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Abstract

We apply the methods of classical approximation theory (extreme properties of polynomials) to study
the essential support Σac of the absolutely continuous spectrum of Jacobi matrices. First, we prove an upper
bound on the measure of Σac which takes into account the value distribution of the diagonal elements, and
implies the bound due to Deift–Simon and Poltoratski–Remling.

Second, we generalise the differential inequality of Deift–Simon for the integrated density of states
associated with the absolutely continuous spectrum to general Jacobi matrices.
c⃝ 2010 Elsevier Inc. All rights reserved.
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1. Introduction

In this work we consider Jacobi matrices

J (a, b) =


b(1) a(1) 0 0 0 · · ·

a(1) b(2) a(2) 0 0 · · ·

0 a(2) b(3) a(3) 0 · · ·

0 0
. . .

. . .
. . .

 . (1.1)

∗ Corresponding author.
E-mail addresses: shamis@math.huji.ac.il (M. Shamis), sodinale@post.tau.ac.il (S. Sodin).

0021-9045/$ - see front matter c⃝ 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jat.2010.12.003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81131522?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jat.2010.12.003
http://www.elsevier.com/locate/jat
mailto:shamis@math.huji.ac.il
mailto:sodinale@post.tau.ac.il
http://dx.doi.org/10.1016/j.jat.2010.12.003


492 M. Shamis, S. Sodin / Journal of Approximation Theory 163 (2011) 491–504

We assume that

a(n) ∈ [c,C], b(n) ∈ [−C,C] for some 0 < c < C < ∞.

In this case J (a, b) defines a bounded self-adjoint operator on ℓ2(N):

(Jψ)(n) = a(n − 1)ψ(n − 1)+ a(n)ψ(n + 1)+ b(n)ψ(n), n ∈ N, (1.2)

where formally a(0) = 1, ψ(0) = 0.
The important subclass of ergodic operators is constructed as follows. Let (Ω , µ, T ) be an

ergodic system, and let A, B : Ω → R be bounded measurable functions. Then every ω ∈ Ω
defines an operator Jω = J (aω, bω), via

aω(n) = A(T nω), bω(n) = B(T nω).

If J (a, b) is an arbitrary Jacobi matrix, we denote its spectrum

{E | J − E is not invertible}

by σ(J ). The equivalence class of the set

Σac =


E | lim

ϵ↓0
Im(J − E − iϵ)−1(1, 1) exists and differs from zero


modulo sets of measure zero is called the essential support of the absolutely continuous spectrum.

For n = 1, 2, . . ., denote

kn(E) =
1
n

#

1 ≤ j ≤ n | λ j ≤ E


,

where λ j are the eigenvalues of the top-left n × n block of J (a, b). If the limit

k(E) = lim
n→∞

kn(E)

exists for almost every E ∈ R, it is called the integrated density of states.
In particular, if {Jω} is an ergodic family of operators, it is known (see [7]) that the integrated

density of states exists for almost every ω ∈ Ω .
In 1983, Deift and Simon [3] proved the following inequality. If J is an ergodic discrete

Schrödinger operator, then for a.e. E ∈ Σac(J )

d
dE

{−2 cos(πk(E))} = 2π sin(πk(E))
dk(E)

dE
≥ 1. (1.3)

As k(−∞) = 0 and k(+∞) = 1, they immediately deduced

|Σac(J )| ≤ 4. (1.4)

A different proof of (1.4) was given by Last in [6], who deduced it from a stronger inequality.
In 2008, Poltoratski and Remling [9] proved that the inequality (1.4) holds for general discrete

Schrödinger operators (without assuming ergodicity). Moreover, the measure of the essential
support of the a.c. spectrum of a general Jacobi matrix J (a, b) satisfies

|Σac(J )| ≤ 4 lim inf
n→∞

An, (1.5)
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where

An =


a(1)a(2) · · · a(n)

 1
n
. (1.6)

Our goal is two-fold. First, we show that the inequality (1.5) follows from an extremal property
of Chebyshev polynomials (the Pólya inequality). This approach can be stretched further, to give
a more precise estimate on |Σac(J )| in terms of the value distribution of the sequence {b(n)}∞n=1.
For example, we prove an estimate on the measure of Σac intersected with an arbitrary interval;
the bound is always as good as the right-hand side of (1.5), and improves on it when many of the
b( j) are far from our interval. To formulate the precise statement, we introduce some notation.

Let (EL , ER) be an interval (which may be infinite). Consider the set of indices

In = {1 ≤ j ≤ n | b( j) ∈ (EL − 2M − An, ER + 2M + An)} ,

where

M = sup
1≤ j<∞

a( j) =
‖J (a, 0)‖

2
,

and let

Dn =

∏
1≤ j≤n, j ∉In


min(|b( j)− ER |, |b( j)− EL |)− 2M


.

Theorem 1.1. In the notation above,

|Σac(J (a, b)) ∩ (EL , ER)| ≤ 4 lim inf
n→∞

[
An

n

Dn

] 1
#In
.

Remarks.

1. Note that every one of the factors in the definition of Dn is at least An , since the product is
taken over

b( j) ∉ (EL − 2M − An, ER + 2M + An),

and is much larger if b( j) is far from (EL , ER). Thus, Dn measures the number of b( j) far
from (EL , ER). The numbers M and An appear in the definitions for a technical reason.

2. If all the b( j) are in (EL − 2M − An, ER + 2M + An), the product is empty, and we set
Dn = 1. When none of the b( j) are in the interval (#In = 0), and actually in the more general
case

lim inf
n→∞

#In

n
= 0,

we show that

|Σac(J (a, b)) ∩ (EL , ER)| = 0.

3. Taking EL = −∞ and ER = +∞ in the theorem, we recover (1.5) (since Dn ≥ An−#In
n ).

As an example, consider a periodic Jacobi matrix J (1, b), where b takes only two values 0 (m
times), and R ≥ 5 (ℓ times). Then

Σac(J (1, b)) ⊂ (−2, 2) ∪ (R − 2, R + 2),
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since J (1, b) can be considered as a perturbation of the diagonal matrix J (0, b) by the free
Laplacian J (1, 0), ‖J (1, 0)‖ = 2.

Let us apply Theorem 1.1 to every one of these two intervals. We have:

|Σac(J (1, b)) ∩ (−2, 2)| ≤
4

(R − 4)ℓ/m ,

|Σac(J (1, b)) ∩ (R − 2, R + 2)| ≤
4

(R − 4)m/ℓ
.

When R → ∞, both expressions tend to zero, thus the measure of the absolutely continuous
spectrum tends to zero.
Second, an even more elementary approach allows us to prove (directly) the following special
case of (1.3). Assume that a, b are periodic sequences of period q (namely, a(n + q) =

a(n), b(n + q) = b(n) for n = 1, 2, 3, . . . ). From the Bloch–Floquet theory (see, e.g., [6])
Σac(J ) is the union of q closed intervals (bands), which may overlap only at the edges. Denote
these bands B1, B2, . . . , Bq (ordered from right to left).

Theorem 1.2. Under the assumptions above,B j
 ≤ 2Aq

[
cos

π( j − 1)
q

− cos
π j

q

]
(1.7)

for j = 1, 2, . . . , q. Equality is attained if (and only if) a and b are constant.

We emphasise again that Theorem 1.2 is not new, and follows in particular from (1.3). A
parallel inequality for periodic Schrödinger operators on the real line can be found, e.g., in
the work of Garnett and Trubowitz [4]. We provide a direct proof using extremal properties
of polynomials, and then use Theorem 1.2 to recover the Deift–Simon inequality (1.3) in full
generality, and generalise it to the non-ergodic case:

Theorem 1.3. Let J (a, b) be a Jacobi operator, and let ni ↑ ∞ be a sequence such that the limit
k{ni } = limi→∞ kni exists. Then

2π · lim inf
i→∞

Ani · sin

πk{ni }(E)

 dk{ni }(E)

dE
≥ 1 (1.8)

for almost every E ∈ Σac(J ).
In particular, if the integrated density of states exists for J , we have:

2π · lim
n→∞

An · sin(πk(E))
dk(E)

dE
≥ 1 (1.9)

for almost every E ∈ Σac(J ).

Applying this result to an arbitrary partial limit of the sequence kn yields another proof of the
inequality (1.5).

2. Preliminaries

2.1. Transfer matrices

Given an operator J (a, b) of the form (1.1), we consider the associated eigenvalue equation

Jψ = Eψ, E ∈ R, ψ : N → C.
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For any n ≥ 1, we consider the one-step transfer matrices E − b(n)

a(n)
−

a(n − 1)
a(n)

1 0

 :


ψ(n)

ψ(n − 1)


→


ψ(n + 1)
ψ(n)


,

and define the n-step transfer matrix

Φn(E) =

 E − b(n)

a(n)
−

a(n − 1)
a(n)

1 0

 · · ·

 E − b(1)
a(1)

−
a(0)
a(1)

1 0

 . (2.1)

Denote

A(J ) =


E ∈ R| lim sup

n→∞

1
n

ln ‖Φn(E)‖ = 0

. (2.2)

Since

‖Φn‖ ≥


| det Φn| =
1

√
|a(n)|

,

we have:

lim inf
1
n

ln ‖Φn(E)‖ ≥ lim inf
1
n

ln
1

√
|a(n)|

≥ − lim sup
ln |a(n)|

2n
= 0,

and therefore

1
n

ln ‖Φn(E)‖ → 0 for every E ∈ A,

and, since |tr Φn| ≤ 2‖Φn‖,

lim sup
n→∞

1
n

ln |tr Φn(E)| ≤ 0 for every E ∈ A. (2.3)

Note that tr Φn(E) is a real polynomial of E with leading coefficient A−n
n . It follows from the

Bloch–Floquet theory (see, e.g., [6]) that

tr Φn(E) = A−n
n det(E − Jn(a, b)), (2.4)

where Jn = Jn(a, b) is the n × n matrix

Jn =


b(1) a(1) 0 0 · · · 0 −ia(n)
a(1) b(2) a(2) 0 · · · 0 0

0 a(2) b(3) a(3) · · · 0 0

0 0
. . .

. . . · · · 0 a(n − 1)
ia(n) 0 0 · · · · · · a(n − 1) b(n)

 .

Finally, from the subordinacy theory of Khan–Pearson [5],

Σac(J ) ⊂ A(J ). (2.5)
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2.2. The Alternation Theorem, and a corollary

Let K ⊂ R be a compact set. Denote

Ln(K ) = inf
Pn∈Pn

max
E∈K

|Pn(E)|, (2.6)

where the infimum is over all monic polynomials of degree n.

Theorem (Chebyshev Alternation Theorem, See [1, Section I.5]). The infimum in (2.6) is at-
tained on a unique polynomial Pn , which is uniquely characterized by the following: there exists
an (n + 1)-tuple of points in K

E1 > E2 > E3 > · · · > En+1

on which Pn attains the maximum with alternating signs:

Pn(Ek) = (−1)k+1 max
E∈K

|Pn(E)|.

For example, Ln([−2, 2]) = 2, and the minimum is attained for the scaled Chebyshev
polynomials of the first kind:

Pn(E) = 2Tn(E/2), Tn(cos(θ)) = cos(nθ).

We cite a corollary of the Chebyshev Alternation Theorem, due to Pólya (see [1]).

Proposition 2.1 (Pólya). If K is a compact set,

Ln(K ) ≥
|K |

n

22n−1 .

If K is an interval, equality is achieved.

3. Proof of Theorem 1.1

According to (2.3) and (2.5), the polynomials ∆n = tr Φn satisfy

lim sup
n→∞

1
n

ln |∆n(E)| ≤ 0 for a.e. E ∈ Σac(J (a, b)). (3.1)

Fix ϵ > 0; by Egoroff’s theorem there exists Σ ϵ such that

|Σac(J (a, b)) \ Σ ϵ
| < ϵ

and the convergence in (3.1) is uniform on Σ ϵ . That is,

1
n

ln |∆n(E)| ≤ ϵn, E ∈ Σ ϵ,

where ϵn → 0, and thus

|∆n(E)| ≤ exp(nϵn).

Now recall (2.4) and consider the matrix Jn(a, b) as the perturbation of Jn(0, b) by the matrix
Jn(a, 0) of norm ‖Jn(a, 0)‖ ≤ 2M . We see that the zeros E1, . . . , En of ∆n can be numbered so
that |E j − b( j)| ≤ 2M .
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Then, for E ∈ (EL , ER),

|∆n(E)| = A−n
n

∏
j∈In

|E − E j |
∏
j ∉In

|E − E j |

≥ A−n
n

∏
j∈In

|E − E j |Dn .

Therefore

L#In (Σ
ϵ
∩ (EL , ER)) ≤

exp(nϵn)An
n

Dn
.

By Pólya’s theorem (Proposition 2.1),

|Σ ϵ
∩ (EL , ER)| ≤ 4

[
exp(nϵn)An

n

Dn

] 1
#In
.

If {#In/n} is bounded away from zero, we can conclude the proof, taking the lower limit as
n → ∞ and then the limit as ϵ → 0.

Suppose lim inf #In/n = 0. Then we prove a stronger statement:

|Σac(J (a, b)) ∩ (EL , ER)| = 0.

For simplicity of notation we assume that In is not empty for sufficiently large n (otherwise
σ(J (a, b)) ∩ (EL , ER) is a finite set by the same perturbation arguments as above). Let δn > 0
be a small parameter that we shall choose later. If

E ∈ (EL + δn, ER − δn) ∩ Σ ϵ,

then by definition of In∏
j ∉In

|E − E j | ≥ (An + δn)
n−#In ,

therefore∏
j∈In

|E − E j | ≤
exp(nϵn)An

n

(An + δn)n−#In
.

Hence

L#In (Σ
ϵ
∩ (EL + δn, ER − δn)) ≤

exp(nϵn)An
n

(An + δn)n−#In
,

and

|Σ ϵ
∩ (EL + δn, ER − δn)| ≤ 4

[
exp(nϵn)An

n

(An + δn)n−#In

] 1
#In

= 4An

[
exp(nϵn)

(1 + δn/An)n−#In

] 1
#In
.

Now we can choose δn = An


ϵn +


#In
n


and take the lower limit as n → ∞.
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4. Proof of Theorem 1.2

Let J (a, b) be a periodic Jacobi operator of period q. From the Bloch–Floquet theory (see,
e.g., [6])

Σac(J ) = {E | |∆(E)| ≤ 2} =

q
j=1

B j ,

where B j are closed intervals (bands) that may overlap only at edges, and the discriminant
∆ = ∆q is a real polynomial of degree q with leading coefficient LC(∆) = A−q

q . If two bands
overlap at a point E , then E is an edge, that is, ∆(E) = ±2.

Therefore there exist

E1 > E2 > · · · > Eq−1

so that ∆(E j ) = 2 · (−1) j (which are endpoints of the bands). Vice versa, if ∆ is a polynomial
of degree q with positive leading coefficient for which such points exist, the set

E | |∆(E)| ≤ 2


is the union of q bands. Therefore we study the dependence of the lengths of the bands on
E1, . . . , Eq−1. The correspondence between ∆ and E1, . . . , Eq−1 is not one-to-one, and we
shall deal with this problem later.

Our main technical tool is the following general formula. Fix an m-tuple of points
E1, . . . , Em , and let s be a function that is non-zero and differentiable in the neighbourhood
of the points Ei ; denote

T (E; E1, . . . , Em) =

m−
i=1

(−1)i

s(Ei )

∏
j≠i

E − E j

Ei − E j
+

m∏
i=1

(E − Ei ), (4.1)

and

Bi (E) =

∏
j≠i

(E − E j ), Bi = Bi (Ei ).

The polynomial T (E) = T (E; E1, . . . , Em) is uniquely determined by the conditions
deg T = m,
T (Ei ) = (−1)i/s(Ei ), 1 ≤ i ≤ m,
LC(T ) = 1

(where again LC(P) stands for the leading coefficient of a polynomial P).

Proposition 4.1. For any E∗, E1, . . . , Em

∂

∂Ek
T (E∗

; E1, . . . , Em) = −
Bk(E∗)

Bks(Ek)

∂

∂E


E=Ek


T (E; E1, . . . , Em)s(E)


.

The proof of the proposition is via straightforward differentiation.1

1 Similar methods were used, for example, by Peherstorfer and Schiefermayr [8]. We thank Barry Simon for the
reference.



M. Shamis, S. Sodin / Journal of Approximation Theory 163 (2011) 491–504 499

Proof of Theorem 1.2. Fix 1 ≤ j ≤ q, and let us show thatB j
 ≤ 2Aq

[
cos

π( j − 1)
q

− cos
π j

q

]
.

There is a point E0 ∈ B j such that ∆(E0) = 0, and without loss of generality E0 = 0 (else
replace b with b − E0). Then

∆(E) = (a(1) · · · a(q))−1 E T (E),

where T (E) is a polynomial of degree m = q − 1 such that

LC(T ) = 1, T (Ei ) = (−1)i
2 · a(1) · · · a(q)

Ei
.

Therefore T is given by (4.1) with s(E) = (2a(1) · · · a(q))−1 E . Fix E∗
∈ B j , then

E1 > E2 > · · · > E j−1 ≥ E∗
≥ E j > · · · > Eq−1.

It is easy to see that the discriminant of the free Laplacian is given by

∆J (1,0)(E) = 2Tq(E/2),

where Tq is the qth Chebyshev polynomial of the first kind. Therefore

B j (J (1, 0)) =

[
2 cos

π j

q
, 2 cos

π( j − 1)
q

]
.

We shall show that E∗ also lies in the j th band of

J


Aq ,−2 cos

π( j − 1/2)
q


, (4.2)

which is the free Laplacian, viewed as a periodic operator of period q, and shifted so that 0 is the
j th zero of its discriminant. The theorem immediately follows.

Without loss of generality assume E∗ > 0. Fix 1 ≤ k ≤ q − 1, and let us study how ∆(E∗)

varies with the change of Ek . We apply Proposition 4.1, assuming for now that E∗
≠ E j−1. It is

easy to see that

sign
Bk(E∗)

Bks(Ek)
= (−1) j+k+1. (4.3)

Next, T (E)s(E) assumes the value (−1)k at two points in (Ek−1, Ek+1) which we denote
E−

k ≤ E+

k (E+

k is the left edge of Bk , and E−

k is the right edge of Bk+1). Note that

T (E; E1, . . . , Ek−1, E+

k , Ek+1, . . . , Eq−1) = T (E; E1, . . . , Ek−1, E−

k , Ek+1, . . . , Eq−1),

that is, the correspondence between T and the points Ei is not one-to-one, and we shall use this
shortly.

One can see from Fig. 1 that T (E)s(E) is increasing at E = E+

k if and only if k is odd, and
the opposite for E−

k :

sign
d

dE


E=E±

k

T (E)s(E) = ∓(−1)k, (4.4)
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Fig. 1. T (E)s(E) with q = 4 and j = 3.

and also that

sign T (E∗) = sign


T (E∗)s(E∗)


= (−1) j+1. (4.5)

Combining (4.3), (4.4), (4.5), and Proposition 4.1, we obtain:

sign
[
∂

∂Ek

T (E∗)
] =


−1, Ek = E−

k
+1, Ek = E+

k .

Therefore, the value of |T (E∗)| decreases if and only if E−

k moves to the right, which happens
if and only if E+

k moves to the left. That is, if E−

k moves to the right, E+

k moves to the left,
until they coincide. Thus |T (E∗)| is minimal if E−

k = E+

k (when the kth band is glued to the
(k + 1)th).

This is true for any k = 1, 2, . . . , q − 1, therefore |T (E∗)| (and |∆(E∗)|) is minimal when all
the bands are glued together. According to the Chebyshev Alternation Theorem, this is the case
if and only if

∆(E) = 2Tq


E − 2 cos π( j−1/2)

q

2Aq


,

which is exactly the discriminant of (4.2). �

5. Proof of Theorem 1.3

We first consider the periodic case, which is somewhat technically simpler, and will also be
used in the proof of the general case.

Assume that J (a, b) is periodic of period q, with discriminant ∆q , and bands

B1 = [ℓ1, r1], . . . , Bq = [ℓq , rq ].

We recall that a periodic operator can be considered ergodic (with respect to the ergodic system
(Z/qZ, q−1∑q−1

i=0 δi , · → · + 1), hence its density of states is well-defined. Let us discuss its
structure.

The measure kq has one atom of mass 1/q in (the interior of) every B j , hence kq(r j ) −

kq(ℓ j ) = 1/q . Now, if we consider J (a, b) as a periodic operator of period nq, n ≥ 1, then

∆nq(E) = 2Tn(∆q(E)/2). (5.1)

Indeed, both sides of (5.1) are polynomials of degree nq with leading coefficient

A−nq
nq =


A−q

q
n
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and with maximal absolute value 2 on the spectrum attained nq + 1 times with alternating signs,
hence they coincide according to Chebyshev’s Alternation Theorem.

Therefore every band B j splits exactly into n bands, and

knq(r j )− knq(ℓ j ) =
n

nq
=

1
q
.

Passing to the limit as n → ∞, we obtain

k(r j )− k(ℓ j ) =
1
q
.

The function k−1 is well-defined outside a countable set, and

k−1


j − 1
q

+ 0


= ℓ j , k−1


j

q
− 0


= r j .

According to Theorem 1.2,

k−1


j

q
− 0


− k−1


j − 1

q
+ 0


= |B j | ≤ 2Aq

[
cos

π( j − 1)
q

− cos
π j

q

]
=

∫ j
q

j−1
q

2π Aq sinπxdx,

and also

k−1


j

nq
− 0


− k−1


j − 1
nq

+ 0


≤

∫ j
nq

j−1
nq

2π Aq sinπxdx, n = 1, 2, . . . . (5.2)

Passing to the limit as n → ∞, we obtain:

d
dx

k−1(x) ≤ 2π Aq sinπx a.e. on [0, 1].

Taking x = k(E) and using the chain rule, we obtain (1.9).
In the general case, fix q ≥ 1, and choose q − 1 points p1 > p2 > · · · > pq−1 so that
k{ni }(p j ) = (q − j)/q. Denote I j = [p j , p j−1] (with p0 = +∞, pq = −∞), and set
A− = lim infi→∞ Ani .

Lemma 5.1.
I j ∩ Σac(J (a, b))

 ≤ 2A−


cos π( j−1)

q − cos π j
q


.

The lemma implies the theorem. Indeed, let

m(E) = |Σac(J (a, b)) ∩ (−∞, E]| .

We have:

m(p j )− m(p j−1) ≤ 2A−

[
cos

π( j − 1)
q

− cos
π j

q

]
;

applying this with every q and 1 ≤ j ≤ q − 1, we obtain

dm(E)

dE
≤ 2π A− sin


πk{ni }(E)

 dk{ni }(E)

dE
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Fig. 2. Si (bold) and S+

i (drawn slightly above).

for a.e. E ∈ Σac(J (a, b)). According to the Lebesgue theorem, almost every E ∈ Σac(J (a, b)) is
a Lebesgue point, that is, dm(E)

dE = 1 for a.e. E ∈ Σac(J (a, b)). Therefore the desired inequality
follows.

Proof of Lemma 5.1. Consider the polynomials ∆n . Passing to a subsequence, we can assume
that

lim
i→∞

LC(∆ni )
1/ni = 1/A−. (5.3)

For any ϵ > 0 one can find a set S0
i such thatΣac(J (a, b)) \ S0

i

 ≤ ϵ,

and

lim
i→∞

max
E∈S0

i

|∆ni |
1/ni ≤ 1.

This follows from the Khan–Pearson theorem combined with Egoroff’s theorem, as in the proof
of Theorem 1.1.

We choose δi → 0 so that

max
E∈S0

i

|∆ni |
1/ni ≤ 1 + δi ,

and let

S+

i =


E | |∆ni |

1/ni ≤ 1 + δi


. (5.4)

The polynomial ∆ni coincides with the discriminant ∆ of a periodic operator of period ni
obtained by periodising the first ni values of a, b. Therefore the smaller set Si =


|∆ni | ≤ 2


⊂

S+

i (see Fig. 2) consists of ni bands, and we have:I j ∩ Si
 ≤ 2A−(1 + o(1))

[
cos

π( j − 1)
q

− cos
π j

q

]
by (5.3) and the periodic case that we have already considered. Let us show that the last inequality
holds also for |I j ∩ S+

i |.
Applying Proposition 4.1 similarly to the proof of Theorem 1.2, we see that the measureI j ∩ S+

i

 is maximal if S+

i is an interval (if it has gaps, the length increases if one closes them).
Let us study this extremal case.
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The interval S+

i contains a subset Si with Lni (Si )
1/ni → A−, and on the other hand

Lni (S
+

i )
1/ni ≤ A−(1 + o(1)) by construction (5.4). Therefore Lni (S

+

i )
1/ni = A−(1 + o(1)).

Since S+

i is an interval, and Ln(I ) = |I |n/22n−1 for any interval I and any n ∈ N, we deduce
that |S+

i | = 4A−(1 + o(1)). Therefore the polynomials Ani
ni ∆ni are asymptotically extremal in

the definition of Lni , namely:

lim
i→∞

max
E∈S+

i

|Ani
ni

∆ni (E)|
1/ni = lim

i→∞
Lni (S

+

i )
1/ni . (5.5)

Now we appeal to Szegő’s theorem [10] (see [2] for a more recent discussion of this result,
as well as numerous generalisations). It states that, under the assumption (5.5), the distribution
of the zeros of Ani

ni ∆ni is asymptotically the same as that of the extreme polynomials Pni in the
definition of Lni , which are the (properly scaled) Chebyshev polynomials of the first kind.

Recall that, according to the definition of the points p j , the fraction of zeros of ∆ni that fall
into I j is asymptotically 1/q , and, similarly, the fractions that fall into the two half-lines of its
complement are asymptotically ( j −1)/q and (q − j)/q (respectively). Therefore the same holds
for Pni , and hence

lim
i→∞

|I j ∩ S+

i | = 2A−

[
cos

π( j − 1)
q

− cos
π j

q

]
.

We have derived the last equality for the case when the left-hand side is maximal, hence in
the general case we have the inequality

lim
i→∞

|I j ∩ S+

i | ≤ 2A−

[
cos

π( j − 1)
q

− cos
π j

q

]
that was claimed. Letting ϵ → 0 we conclude the proof of the lemma. �
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