of lipoxygenases (Walther et al., 2002). The PLAT

domain of the Rab6-R1P complex reveals a possible lipid-binding

region (loops connecting b1-b2, b3-b4, and b5-b6; Figure S2) on

the distal end of the molecule opposite the RUN1 domain. Super-

position of the PLAT domains of several unrelated proteins

suggests a topology for the b sandwich that would be consistent

with a lipid-facing orientation. However, the role of the PLAT

domain requires further clarification with lipid-binding studies,

mutagenesis experiments, and vesicle trafficking assays. The

tandem RUN1-PLAT domains are a rigid unit, as evidenced by

extensive interactions between the proximal loops of the b sand-

wich and a9 of RUN1. In contrast, the low-resolution model of 12-

lipoxygenase shows considerable flexibility in the linker between

the PLAT domain and the catalytic domains (Aleem et al., 2008).

A GTP-dependent interaction between Rab11 and Rab6IP1

has been demonstrated using several approaches (Miserey-Len-

kei et al., 2007). The overexpression of Rab6IP1 leads to a redis-

tribution of peripheral Rab11 positive recycling endosomes

toward the Golgi complex. This suggests the existence of ternary

complexes between Rab6, Rab11, and Rab6IP1 (Miserey-Len-

kei et al., 2007). A tentative hypothesis is that the PLAT domain

of R1P might be interacting with membranes of recycling endo-

somes and participating together with Rab11 in the tethering of

these membranes with Golgi membranes. Crystallization of the

complete Rab6IP1 molecule along with Rab6/Rab11 in a ternary

complex would provide further insight into the functional trans-

port links between Golgi and endosomes.

EXPERIMENTAL PROCEDURES

Expression and Purification of Rab6-R1P

The RUN1-PLAT region (683–1061, henceforth referred to as R1P) of mouse

Rab6IP1 was cloned into the Nde1/BamH1 site of the pET15 vector (ampicillin

resistance). The recombinant protein lacked an affinity tag when expressed in

E. coli. Human Rab6a (residues 8–195, Q72L) was cloned into the Nde1/Xho1

restriction sites of pET28 (kanamycin resistance), thus recombinant Rab6 con-

tained an N-terminal His-tag (thrombin cleavage site). The two constructs

were cotransformed into E. coli BL21(DE3) cells, and all subsequent small and

large-scale cultures (including minimal media) were supplemented with 100

mg/ml ampicillin and 30 mg/ml kanamycin. Large-scale cultures were initially

grown at 310 K in 2xYT media until the OD600 was 0.6. The culture temperature

was switched to 298 K and protein expression was induced by the addition of

IPTG (0.2 mM) for approximately 6 hr. The cells were harvested by centrifugation

at 4,000 rpm for 10 min and resuspended in 10 mM Tris-Cl (pH 8.0), 300 mM

NaCl, 5 mM MgCl2, 10 mM imidazole, and 10mM b-mercaptoethanol (extraction

buffer). The cells were sonicated and the lysates centrifuged at 20,000 3 g for 30

min to eliminate insoluble protein and cellular debris. The Rab6-R1P complex

was loaded onto Ni2+-agarose (Chromatrin) via the N-terminal His-tag of

Rab6. Following extensive washing with extraction buffer, the complex was

eluted with a step gradient of 200 mM imidazole. Cleavage of the His-tag was

performed in the presence of 10 units/mL of thrombin (GE Healthcare) overnight

in dialysis sacs (10 mM Tris-Cl, 150 mM NaCl, 5 mM MgCl2, 10 mM imidazole,

and 10 mM b-mercaptoethanol [pH 8]). A second Ni2+-agarose chromatography

step was performed to eliminate uncleaved Rab6. Fractions containing the

thrombin-cleaved complex were pooled, concentrated, and loaded onto

a Superdex-200 size exclusion column (mounted on AKTAbasic FPLC, GE
7, 21–30, January 14, 2009 ª2009 Elsevier Ltd All rights reserved 27
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Healthcare), equilibrated with 10 mM Tris-Cl, 100 mM NaCl, 5 mM MgCl2, and

1 mM DTT (pH 7.5). The eluted complex was concentrated to 7–10 mg/ml before

crystallization.

For the production of selenomethionine derivatized protein, recombinant

expression was performed in the methionine auxotrophic E. coli strain

B834(DE3). A 5 ml overnight culture in LB medium was used to inoculate

a 0.5 l culture of M9 media, supplemented with vitamins, trace elements, and

40 mg/l of all amino acids except Met, according to the method of Van Duyne

(Van Duyne et al., 1993). The culture was grown at 310 K to an OD600 of 0.4. At

this point, 100 mg/l SeMet was added and culture was switched to 298 K for an

additional 30 min. Protein expression was induced with 0.2 mM IPTG and

growth continued at 298 K for 8 hr. SeMet substituted protein was purified as

before except for an increase in the concentration of b-mercaptoethanol

(20 mM) and DTT (2 mM) to protect the SeMet residues from oxidation.

Crystallization, Data Collection, and Structure Determination

Crystals were grown by hanging drop vapor diffusion at 18�C. One microliter

7–10 mg/ml protein was mixed with one microliter mother liquor, consisting

of 100 mM HEPES (pH 7.0), 2%–4% PEG 4000, and 3% 2,4-methypentanediol

(MPD) on a siliconized coverslip. Hexagonal-shaped crystals grew to full size

(0.4 3 0.15 3 0.15 mm) after 2 weeks. Crystals were cryoprotected in

100 mM HEPES (pH 7.0), 2%–4% PEG 4000, 3% MPD, and 25% glycerol,

and then flash-frozen in liquid nitrogen.

The Rab6-R1P complex crystallized in space group P6122 with one complex

in the asymmetric unit. SAD data were collected at the sulfur peak wavelength

(0.978 Å, 100 K) on beamline BM14 (ESRF), whereas high-resolution native

data for refinement were collected with a single native crystal on ID14-1

(ESRF). Data were processed using HKL2000, and intensities were reduced

and scaled using SCALEPACK (Otwinowski and Minor, 1997). The initial

phases and electron density map was obtained by SAD phasing using SOLVE

(Terwilliger and Berendzen, 1999). Subsequent density modification involved

solvent flattening (Wang, 1985) and histogram matching (Nieh and Zhang,

1999) as implemented in the Crystallography and NMR System (Brunger

et al., 1998). Exploiting the positions of selenomethionine as anchors, the initial

electron density maps allowed unambiguous chain tracing for most of the

protein backbone, side chain, and GTP. Progress was monitored with the

Figure 9. Hydrophobic Triads of Rabs

Mediate Binding to Cognate Effectors

Yellow coloring corresponds to active Rab (GTP or

analog) in the free state, whereas blue or red

coloring indicates the conformation of the triad in

the effector-bound state. The Rab6-R1P complex

(*) is the exception to the general observation that

the hydrophobic triads in the active (GTP) forms of

Rabs do not undergo significant conformational

changes upon binding to their cognate effectors.

One other exception is Rab11, which exists in

two alternate conformations at Phe48, depending

on the presence of GppNHp or GTPgS (Protein

Data Bank [PDB] codes 1yzk and 1oiw, respec-

tively). Details of the side-chain conformational

angles and the PDB codes of aligned structures

are listed in Table S1.

free R value using a 10% randomly selected test

set. Initial refinement consisted of torsion angle

dynamics simulated annealing (Rice and Brünger,

1994) using the MLHL target function with the

experimental phases as a prior phase distribution

(Pannu et al., 1998), followed by model rebuilding

using the graphic program COOT (Emsley and

Cowtan, 2004). Later refinement consisted of

iterative rounds of model building and selection

of chemically reasonable water molecules in

phased-combined sA-weighted 2Fo-Fc maps,

conjugate gradient minimization, and individual (isotropic) restrained atomic

B-factor refinement with B-factor sharpening implemented in CNS version

1.2 (Brunger, 2007) using data between 50-3.2 Å resolution. Data and refine-

ment statistics are shown in Table 1.

In the final Rab6-R1P model, Rab6a is ordered between Asp12-Met177. The

R1P fragment (683–1066) is well defined for residues Asn713-Ala754, Asn759-

Leu808, and Ala831-Glu1047. A large disordered loop connecting a2-a3 of

RUN1 (residues Thr809-Ser830) is situated on the opposite side of RUN1 rela-

tive to the Rab6-binding face. Therefore, flexibility in this region does not

complicate subsequent discussions of Ra6-R1P recognition.

Yeast Two-Hybrid Assays

Yeast two-hybrid tests were performed as previously described (Janoueix-

Lerosey et al., 1995) using pLexA-Rab6a wt, pLexA-Rab6a T27N, pLexA-

Rab6a I46E, and pLexA-Rab6a Q72L as baits. Rab6IP1 constructs (R1P,

RUN1, RUN2; preys) were cloned into a pGAD vector.

In Vivo Analysis

Mutations K739E and Y908S+L911A were introduced into the pEGFPRa-

b6IP1A plasmid using site-directed mutagenesis (QuickChange, Stratagene).

The following oligonucleotides were used: Y908S+L911A mutant, sense oligo-

nucleotide 50-GAGCA-GTTCCTCTCTCACCTGGCCTCCTTCAACGCAGTG-30;

antisense oligonucleotide 50-CACTGCGTTGAAGGAGGCCAGGTGAGAGAGG

AACTGCTC-30; K739E mutant, sense oligonucleotide 50-GAATGTCGAAACAA

GACCGAGAGGATGCTGGTAGAG-30, antisense oligonucleotide CTCTACCA

GCATCCTCTCGGTCTTGTTTC-GACATTC-30. Cells were transfected for 48 hr

and processed for immunofluorescence analysis as previously described

(Miserey-Lenkei et al., 2007).
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The coordinates and structure factors have been deposited in the Protein Data
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Table 1. Data Collection and Refinement Statistics

Selenomethionine Native

Data Collection

Space group P6122 P6122

Cell dimensions 100.2, 299.3 99.9, 299.0

Wavelength (�A
´
, Se peak) 0.978 0.934

Resolution (�A
´
) 50-3.4 50-3.0

Completeness (%) 99.6 (100) 99.1 (98.6)

Rmerge (%) 12.4 (72.0) 6.0 (80.0)

I/s(I) all data — 13.3

I/s(I) > 3 (% of data) 88 85.8

Redundancy 22.9 (24.0) 9.2 (9.4)

Refinement

Resolution 50-3.2

Number of reflections 15,437

Models Rab6A (residues

12–177) R1P (713–754;

759–808; 831–1047)

Rwork/Rfree (%) 24.8/30.1

High-resolution shell (31.6/35.6)

Number of nonhydrogen

atoms

3,902

Protein 3,809

GTP, ions 34

Water 38

Average B-factor 101.6 Å2

Wilson plot 101.2 Å2

Rms deviations

Bond lengths (�A
´
) 0.008

Bond angles (�) 1.20

Coordinate error (ESU, Å) 0.40

Residues in Ramachandran

Most favored region 87.4%

Additionally allowed 12.1%

Generously allowed 0.5%

Disallowed 0%

Values in parentheses correspond to the statistics for the highest

resolution.
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