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Abstract

We train neural networks of varying depth with a loss function which imposes the output representations to have a temporal profile

which looks like that of phonemes. We show that a simple loss function which maximizes the dissimilarity between near frames

and long distance frames helps to construct a speech embedding that improves phoneme discriminability, both within and across

speakers, even though the loss function only uses within speaker information. However, with too deep an architecture, this loss

function yields overfitting, suggesting the need for more data and/or regularization.
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1. Introduction

Deep Neural Networks (DNNs) are becoming the dominant paradigm for speech technologies, regularly breaking

the state of the art obtained previously with Hidden Markov Models and signal processing systems1,2. However, being

more powerful, DNNs are also more hungry in human annotations: commercially deployed systems require supervised

training on thousands of hours of human annotated data. Yet, there are situations where human annotations are not

available or two expensive to gather. Half of the human languages, for instance, have no writing system. In addition,

the fact that human infants can spontaneously learn their native language through mere immersion in a linguistic

environment, shows that it is theoretically possible to learn acoustic and language models with little or no human

labels. It is therefore of both practical and theoretical interest to explore the so-called ”zero-resource” setting3,4,5

where linguistic structures are been learned from large amounts of unannotated data.

Here, we examine the idea that useful representations can be learned in a DNN architecture using only generic

knowledge about the temporal distribution of phonetic structure. Typically, in any human language, the building

blocks of words (phones) have a duration of approximatively 60-150ms6,7. Therefore representations with a temporal
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Fig. 1. Cosine similarity between different frames separated by a given time lag. In red is shown the gold labels (cosine of 1 when the labels are

the same, and zero when not), in blue is shown the cosine between frames of filterbank values. The scale on the y axis is logarithmic.

profile that is either much smaller or much larger are likely to be not very useful for the purpose of word recognition.

The typical duration of phonemes is illustrated in Figure 1, where we have plotted the average cosine similarity

between short stretches of speech (frames) separated by different lags. As one can see, the similarity is a decreasing

function of lag. On a “gold” phoneme representation (each 10ms frame is represented by a binary N-dimensional

vector, where each dimension codes for one of the phoneme classes), the average cosine can be interpreted as the

propensity for two frames separated by a given lag to belong to the same phoneme class. When the same plot is done

on filterbank representations (each frame is composed of 40 Mel-frequency spectral coefficients over an Hamming

window of 25ms, with a step size of 10ms), the same general curve is obtained, but the drop is less steep than

for ’gold’ labels. This is due to the fact that filterbank representations encode information that change less quickly

than phoneme (e.g. information relevant to talker identity), and therefore display more long distance similarity than

abstract, talker invariant labels do.

In this paper, we therefore propose a loss function for training DNNs that minimizes the difference between em-

beddings similarities at short lags (where frames are likely to belong to the same phoneme), and maximizes (shatters

them) at long lags (where frames are likely to belong to different phonemes). We implement this idea within a siamese

network architecture following our previous work on ABnets8.

2. Related Work

The idea of using the temporal structure to evaluate speech representations has been proposed in9. In this study,

the M-measure, defined as a between-frame correlation between posteriogramms of a speech recognizer can be used

to predict the word error rate. In a more recent paper10, the M-measure is modified to become the M-delta, which

amounts to the difference in M-measure between a long and short lag correlogram. Models of the temporal structure of

phonemes have also be used in systems that try to learn acoustic models from raw speech. As shown in11, unsupervised

clustering applied to continuous speech results in units smaller to phonemes (more akin to phone states). Other

studies12,13 improved on this idea by imposing three-state HMM structure to phonemes, the clustering being done

using a Chinese restaurant process. Similarly,14 model clusterized (unsupervised) phoneme states by splitting word

chunks into phoneme-size units using the average duration of the phonemes.
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Fig. 2. Architecture of the ABnets used in the present study.

With regard to the model, siamese networks15 is an architecture in which two copies of the same network are fed

with different inputs and trained with an asymmetric loss function which tries to distinguish inputs belonging to same

or different classes. It has been used in16 for learning invariants in images. Other relevant papers that used (and

refined) a maximum margin ranking loss include learning an embedding of both images and text17. Siamese networks

have also been used to predict both phonetic- and speaker-related information in18.

3. Model

We use a siamese neural architecture as shown in Figure 2. The number of units in each hidden layer was NH=500,

the number of units in the output embedding layer was NE=100, and we varied the number of hidden layers to be

1, 3, and 5 (K=0, 2, and 4, respectively). We used the sigmoid non linearity. As input we used 40 log-compressed

filterbanks (MFSC, Mel frequency spectral coefficients), stacked for 7 frames.

The loss function (that we call M-delta) is based on the idea of maximizing the similarity between frames that

belong to the same phoneme and minimizing it for frames belonging to different phonemes. Here we use, for two

inputs A and B a simple asymmetric same/different coscos2 loss (see8 for a comparison of other similarities and

metrics, also on speech acoustics tasks) in the embedding space (noted Y):

�coscos2(A, B) =

{
(1 − cos(YA, YB))/2 if same

cos2(YA, YB) if different

with

cos(x, y) =
〈x, y〉
‖x‖ ‖y‖

Over a whole batch, for a given frame A, we sample four “different” frames C1..C4, for one pairing “same” frame

B. Here, “same” corresponds to frames with a lag of 1, and ’different’ to frames with lags of 15, 20, 25, and 30 frames.

The overall loss boils down to:

�(A, B,C1..4) =
1 − cos(YA, YB)

2
+

4∑
i=1

cos2(YA, YCi )
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The network was trained using stochastic gradient descent with Adadelta19 and early stopping on a held-out vali-

dation set, on batches of 100 samples (500 in total with 1 same and 4 different), using the Theano python package20.

For comparison, we used a fully supervised architecture that gives good performance both in phones classification

and ABX tasks18. It is constructed as follows: 11 stacked filterbanks, 4 hidden layers of 2400 rectified linear units,

and 46 (time aligned) phones as outputs of the logistic regression (with a 37.9% frame-wise classification accuracy).

It is trained with dropout21, and early stopping on the validation set.

4. Evaluation

In order to test for the adequacy of the “phoneme” embeddings that are discovered, we use the minimal pairs ABX

evaluation metric22. This metric enables to evaluate the quality of a speech representation for the purpose of word

recognition, without necessitating the training of a phoneme classifier. It focuses on the minimal distinctions that

need to be done to recognize words (i.e., the distinction between one-phoneme neighbors, as in ’bed’ and ’bad’), with

the idea that if a representation fails to capture these differences, then this is not a good representation. The only

information needed is a vector representation of the speech for each frame, plus a frame-wise distance metric. In the

ABX task, the system is asked to compute the distance between A and X, B and X, and pick the closest one. For

instance A=bed, B=bad, X=bed. This task is increasingly used in the evaluation of speech features and unsupervised

systems23,4.

Here, we setup three versions of this task (see Table 1). The first one is a within talker phone discrimination, where

A, B and X are spoken by the same talker. The second one is a between talker phone discrimination, in which A and

B are spoken by the same talker, and X by a different one. The third one is a between phone talker discrimination, in

which A and B are the same syllable spoken by different talkers but X is a different syllable.

For the three tasks we use as frame-wise distance the symmetrized Kullback-Leibler divergence. For more details

about this evaluation, see8.

Table 1. Example of stimuli in our three ABX tasks.

Task A B X

phone within talker bedT1 badT1 bedT1

phone between talker bedT1 badT1 bedT2

talker between phone bedT1 bedT2 badT2

5. Results

All the experiments were conducted on about 1/3rd (12 speakers) of the Buckeye (spontaneous speech) corpus†.
Our code is available online‡.

We present in Figure 5 the ABX score for the three tasks for the M-delta trained siamese networks varying in

number of hidden layers and for comparison, the same tasks run on the raw input features, and on the final hidden

layer of a fully supervised model.

The result show that, compared to the raw filterbank features baseline, the three M-delta trained networks improve

the scores on the phoneme discrimination tasks, and degrade the performance on the speaker discrimination task. This

degradation was expected, since the speaker identity remains constant throughout a sentence. Therefore, forcing the

M-delta loss to be maximal effectively induces the DNN to remove these constant speaker-specific features. This is

confirmed through the improvement on the across-speaker phone discrimination score over the baseline. Interestingly,

the M-delta networks also improves within-speaker discrimination, showing that the loss function is removing constant

(or slow moving) features beyond speaker features.

† http://buckeyecorpus.osu.edu
‡ https://github.com/SnippyHolloW/abnet
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Fig. 3. ABX error rates on the raw filterbanks, on the output layer of the M-delta models and on the on last hidden layer of a supervised DNN on

three ABX tasks: two of phone discrimination, and one of speaker discrimination.

Two other aspects of the results are worth noting: First, the performance does not increase monotonically with the

number of hidden layers. In fact, the optimal performance (for the phoneme discrimination tasks) is found with 3

hidden layers, and degrades somewhat with 5 hidden layers, whereas the training error is lower with more layers (not

shown here). This is perhaps due to the fact that the unregularized M-delta loss is not constraining enough for a large

DNN to learn without overfitting. Second, while the performance is better than baseline, the M-delta loss does not

reach that of the supervised topline. Interestingly, though, the topline performance on speaker discrimination is not

that different from that of the M-delta networks with 3 and 5 hidden units, suggesting that we have reached some kind

of optimum, at least in terms of removing talker effects.

6. Conclusion

We have demonstrated that extremely general temporal information (the M-delta loss) can help in learning a rep-

resentation that is more speaker invariant than the original spectrographic representation. Note that this was achieved

through a very generic kind of information: we only try to maximize the difference in similarity between very close

frames (lag of 1) and distant frames (more than 15 frames). We did not try to incorporate more specific temporal infor-

mation, such as fitting the red curve in Figure 1, or by taking into account phoneme-specific temporal information. Yet,

we obtained substantial improvement (3-4% absolute, 13-14% relative) in error rate on a phone discrimination task

both within and across talkers. In parallel, our learner representation lost the ability to perform speaker discrimination

(with an increase in error rate up to 8% absolute, 21% relative).

In brief, the M-delta loss enables to learn a representation of speech sounds that is more speaker invariant than the

filterbank representation. It is, however, far from achieving perfect invariance compared to supervised losses. The

gain in performance achieved with the M-delta loss is only about a third of the improvement obtained by supervised

learning. It remains to be seen whether the M-delta loss could be combined with some other loss, such as the same-

different loss8,5, or an auto-encoder reconstruction loss24 as a way to improve the phoneme discrimination score

without supervised labels.

Finally, not covered in this study is a thorough examination of the optimum parameters for the M-delta loss: ratio

of positive to negative examples, network architecture, etc. It also remains to be seen whether performance increases

with the size of the dataset, or whether some asymptote is reached after a critical amount of data.
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