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Abstract

The notion of a directed strongly regular graph was introduced by A. Duval in 1988 as
one of the possible generalizations of classical strongly regular graphs to the directed case.
We investigate this generalization with the aid of coherent algebras in the sense of D.G.
Higman. We show that the coherent algebra of a mixed directed strongly regular graph is
a non-commutative algebra of rank at least 6. With this in mind, we examine the group
algebras of dihedral groups, the flag algebras of a Steiner 2-designs, in search of directed
strongly regular graphs. As a result, a few new infinite series of directed strongly regular
graphs are constructed. In particular, this provides a positive answer to a question of Duval on
the existence of a graph with certain parameter set having 20 vertices. One more open case
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with 14 vertices listed in Duval’s paper is ruled out, while new interpretations in terms of
coherent algebras are given for many of Duval’s results.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The concept of a strongly regular graph is one of the central objects in modern
algebraic graph theory. It was introduced by Bose in [2], although the concept itself
had been known earlier under the notion “two-class association scheme”. The inter-
est in two-class association schemes in turn was stimulated by combinatorial designs
of experiments as well as by finite geometries.

In 1967, Seidel published his first paper [37] on strongly regular graphs. Seidel’s
enthusiasm (cf. [4] for a survey) was one of the most important factors in the rapid
development of the investigation of strongly regular graphs, however not the only
one.

A little earlier, in 1964, Higman had already investigated finite permutation
groups of rank 3; cf. [16]. Each such permutation group yields a pair of comple-
mentary strongly regular graphs. The significance of strongly regular graphs for the
theory of finite groups became obvious a few years later, in Oxford, when Higman
and Sims constructed (after a talk given by Hall on the sporadic simple group J2
and within the period of 24 h; see [14], Section 2.6) the new sporadic simple group
HS.

Meanwhile, the strongly regular graphs which come from finite permutation
groups of rank 3 have been classified via the classification of the finite simple groups;
cf., e.g., [32]. A classification of all strongly regular graphs is certainly out of reach,
but one might be tempted to explore to which extent the so-called adjacency algebra
of a strongly regular graph might be able to replace the group-theoretical reasoning
when considering strongly regular graphs in general.

By definition, the adjacency algebra of a graph is the matrix algebra generated by
its adjacency matrix. Occasionally, the adjacency algebra of a graph reflects some of
the graph-theoretical properties of the graph in question. For instance, the adjacency
algebra of an undirected graph � contains the (all 1) matrix J if and only if � is con-
nected and regular; cf. e.g., [22]. Similarly, an undirected graph is strongly regular if
and only if its adjacency algebra contains J and has rank 3.

Looking at this algebraic characterization of strongly regular graphs it seems to
be natural to look for directed graphs whose adjacency algebra has similar prop-
erties. Duval considered such graphs in 1988, and his paper [5] has motivated our
present work. The notion which was introduced by Duval is called here a directed
strongly regular graph. In our paper we mainly focus on “mixed” graphs, that is,
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those which have undirected edges as well as directed ones. In such a graph �, the
adjacency algebra is a proper subalgebra of the coherent algebra generated by the
adjacency matrix of �. The simultaneous use of both of these algebras will be our
main methodological principle.

In Section 2, we introduce the basic concepts which we shall need in the present
paper. We state Duval’s main result on directed strongly regular graphs (d.s.r.g.’s). In
Section 3, we define the coherent algebra of a graph. In later sections, we construct
d.s.r.g.’s with certain prescribed coherent algebras. The constructions in Section 4
come from dihedral groups, those in Section 6 from dihedral schemes. Dihedral
schemes generalize dihedral groups in the same way as buildings (in the sense of
Tits) generalize Coxeter groups. In order to clarify this relationship, we give an
introduction to dihedral schemes in Section 5. The last three sections are devoted
to the discussion of small graphs having at most 20 vertices. In Section 7, new
interpretations are given for a few sporadic examples found by Duval. In Section
8, we rule out one of the possibilities in Duval’s list of small graphs. We include
the proof in its full length, because the method seems to be interesting in its own
right. The whole list itself is reviewed in Section 9. In this paper, we have not used
computers for the enumeration of graphs. A few problems to which computers can
be applied are briefly discussed in Section 9.

This paper originates from a talk by Klin at Oberwolfach, January 1994 (see [28])
who had presented a first portion of new results and posed questions some of which
were solved by other authors soon after the meeting at Oberwolfach. Our initial
intention was to submit a paper to the special volume of “Linear Algebra and its
Applications” dedicated to Seidel on the occasion of his 75th birthday. Unfortunately,
we spent too much time on polishing the initial draft of this paper, and missed the
deadline for the submission to the volume. Sadly, we now dedicate this paper to his
memory as he passed away in May, 2001.

2. Basic concepts and Duval’s main result

Let n denote a positive integer, set � := �n := {1, 2, . . . , n}, and let R denote
a subset of the Cartesian product � × �. Then � = (�, R) is a (directed) graph
with vertex set � and arc set R. If R is an antireflexive relation over �, that is, if
R ∩ {(x, x) : x ∈ �} = ∅, then � is called a graph without loops. � is an undirected
graph if R is antireflexive and symmetric, that is, R = Rt, where Rt = {(y, x) :
(x, y) ∈ R}. Set �̃

2 := {(x, y) : x, y ∈ �, x /= y}. A complementary graph to a di-

rected graph � = (�, R) without loops is a graph � = (�, R̄), where R̄ = �̃
2 \ R.

For x ∈ � the input valency iv(x) (resp. the output valency ov(x)) is the cardinality
of the set {y : (y, x) ∈ R} (resp. {y : (x, y) ∈ R}). � is called regular of valency k if
all its vertices have input valency k and output valency k. To each graph � = (�, R)

we associate its adjacency matrix A = A(�) = (aij )1�i�n, 1�j�n, where
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aij =
{

1 if (i, j) ∈ R,

0 if (i, j) /∈ R.

We exhibit two distinguished matrices, namely I = In, the identity matrix of order
n, andJ = Jn, the matrix whose entries are all equal to 1. For any two matricesA andB

of order n, we denote by A ◦ B the Schur–Hadamard (entrywise) product of A and B.
The classical notion of a strongly regular graph (briefly s.r.g.; see [2,4,15,23,37])

with parameters (n, k, λ, µ), is defined as an undirected graph � = (V , E) with n

vertices whose adjacency matrix A = A(�) satisfies
A2 = kI + λA + µ(J − I − A) (2.1)

and
AJ = JA = kJ. (2.2)

A tournament is a directed graph T whose adjacency matrix A = A(T ) satisfies
A + AT + I = J . If, moreover, A satisfies (2.2) and

A2 = λA + µ(J − I − A), (2.3)

then T is called doubly regular [3].
In [5], Duval suggested the following generalization of the notion of an s.r.g.

A directed graph without loops � = (V , R) with adjacency matrix A = A(�) is
called a directed strongly regular graph (d.s.r.g.) with parameters (n, k, µ, λ, t) or
an (n, k, µ, λ, t)-graph if A satisfies (2.2) and

A2 = tI + λA + µ(J − I − A). (2.4)

The notion of a d.s.r.g. is a generalization of both, s.r.g. and doubly regular tour-
naments. In fact, a d.s.r.g. with t = k is an s.r.g. and a d.s.r.g. with t = 0 is a doubly
regular tournament. But there exist also d.s.r.g.’s with

0 < t < k. (2.5)
We shall call each d.s.r.g. which satisfies (2.5) a mixed (or genuine) d.s.r.g. The arc
set R of every mixed d.s.r.g. can be uniquely decomposed as R = Rs ∪ Ra, Rs ∩
Ra = ∅, where Rs is a symmetric and Ra is an antisymmetric binary relation. We
will use the notation As = A(�s), Aa = A(�a), where �s = (V , Rs), �a = (V , Ra).
We call a matrix A antisymmetric if A ◦ At = 0. It is clear that the matrix Aa is
antisymmetric. We will use the notation As and Aa, similarly to As and Aa, for the
complementary graph �.

Using fairly traditional tools from matrix theory, Duval has developed an excellent
starting background for the theory of d.s.r.g.’s; see [5]. Firstly he proved that, for
every (n, k, µ, λ, t)-graph � with adjacency matrix A, its complementary graph �
with adjacency matrix A is an (n, k′, µ′, λ′, t ′)-graph, where

k′ =(n − 2k) + k − 1,

µ′ =(n − 2k) + λ,

λ′ =(n − 2k) + µ − 2,

t ′ =(n − 2k) + t − 1.

Also, Duval established necessary conditions to the existence of a d.s.r.g.
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Theorem 2.1 (Duval’s Main Theorem). Let � be a (n, k, µ, λ, t)-graph. Then one of
the following holds.

(i) � is an s.r.g. (t = k).

(ii) � is a doubly regular tournament (t = 0).

(iii) � is a genuine d.s.r.g. (0 < t < k) and there exists some positive integer d for
which the following requirements are satisfied:

k(k + (µ − λ)) = t + (n − 1)µ, (2.6)

(µ − λ)2 + 4(t − µ) = d2, (2.7)

d|(2k − (µ − λ)(n − 1)), (2.8)

2k − (µ − λ)(n − 1)

d
≡ n − 1 (mod 2), (2.9)

∣∣∣∣2k − (µ − λ)(n − 1)

d

∣∣∣∣ � n − 1. (2.10)

Here, complete and empty graphs are considered as partial cases of s.r.g. (k =
n − 1 and k = 0, respectively). A lot of other theoretical results and helpful examples
can be found in Duval’s paper, including a list of all feasible parameters with n � 20
which will be discussed in Section 9. In our attempt to create a new vision of d.s.r.g.’s
in terms of coherent algebras, we shall start from the consideration of certain types
of matrix algebras.

Let W be an algebra of matrices of order n over C such that:

(i) there exists a basis A = {A1, . . . , Ar} of W (as a vector space) which consists
of {0, 1}-matrices;

(ii) At
i ∈ A for 1 � i � r , where At

i is the transpose of Ai ;
(iii)

∑r
i=1 Ai = J ;

(iv) I ∈ W .

Then W is called a coherent algebra of degree n and rank r with the standard
basis A = {A1, A2, . . . , Ar}. We may write W = 〈A1, A2, . . . , Ar 〉.

It follows from the definition of a coherent algebra that there exist non-negative
integers pk

ij such that

AiAj =
r∑

k=1

pk
ijAk, 1 � i, j � r.

The integers pk
ij are called the structure constants of W .
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Each basis matrix Ai of a coherent algebra W = 〈A1, A2, . . . , Ar 〉 can be regarded
as the adjacency matrix A = A(�i ) of a graph �i = (�n, Ri). Then �i and Ri are
called a basis graph and a basis relation, respectively, of the coherent algebra W .
The basis relations of a coherent algebra give rise to a coherent configuration in the
sense of [18].

If all basis graphs of a coherent configuration are regular, then it is called an as-
sociation scheme. The coherent algebra which corresponds to an association scheme
is called a homogeneous coherent algebra or Bose–Mesner algebra (or briefly BM-
algebra) of the association scheme. The centralizer algebra of a permutation group G

is the algebra of matrices which commute with the permutation matrices correspond-
ing to permutations in G. It is easy to see that the centralizer algebra of a transitive
permutation group G is a homogeneous coherent algebra.

Let G denote a finite group, and let X denote a non-empty subset of G. We denote
by X(−1) the set {x−1 : x ∈ X}. The element

∑
x∈X x in the group ring Z(G) will

be called a simple quantity. It will be denoted as X. Assume now that e /∈ X. Then
the graph � = �(G, X) = (G, {(x, y) : x, y ∈ G, yx−1 ∈ X}) is called the Cayley
graph over G with respect to X.

Historical and bibliographical remarks. The notion of a coherent algebra ap-
peared in Moscow in 1968 in [43] under the name “cellular algebra”. More accesible
is a collective volume [42]. The notion of coherent configuration was introduced
by Higman in 1970 in [17], the term “coherent algebra” is adopted from [19]. The
textbook [1] as well as the lecture notes [45] are standard references for the founda-
tions of the theory of association schemes. A more detailed exposition of the notions
considered in this section can be found in [8,9].

3. The coherent algebra of a d.s.r.g.

Let W1, W2 be two coherent algebras of degree n. Then W1 ∩ W2 is a coherent al-
gebra again (cf. [20,40]). This result implies that there exists a unique minimal coher-
ent algebra W = W(A1, A2, . . . , Ak) = 〈〈A1, A2, . . . , Ak〉〉 which contains given n

by n matrices A1, A2, . . . , Ak . This algebra W will be called the coherent algebra
generated by A1, A2, . . . , Ak (or the coherent closure of A1, A2, . . . , Ak).

To every d.s.r.g. � with adjacency matrix A we associate a coherent algebra
W(�) = 〈〈A〉〉. We shall say that W(�) is the coherent algebra of �. If � is a genuine
d.s.r.g., then obviously I, As, Aa, As, Aa ∈ W(�). These matrices are linearly inde-
pendent. Hence we obtain rank(W(�)) � 5. We shall prove that the equality cannot
occur.

Lemma 3.1 (Higman [18]). Let W be a homogeneous coherent algebra of rank � 5.

Then W is commutative.

Recall that we use a non-traditional definition of an antisymmetric matrix.
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Lemma 3.2. Let � be a regular non-empty directed graph without undirected edges
(i.e., A(�) is an antisymmetric matrix). Then A = A(�) has at least one non-real
eigenvalue.

Proof. Suppose that � is regular of valency k. Then A2 has an eigenvalue k2. Since
A is antisymmetric, the trace of A2 is zero. Therefore, at least one of the eigenvalues
of A is non-real. �

Theorem 3.3. Let � be a genuine d.s.r.g. Then:

(a) W(�) is non-commutative;
(b) rank(W(�)) � 6.

Proof. Set A = A(�). Then A = As + Aa, with As, Aa ∈ W(�). Suppose that W(�)

is commutative. Then As commutes with Aa, and, therefore the eigenvalues of A

are the sums of the corresponding eigenvalues of As and Aa. All eigenvalues of a
symmetric matrix As are real. By Lemma 3.2, at least one of the eigenvalues of Aa
is non-real. It follows that at least one of the eigenvalues of A is also non-real. This
contradicts the part of the proof of Theorem 2.2 of [5], in which it was shown that
all eigenvalues of a genuine d.s.r.g. are integers. Thus W(�) is non-commutative.

To prove (b), we only have to exclude the case rank(W(�)) = 5. It follows from
(a) that W(�) is non-commutative. By Lemma 3.1, A(�) is non-homogeneous. The
only non-homogeneous coherent algebra of rank 5 is the centralizer algebra of the
intransitive permutation representation of the symmetric group Sn on n + 1 points
(one of the points is fixed by every element of Sn). One can easily check that the
adjacency matrix of a genuine d.s.r.g. can not belong to this algebra. �

We conclude this section with the following simple helpful observation due to
Pech. We shall use it in Section 6.

Proposition 3.4. Let � be a d.s.r.g., A = A(�), let �t be a graph such that A(�t) =
At. Then �t is also a d.s.r.g. with the same parameters as �.

Proof. The assertion follows immediately by taking the transpose of the both sides
of the Eq. (2.4). �

4. D.s.r.g.’s arising from dihedral groups

Let n denote an integer with n � 3, let Dn denote the dihedral group of order 2n,
and let Cn = 〈c〉 denote the cyclic normal subgroup of Dn of order n. In this section,
we shall construct Cayley graphs over Dn which are d.s.r.g.’s. We shall denote by
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C(Dn) the group ring of Dn over C. If X ⊂ Dn, then the Cayley graph �(Dn, X) is
a d.s.r.g. if and only if γ = X satisfies the equation analogous to (2.4):

γ 2 = te + λγ + µ(Dn − e − γ ). (4.1)

If (4.1) is satisfied, then �(Dn, X) is a (2n, |X|, µ, λ, t)-graph.

Example 4.1. Let n = 4, d ∈ D4 \ C4 be an arbitrary involution. Then the Cayley
graph �(D4, X) with X = {c, d, c3d} is a (8, 3, 1, 1, 2)-graph.

Lemma 4.1. Let X, Y ⊆ Cn, where n is odd, satisfy the following conditions

(i) X + X(−1) = Cn − e,

(ii) Y · Y (−1) − X · X(−1) = εCn, ε ∈ {0, 1}.

Let a ∈ Dn \ Cn. Then the Cayley graph � = �(Dn, X ∪ aY ) is a d.s.r.g. with pa-
rameters

(
2n, n − 1 + ε, n−1

2 + ε, n−3
2 + ε, n−1

2 + ε
)
. In particular, if X satisfies

(i) and Y = Xg or X(−1)g for some g ∈ Cn, then � is a d.s.r.g. with parameters(
2n, n − 1, n−1

2 , n−3
2 , n−1

2

)
.

Proof. Let γ = X ∪ aY = X + aY . Then

γ 2 =(X + aY )2

=X2 + aX(−1) · Y + aY · X + Y (−1) · Y

=X2 + Y · Y (−1) + aY (Cn − e)

=X2 + εCn + X · X(−1) + aY (Cn − e)

=X · (Cn − e) + εCn + a(|Y |Cn) − aY

=(|X| + ε) · Cn + |Y |aCn − (X + aY ).

To finish the proof it is enough to check |X| + ε = |Y |. It follows from (i) that |X| =
n−1

2 . From (ii) we obtain |Y |2 = |X|2 + εn = (|X| + ε)2, and the proof is complete.
�

Example 4.2. Let n be odd. If X = Y = {c, c2, . . . , c(n−1)/2}, then the conditions
of Lemma 4.1 are satisfied, and we obtain a

(
2n, n − 1, n−1

2 , n−3
2 , n−1

2

)
-graph. If

n = 3, then the resulting graph is the (6, 2, 1, 0, 1)-graph in [5, p. 72].

Lemma 4.2. Let X, Y ⊆ Cn, where n is odd, and let a ∈ Dn \ Cn. Suppose that the
Cayley graph �(Dn, X ∪ aY ) is a d.s.r.g. If X + X(−1) = Cn − e, then Y · Y (−1) −
X · X(−1) = εCn, ε ∈ {0, 1}.

Proof. Let (2n, k, µ, λ, t) be the parameters of the graph. Then

(X + aY )2 = te + λ(X + aY ) + µ(Cn + aCn − e − X − aY ). (4.2)
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On the other hand

(X + aY )2 = X2 + Y · Y (−1) + |Y |aCn − aY . (4.3)

Comparing (4.2) and (4.3) we obtain

X2 + Y · Y (−1) = te + λX + µ(Cn − e − X), (4.4)

|Y |Cn − Y = λY + µ(Cn − Y ). (4.5)

If Y = Cn, then (4.5) implies λ = n − 1. By the assumption, the coefficient of
e in X2 is zero, hence (4.4) implies t = n. Then by (2.6), taking into account that
k = 3n−1

2 , we find µ = 3n+1
2 > n = t , which is impossible by [5, Theorem 2.3].

Thus Y /= Cn and (4.5) implies{
λ − µ = −1,

µ = |Y |. (4.6)

Substituting (4.6) into (4.4), we get

Y · Y (−1) =−X2 + te + |Y |(Cn − e) − X

=−X(Cn − e − X(−1)) + te + |Y |(Cn − e) − X

=X · X(−1) + (|Y | − |X|)Cn + (t − |Y |)e.
This implies |Y | = t and

|Y |2 = |X|2 + (|Y | − |X|)n. (4.7)

Then (4.7) implies either |Y | = |X|, or |Y | + |X| = n. In the latter case, since |X| =
n−1

2 , we find |Y | = n+1
2 . Hence |Y | − |X| ∈ {0, 1}. �

Lemma 4.3. Let n be an odd prime, and let a ∈ Dn \ Cn. Suppose that the Cayley
graph � = �(Dn, X ∪ aY ) is a genuine d.s.r.g. Then

X + X(−1) = Cn − e. (4.8)

Proof. Let X = {ci1 , . . . , cim}, m = |X|, 0 < i1 < · · · < im < n. It is well-known
(see, e.g. [31, p. 66]), that Dn has an irreducible character χ such that χ(h) = 0, h /∈
Cn, and χ(ci) = wi + w−i , where w is a primitive nth root of unity. Since the
eigenvalues of � are integers,

χ(X + aY ) ∈ Z. (4.9)

On the other hand,

χ(X + aY ) = wi1 + · · · + wim + wn−im + · · · + wn−i1 .

Note that the element
∑n−1

j=1 djw
j , where dj ’s are rational, is rational if and only

if d1 = · · · = dn−1. Hence (4.9) implies either
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(i) {i1, i2, . . . , im} = {1, 2, . . . , n − 1}, or
(ii) {i1, . . . , im} ∪ {n − im, . . . , n − i1} = {1, 2, . . . , n − 1}.

In the first case we obtain X = X(−1), hence (X ∪ aY )(−1) = X ∪ aY . This im-
plies t = k, contradicting the assumption that � is genuine. The second case gives
the assertion of the lemma. �

Theorem 4.4. Let n be an odd prime, X, Y ⊆ Cn, a ∈ Dn \ Cn. Then the Cayley
graph �(Dn, X ∪ aY ) is a genuine d.s.r.g. if and only if X, Y satisfy the conditions
of Lemma 4.1.

Proof. The theorem is a consequence of all lemmata which were proved in this
section. �

Example 4.3. Let �1 be the graph defined in Example 4.2 with n = 7. Let �2 =
�(D7, {c, c2, c4, ac, ac2, ac4}). Then it follows from Lemma 4.1 that both �1 and
�2 are genuine d.s.r.g.’s with parameters (14, 6, 3, 2, 3). It is easy to find the coherent
algebras of these graphs: W(�1) = C(D7), while W(�2) = 〈e, c, c2, c4, c3, c5, c6,

a, ac, ac2, ac4, ac3, ac5, ac6〉. Hence �1 and �2 are not isomorphic. We can show
that Aut(�1) = D7, while Aut(�2) has order 42.

Example 4.4. Let � = �(D9, {c, c3, c4, c7, ac, ac3, ac4, ac7}). Then it follows
from Lemma 4.1 that � is an (18, 8, 4, 3, 4)-graph. A similar argument as in the
previous example shows that � is not isomorphic to the graph in Example 4.2 with
n = 9. We have Aut(�) = (Z3 � Z3) × S2.

Remark 1. On the basis of Theorem 4.4, a method is described for finding a com-
plete list of all pairwise non-isomorphic genuine d.s.r.g.’s over Dn, when n is an odd
prime, like in [9]. Here results on S-rings over dihedral groups [36,38,41] can be
helpful. However, we attract the reader’s attention to the mistake in [38]. The S-ring
W(�2) considered in Example 4.3 is missing in the “complete list” of all S-rings
over D7 which is presented in [38].

Remark 2. We do not consider here the problem of classifying all genuine d.s.r.g.’s
over Dn for arbitrary n. There exist cases which can not be covered by means of the
construction given in Lemma 4.1. In particular, other solutions can be found using
pairs of inequivalent Hadamard difference sets over cyclic group of order n (see for
details survey paper [26] by Jungnickel).

5. The flag algebra of BIBD with λ = 1

A balanced incomplete block design (BIBD) is an incidence structure S = (P,B),
where P is a finite set of points, B is a family of k-element subsets (called blocks)
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of P, such that every pair of distinct points is contained in exactly λ blocks. In a
BIBD, every point is contained in exactly r blocks, where r = λ(v − 1)/(k − 1).
The set (v, b, r, k, λ), where b = |B|, is called the parameters of the BIBD.

In what follows we shall consider the special case where λ = 1. For a BIBD with
λ = 1, v and b can be computed from k and r: set x = k − 1, y = r − 1. Then we
have




v = 1 + x + xy,

b = (1+x+xy)(y+1)
x+1 ,

r = y + 1,

k = x + 1.

(5.1)

Let F denote the set of incident point-block pairs. The elements of F are called
flags. Set n := |F|. Then

n = (1 + x + xy)(1 + y). (5.2)

The well-known Fisher’s inequality says that, for every BIBD, b � v. A BIBD is
called symmetric if b = v.

We define the following binary relations on F (here f = (p, C) and g := (q, D)

are two flags):

R0 ={(f, f ) : f ∈ F}, (the diagonal of F),

R1 ={(f, g) : p /= q, C = D}, coLlinear flags,

R2 ={(f, g) : p = q, C /= D}, coNcurrent flags,

R3 ={(f, g) : p /= q, C /= D, (q, C) ∈ F},
R4 ={(f, g) : p /= q, C /= D, (p, D) ∈ F},
R5 ={(f, g) : p /= q, C /= D, (q, C) /∈ F, (p, D) /∈ F, C ∩ D /= ∅},
R6 ={(f, g) : p /= q, C /= D, (q, C) /∈ F, (p, D) /∈ F, C ∩ D = ∅}.

The following lemma is an easy consequence of the definition of BIBD with λ = 1.

Lemma 5.1. Assume that S is a BIBD with λ = 1. Then, for each i ∈ {0, . . . , 6},
Ri defines a regular graph �i = (F, Ri). The valencies ni of �i are:

n0 = 1, n1 = x, n2 = y, n3 = n4 = xy,

n5 = x2y, n6 = xy(y − x).

R1, R2, R5, and R6 are symmetric relations; R3 and R4 are paired antisymmetric
relations. �

Note that R6 = ∅ if S is symmetric. We shall mainly restrict our attention to the
case y > x. However, we note that our results remain valid even for the case y = x

after the trivial modifications.
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If A = (aij ) and B = (bij ) are integer matrices we shall write B � A (B covers
A) if bij � aij for all i, j . Let us now prove that M = (F, R) is an association
scheme with six classes. In order to prove this, we shall consider the adjacency ma-
trices Ai of the graphs �i = (F, Ri), i ∈ {0, 1, . . . , 6}. We need to prove that W =
〈A0, A1, A2, A3, A4, A5, A6〉 is an algebra of dimension 7.

A matrix A is called doubly stochastic if the sum of the elements in each row and
each column of A is equal to a constant. This constant is called the valency of A. By
Lemma 5.1, each of the matrices A0, . . . , A6 is doubly stochastic, hence every ele-
ment of the algebra W is also doubly stochastic. Let us use the following mnemonic
notation for the matrices A1 and A2: A1 =: L, A2 =: N . (See the definition of R1
and R2.)

Lemma 5.2. A3 = LN, A4 = NL, A5 = LNL, A6 = NLN − LNL.

Proof. A3 has valency xy, and is covered by LN . The valency of LN is also xy.
Therefore, LN = A3. A similar reasoning shows that A4 = NL and A5 = LNL.
Now let us consider NLN . It is easy to see that NLN covers A5 + A6. Then we
again compare the valencies, and we obtain that A6 = NLN − LNL. �

Lemma 5.3. We have

LNLN = xNL + (x − 1)LNL + x(NLN − LNL) (5.3)

and

NLNL = xLN + (x − 1)LNL + x(NLN − LNL). (5.4)

Proof. Let us first prove (5.3). Let us start with a flag (p, C) and let us find all
paths of length 4 which begin at (p, C) and which alternately go through arcs of
the relations R1 and R2. Let (p, C), (q, C), (q, D), (r, D), (r, E) be such a path.
First of all, we claim that p /= r , and C /= E. Indeed, if p = r , then p, q ∈ C ∩ D.
But p /= q and C /= D, contrary to λ = 1. Similarly, q /= r and C /= D implies that
C /= E.

Assume first that (p, E) ∈ F. Then the above claim shows that there exist at least
x paths to (r, E).

Now assume that (p, E) /∈ F. Then there exist at least x − 1 paths to (r, E) in
the case where E ∩ C /= ∅, and there exist at least x paths to (r, E) if E ∩ C = ∅.

Altogether we have constructed x · yx + (x − 1) · x2y + x(y2x − x2y) = x2y2

distinct paths of length 4. However altogether there are exactly x2y2 paths. Hence
all possibilities are accounted and (5.3) has been proved. The proof of (5.4) is simi-
lar. �

Theorem 5.4. W = 〈A0, A1, A2, A3, A4, A5, A6〉 is a coherent algebra.



M. Klin et al. / Linear Algebra and its Applications 377 (2004) 83–109 95

Proof. It is easy to see that R1 defines a graph with vertex set F which is isomorphic
to a disjoint union of complete graphs each of which has x + 1 vertices. From this it
follows that

L2 = xI + (x − 1)L. (5.5)

Similarly,

N2 = yI + (y − 1)N. (5.6)

Together with (5.3) and (5.4) we now have a set of defining relations for the matrix
algebra W . It is evident that the set of these relations is sufficient to express each
product of matrices Ai, Aj , 0 � i, j � 6, as a linear combination of the seven ma-
trices A0, . . . , A6. Therefore, W is closed under multiplication. The axioms (i)–(iv)
for a coherent algebra are satisfied evidently. hence W is a coherent algebra. �

Table 1 gives the intersection numbers of the coherent algebra W . In a cell of
Table 1 which is the intersection of row i and column j , the intersection numbers
pk

ij , 0 � k � 6 are given, read from the top to the bottom.

Remarks
1. In the case x = y the relation R6 is empty. One can use Table 1 to obtain the

intersection numbers of the rank 6 coherent algebra on the flags of a projective
plane, if the last row and column as well as the last entry in each cell of Table 1
are deleted. Note that these intersection numbers appeared already in [9] where
they were computed by direct combinatorial considerations without the use of
defining relations.

2. In the case of a non-symmetric BIBD with λ = 1, the rank 7 coherent algebra
defined on flags (the flag algebra of BIBD) was first given in [46]. In [44] it
is indicated how to obtain the corresponding coherent algebra for finite Moore
geometries.

It follows from the proof of Theorem 5.4 that the coherent algebra W of rank 7
(or of rank 6 in the case x = y) is generated (as a usual matrix algebra) by L and N .
The matrices L and N are adjacency matrices of disjoint unions of complete graphs.
Following [44] an element A of the standard basis of a coherent algebra W is called
a (generalized) involution if the following condition holds:

A2 = xI + (x − 1)A for some integer x. (5.7)

Note that A is symmetric. Moreover, if x = 1, then (5.7) is equivalent to the fact that
A is a permutation matrix of an involution (thereby justifying the use of the word
“(generalized) involution”).

Let W be a coherent algebra, and let A1, A2 be two involutions of W . Let us call
W dihedral if W = 〈〈A1, A2〉〉 and A1 + A2 is the adjacency matrix of a connected
graph. In [46], it was proved that
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Table 1
Structure constants of a rank 7 flag algebra

i \ j 0 1 2 3 4 5 6

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

0 x 0 0 0 0 0
1 x − 1 0 0 0 0 0
0 0 0 x 0 0 0

1 0 0 1 x − 1 0 0 0
0 0 0 0 0 x 0
0 0 0 0 1 x − 1 0
0 0 0 0 0 0 x

0 0 y 0 0 0 0
0 0 0 0 y 0 0
1 0 y − 1 0 0 0 0

2 0 0 0 0 0 x y − x

0 1 0 0 y − 1 0 0
0 0 0 1 0 x − 1 y − x

0 0 0 1 0 x y − x − 1

0 0 0 0 xy 0 0
0 0 y 0 (x − 1)y 0 0
0 0 0 0 0 x2 x(y − x)
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3 1 0 y − 1 0 0 (x − 1)x (x − 1)(y − x)

0 0 0 x 0 (x − 1)x x(y − x)

0 1 0 x − 1 y − 1 (x − 1)2 (x − 1)(y − x)

0 0 0 x 0 x2 x(y − x − 1)

0 0 0 xy 0 0 0
0 0 0 0 0 xy 0
0 x 0 x(y − 1) 0 0 0

4 0 0 0 0 x (x − 1)x x(y − x)

1 x − 1 0 0 0 (y − 1)x 0
0 0 1 x − 1 x − 1 (x − 1)2 x(y − x)

0 0 1 x − 1 x (x − 1)x x(y − x − 1)

0 0 0 0 0 x2y 0
0 0 0 xy 0 (x − 1)xy 0
0 0 0 0 x2 (x − 1)x2 x2(y − x)

5 0 x 0 x(y − 1) x(x − 1) (x − 1)2x (x − 1)x(y − x)

0 0 x x(x − 1) x(x − 1) (x − 1)2x x2(y − x)

1 x − 1 x − 1 (x − 1)2 (x − 1)2 x3 − 3x2 + 2x + xy − 1 (x − 1)x(y − x)

0 0 x x(x − 1) x2 (x − 1)x2 x2(y − x − 1)

0 0 0 0 0 0 xy(y − x)

0 0 0 0 0 0 xy(y − x)

0 0 0 0 x(y − x) x2(y − x) x(y − x)(y − x − 1)

6 0 0 0 0 x(y − x) x2(y − x) x(y − x)(y − x − 1)

0 0 y − x x(y − x) (x − 1)(y − x) (x − 1)x(y − x) x(y − x)(y − x − 1)

0 0 y − x x(y − x) (x − 1)(y − x) (x − 1)x(y − x) x(y − x)(y − x − 1)

1 x y − x − 1 x(y − x − 1) x(y − x − 1) x2(y − x − 1) x3 + 3x2 − 2x2y − 2xy + xy2 + 2x − y
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(a) the flag algebras of projective planes are the only non-commutative dihedral
coherent algebras of rank 6;

(b) let W be a non-commutative dihedral coherent algebra of rank 7 generated by the
involutions A1 and A2, and assume that the valencies of A1 and A2 are distinct,
then W is the flag algebra of a non-symmetric BIBD with λ = 1.

It turns out that dihedral coherent configurations are a natural tool for the in-
vestigation not only of BIBD’s with λ = 1 but also of generalized polygons and
amalgamated products of finite groups. In particular, the famous theorem of Feit–
Higman [10] can be seen naturally as a first result on dihedral coherent algebras;
see [44]. We believe that a deeper investigation of the relationship between dihedral
coherent algebras and d.s.r.g.’s is a worthwhile subject of interest.

We would like to mention in conclusion of this section that the idea of the use of
defining relations for the description of the flag algebra of block designs and Moore
geometries goes back to [27,33–35] and especially [39]. In a more general setting this
idea can be even traced to [24]. In another context, defining relations on involutions
were considered in [13].

6. D.s.r.g.’s arising from dihedral coherent algebras

In this section, we construct new d.s.r.g.’s from dihedral coherent algebras. We
keep the notation of the adjacency matrices defined in the previous section.

Proposition 6.1. Let W be the flag algebra of a projective plane of order q, W =
〈A0, A1, A2, A3, A4, A5〉, where A3 and A4 are a pair of antisymmetric matrices.
Let i ∈ {3, 4}, j ∈ {1, 2, 5}. Then Ai + Aj is the adjacency matrix of a genuine
d.s.r.g. whose parameters are

((q + 1)(q2 + q + 1), q2 + 2q, 2q − 1, q + 1, 2q)

for the cases (i, j) = (3, 5) or (4, 5) and

((q + 1)(q2 + q + 1), q2 + q, q, q − 1, q)

in all other cases.

The proof consists of routine computations which are based on the use of the
structure constants of W . They can be read off from Table 1. Here we set q := x = y.
However, Table 2.1.1 in [9] is more convenient for the computations, because it
represents the rank 6 flag algebra in an evident form.

Proposition 6.2. Let W = 〈A0, A1, A2, A3, A4, A5, A6〉 be a rank 7 flag algebra
of a non-symmetric BIBD with λ = 1, let n = (1 + x + xy)(1 + y). Then A ∈ W is
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an adjacency matrix of a genuine d.s.r.g. if and only if one of the following holds (up
to the complementation of a graph):

(a) A = A1 + Ai, and A is the adjacency matrix of an (n, x + xy, x, x − 1, x)-
graph;

(b) A = A1 + A2 + Ai, (n, x + y + xy, x + 1, x + y − 1, x + y)-graph;
(c) A = A1 + Ai + A5, x = 1, ((y + 1)(y + 2), 2y + 1, 2, y, y + 1)-graph;

where i ∈ {3, 4}.

Proof. First we assume i = 3 and compute A2 by using Table 1. In case (a) we have

A2 = xA0 + (x − 1)(A1 + A3) + x(A2 + A4 + A5 + A6).

In case (b), we have
A2 = (x + y)A0 + (x + y − 1)(A1 + A2 + A3) + (x + 1)(A4 + A5 + A6).

In case (c), the coefficient of A4 (resp. A6) in A2 is x3 + x (resp. x3 + x2). Thus
x = 1 and we have

A2 = (y + 1)A0 + y(A1 + A3 + A5) + 2(A2 + A4 + A6).

Therefore, if i = 3, then the cases (a)–(c) give a d.s.r.g. as described. By Proposition
3.4, the same conclusion holds if i = 4.

In order to finish the proof we have to examine all other partitions of the set
{1, 2, 3, 4, 5, 6} of indices to two parts which can possibly give a genuine d.s.r.g.
There are altogether 14 suitable partitions, 6 of them being currently considered.
Certain routine computations show that in the remaining 8 cases no d.s.r.g. can be
obtained. �

Remarks
1. Two particular cases of Propositions 6.1 and 6.2 were announced in [28]. One of

these two cases was formulated in [28] in different terms; namely, the vertices of
a d.s.r.g. were the ordered pairs of different elements of an m-element set. One
can easily see that the flags of a trivial BIBD (with x = 1) can be identified with
the ordered pairs of different points of this BIBD.

2. Let us set x = 1 and y = 3 in (b) and (c) of Proposition 6.2. Then we obtain a
(20, 7, 2, 3, 4)-graph, which gives a positive answer to one of the open questions
in Duval’s list [5].

3. In the same way all coherent subalgebras of the dihedral coherent algebra defined
by the flags of certain classes of designs can be described (see [30]).

7. New interpretations of known graphs

In this section, we consider a few constructions due to Duval from the point
of view of coherent algebras.
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Let W1 be a homogeneous coherent algebra of degree n and rank d + 1 with
basic relations R0, R1, . . . , Rd defined on an n-element set �1. Let W2 be a coherent
algebra of degree m and rank d ′ + 1 with basic relations S0, S1, . . . , Sd ′ defined on a
an m-element set �2. Let � = �1 × �2 and R̄1, R̄2, . . . , R̄d , S̄0, S̄1, . . . , S̄d ′ be the
relations on � defined as follows:

R̄i = {((a, b), (c, d)) ∈ � × � : (a, c) ∈ Ri},
S̄j = {((a, b), (a, d)) ∈ � × � : (b, d) ∈ Sj }.

Then the relations R̄1, R̄2, . . . , R̄d , S̄0, S̄1, . . . , S̄d ′ define a coherent configuration
on the set � with coherent algebra W of rank d + d ′ + 1. This coherent algebra
is called the wreath product of algebras W1 and W2 (see [42]), and is denoted by
W1 � W2.

Proposition 7.1. Let � be a genuine (n, k, µ, λ, t)-graph with adjacency matrix A,

coherent algebra W1 and the automorphism group G1 acting on the vertex set �1.

Then

(a) B ′ = A ⊗ Jm is the adjacency matrix of a genuine d.s.r.g. �∗ if and only if t = µ;
in this case �∗ is an (nm, km, µm, λm, tm)-graph;

(b) B
′′ = A ⊗ Jm + In ⊗ (Jm − Im) is the adjacency matrix of a genuine d.s.r.g.

�∗∗ if and only if λ = t − 1; in this case �∗∗ is a (nm, (k + 1)m − 1, µm,

(t + 1)m − 2, (t + 1)m − 1)-graph;
(c) �∗ and �∗∗ are invariant under the wreath product G1 � Sm.

(d) The coherent algebras of the graphs �∗ and �∗∗ are both the wreath product
W1 � W2, where W2 = 〈Im, Jm − Im〉.

The proof of (a) and (b) was in [5]. The proof of (c) and (d) follows easily from
the definitions.

Two sporadic constructions given below illustrate the symmetry of other graphs
in Duval’s list.

Example 7.1. We take, as the starting point the pentagon. The vertices and arcs
(altogether 15 elements) of the pentagon form the vertex set of a new graph �. There
are the following directed arcs in �: (here and below different letters denote different
elements of �1 = {1, 2, 3, 4, 5})

• from an old vertex a to an old arc (a, b);
• from an old arc (a, b) to an old vertex b;
• from an old arc (a, b) to an old arc (c, d) if and only if there exist an old arc

(b, c).
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There are the following undirected edges in �:

• old edges in the pentagon;
• two old arcs (a, b) and (c, d) with a = c or b = d .

This graph � is a (15, 4, 1, 1, 2)-graph given in Section 9 of [5]. It follows from
our construction that � is invariant under the intransitive action of the dihedral group
D5 on the set of vertices and arcs of the pentagon.

The centralizer algebra of this action has rank 23. One can show thatW(�)coincides
with a non-homogeneous coherent algebra of rank 23. Therefore Aut(�) = D5.

Example 7.2. The graph depicted in Fig. 1 has adjacency matrix given in Section 4
of [5]. This graph is a (18, 4, 1, 0, 3)-graph.

Fig. 1. A diagram of a (18, 4, 1, 0, 3)-graph.
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Set G := Aut(�). Let H < G be the subgroup which stabilizes (as a set) each of
the directed triangles in �. Then H is a normal subgroup of G. One can easily check
that H = 〈g1〉, where

g1 = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)(13, 14, 15)(16, 17, 18).

Hence G = H · Ḡ, where Ḡ ∼=G/H · Ḡ can be considered as a subgroup of Aut(�̄) =
S2 � S3, where �̄ is a quotient graph of �, namely �̄ is the 6-vertex complete bipartite
regular graph. Now let us examine the permutations g2, g3, g4, g5 and g6 where

g2 = (13, 16)(14, 17)(15, 18)(4, 7)(5, 8)(6, 9),

g3 = (1, 4)(2, 5)(3, 6)(10, 13)(11, 14)(12, 15),

g4 = (16, 12, 13)(17, 10, 14)(18, 11, 15)(4, 6, 5)(8, 9, 7),

g5 = (1, 16)(2, 18)(13, 4)(14, 6)(5, 15)(8, 12)(9, 11)(7, 10)(3, 17),

g6 = (13, 16)(14, 17)(15, 18).

One can easily check that g2, g3, g4, g5 ∈ G while g6 /∈ G. This implies that
|Ḡ| = 36, Ḡ = (S2 � S3)

pos, where (S2 � S3)
pos denotes the subgroup of even permu-

tations in (S2 � S3). Now we obtain that G = Z3.(S2 � S3)
pos, |G| = 108. It is easy to

see that the centralizer algebra of the action of G on the vertex set of � has rank 7.
This algebra coincides with the coherent algebra of �.

Remark. The last example may be of independent interest because it demonstrates
the existence of the central extension of Z3 by the group (S2 � S3)

pos.

8. Non-existence of a (14, 5, 2, 1, 4)-graph

This section is the only one in the paper which concerns with a question of
non-existence. A set of parameters of a d.s.r.g. is called feasible if it satisfies all
known “standard” necessary conditions for the existence of a d.s.r.g. A feasible
set of parameters is called realizable if there exists at least one graph with such
parameters.

The parameter set (14, 5, 2, 1, 4) is feasible in the sense that all the necessary
conditions (2.6)–(2.10) are satisfied. The goal of this section is to show that this
parameter set is not realizable.

Theorem 8.1. There does not exist a (14, 5, 2, 1, 4)-graph.

The remainder of this section is devoted to the proof of the above theorem. Let
� = (�, E) be a (14, 5, 2, 1, 4)-graph. Let A = A(�) be its adjacency matrix. Let
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S = A(�s), N = A(�a), so that A = S + N , where S is a symmetric and N an anti-
symmetric permutation matrix. Then we have

A2 = 4I + A + 2(J − I − A). (8.1)

We shall consider the cycle structure of the permutation N , but first we consider
N2. Let O1, . . . , Ol denote the orbits of the cyclic permutation group 〈N2〉 on �.
It is easy to see that N ◦ N t = 0 implies |Oj | � 2 for 1 � j � l. We write L :=
{1, 2, . . . , l}.

In order to avoid the use of additional notation we shall identify N and S with the
arc set of �a and �s, respectively.

Lemma 8.2. The numbers

mij = |{v ∈ Oj |(u, v) ∈ S}| (8.2)

are independent of the choice of u ∈ Oi. Moreover, we have

|Oi |mij =|Oj |mji (i, j ∈ L), (8.3)
l∑

j=1

mij =4 (i ∈ L). (8.4)

Proof. Taking the transpose of (8.1), and subtracting it from (8.1), we find

(N − N−1)S = −(S + N + N−1 + I )(N − N−1).

This implies that K := Ker (N − N−1) = Ker (N2 − I ) is invariant under S. Since
the characteristic vectors Oi of Oi (i ∈ L) form a basis of K , we see that SOj is a
linear combination of Oi’s, say SOj = ∑l

i=1 mij Oi . Then it is easy to see that the
coefficient mij coincides with the number defined in (8.2) for any u ∈ Oi . The equal-
ity (8.3) is an immediate consequence of the definition of mij , while (8.4) follows
from the fact that our graph has parameter t = 4. �

Let us call a subset I of L balanced if for any i ∈ I and for any j ∈ L the equality
|Oj | = |Oi | implies j ∈ I .

Lemma 8.3. Let I be a non-empty proper balanced subset of L. Then there exist
i ∈ I and j /∈ I such that mij /= 0.

Proof. Since � is a connected graph, there exists an edge (u, v) of � with u ∈ Oi

and v ∈ Oj for suitable i ∈ I and j /∈ I . If (u, v) ∈ N , then NOi = Oj . This im-
plies |Oi | = |Oj |, contrary to I being balanced. Therefore, (u, v) ∈ S, hence mij /=
0. �

Lemma 8.4. The permutation group 〈N2〉 has two orbits of length 7 on �.
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Proof. For a prime p, let Ip (resp. I ′
p) denote the set {i ∈ L | (p, |Oi |) = p} (resp.

{i ∈ L | (p, |Oi |) = 1}). Suppose Ip /= ∅ and I ′
p /= ∅. Since Ip is balanced, Lemma

8.3 implies that |Oi |mij = |Oj |mji /= 0 for some i ∈ Ip and j ∈ I ′
p.

If p � 5, then (8.4) gives a contradiction. Thus, in particular, I7 /= ∅ implies I ′
7 =

∅. Since N2 cannot be a 14-cycle, this gives the assertion. It remains to show that
Ip = ∅ for any prime p /= 7.

If p = 5 or 11, then Ip /= ∅ automatically implies I ′
p /= ∅, so we must have I5 =

I11 = ∅.
If p = 3, then (8.4) forces mji = 3. Note that |Oi | /= 6 since N cannot have a

12-cycle. Also, |Oi | /= 9 since we have shown I5 = ∅. Thus |Oi | = 3. Then for any
v, v′ ∈ Oj such that v /= v′, all the three points of Oi are common neighbors of v, v′,
contrary to max(λ, µ) = 2. Therefore we conclude I3 = ∅.

Now it is easy to see that not all |Oi | are powers of 2. Consequently, we have
L = I7 and the assertion follows. �

By Lemma 8.4, we have either

(i) N is a 14-cycle, or
(ii) N is a product of two 7-cycles.

In any case, 〈N2〉 has two orbits O1, O2 of length 7, and K has a basis {O1, O2}.
Let

S̃ :=
(

m11 m12
m21 m22

)

be the matrix representation of S on K with respect to this basis. The diagonal entries
of S̃ must be even since there is no regular 7-vertex graph of odd valency. Hence we
have

S̃ ∈
{(

4 0
0 4

)
,

(
0 4
4 0

)
,

(
2 2
2 2

)}
,

while the matrix representation Ñ of N on K is

Ñ =
(

0 1
1 0

)
or

(
1 0
0 1

)
,

according as (i) or (ii). The eigenvalues of Ã := S̃ + Ñ must belong to the set
{5, 1, −2} of eigenvalues of A. This rules out the case (i) completely. The case (ii)
requires more careful consideration.

Lemma 8.5. For each u ∈ �, exactly one of the pairs (u, N2(u)), (N−1(u), N(u))

belongs to S.

Proof. Since λ = 1 and (u, N(u)) ∈ E, there exists a unique point w such that
(u, w) ∈ E and (w, N(u)) ∈ E. Since N is a permutation, neither pairs belong to
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N and, therefore, (u, w) ∈ S and (w, N(u)) ∈ S. Since µ = 2, there exists a unique
point v other than w such that (N(u), v) ∈ E and (v, u) ∈ E.

If (N(u), v) ∈ S and (v, u) ∈ S, then λ = 1 forces v = w, which is absurd. Thus
at least one of (N(u), v), (v, u) belongs to N .

If (N(u), v) ∈ N , then v = N2(u). Since N is a product of two 7-cycles, we have
N3(u) /= u, hence (N2(u), u) /∈ N . Thus (v, u) = (N2(u), u) ∈ S.

If (N(u), v) /∈ N , then (v, u) ∈ N , so that v = N−1(u) and, as before, (N(u),

N−1(u)) /∈ N . Since (N(u), v) /∈ N , (N(u), v) ∈ S. Now (N(u), N−1(u)) ∈ S and
(N−1(u), N(u)) ∈ S.

Suppose that both (u, N2(u)) and (N−1(u), N(u)) belong to S. Then the preced-
ing argument shows that v = N2(u) = N−1(u). This is a contradiction since N3 has
no fixed point. �

With all the preparations, we can complete the proof of Theorem 8.1 as follows.
According to Lemma 8.5, let us assume, without loss of generality, that (u, N2(u)) ∈
S and (N−1(u), N(u)) /∈ S. Now apply Lemma 8.5 to N(u). We find (N(u),

N3(u)) /∈ S. Applying the same argument to N2(u) we get that (N2(u), N4(u)) ∈ S.
Continuing this process, we find (N6(u), N8(u)) ∈ S. This is a contradiction since
(N6(u), N8(u)) = (N−1(u), N(u)) /∈ S. �

Remark. It might be possible to find a shorter proof for the non-existence by means
of the standard strategy of constructive enumeration [7], that is, trying to construct
the canonical adjacency matrix of a (14, 5, 2, 1, 4)-graph.

We believe that the idea of our proof which is based on equitable partitions of a
regular graph (in the sense of [12]) as well as on arguments from linear algebra may
be helpful in more general situations, namely, whenever k − t = 1.

9. Duval’s list of small graphs revisited

Investigation of genuine d.s.r.g.’s is still in the opening stage, when the creating of
a catalogue of small graphs plays a stimulating role in the development of the whole
theory.

The first small catalogue was compiled by Duval who, with the aid of a com-
puter, has generated a list of all possible parameter sets for genuine d.s.r.g.’s with
n � 20. In his list Duval mentioned all cases of the existence known to him; the
problem of the complete enumeration of graphs (up to isomorphism) was not con-
sidered.

In this section we briefly summarize information known to us about the Duval’s
list (see Table 2). Together with a reference to the construction of a graph � we give
also the following information:
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Table 2
Duval’s list of small graphs revisited

Number n k µ λ t Existence/constr. Rank Aut(�) |Aut(�)| Remarks

1 6 2 1 0 1 Example 4.2 6 D3 6
2 8 3 1 1 2 Example 4.1 8 D4 8
3a 10 4 2 1 2 Example 4.2 10 D5 10
3b 10 4 2 1 2 [5] Section 5 6 Z5�Z4 20
4 12 3 1 0 1 Proposition 6.2(a) 7 S4 24
5 12 4 2 0 2 Proposition 7.1(a) 7 D3 � S2 384 1
6a 12 5 2 2 3 Proposition 6.2(b) 7 S4 24
6b 12 5 2 2 3 Proposition 7.1(b) 7 D3 � S2 384 1
7 14 5 2 1 4 No, see Section 8 — — —
8a 14 6 3 2 3 Example 4.3, �1 14 D7 14
8b 14 6 3 2 3 Example 4.3, �2 6 Z7�Z6 42
9 15 4 1 1 2 Example 7.1 23 D5 10 Intrans.
10 15 5 2 1 2 ?
11 16 6 3 1 3 ?
12 16 7 2 4 5 Proposition 7.1(b) 9 D4 � S2 211 2
13 16 7 3 3 4 ?
14 18 4 1 0 3 Example 7.2 7 See Ex. 108
15 18 5 1 2 3 ?
16 18 6 3 0 3 Proposition 7.1(a) 7 D3 � S3 67 1
17 18 7 3 2 5 ?
18 18 8 3 4 5 Proposition 7.1(b) 7 D3 � S3 67 1
19a 18 8 4 3 4 Example 4.2 18 D9 18
19b 18 8 4 3 4 Example 4.4 10 (Z3 � Z3) × S2 162
20 20 4 1 0 1 Proposition 6.2(a) 7 S5 120
21a 20 7 2 3 4 Proposition 6.2(b) 7 S5 120
21b 20 7 2 3 4 Proposition 6.2(d) 7 S5 120
22a 20 8 4 2 4 Proposition 7.1(a) 11 D5 � S2 5 × 211 3a
22b 20 8 4 2 4 Proposition 7.1(a) 7 F 4

5 � S2 5 × 212 3b
23a 20 9 4 4 5 Proposition 7.1(b) 11 D5 � S2 5 × 211 3a
23b 20 9 4 4 5 Proposition 7.1(b) 7 F 4

5 � S2 5 × 212 3b



M. Klin et al. / Linear Algebra and its Applications 377 (2004) 83–109 107

• rank of W(�),
• description and order of Aut(�),
• additional remarks about the group Aut(�) and the coherent algebra W(�).

In cases, when we are able to deliver more than one graph with a given set of
parameters, only two such graphs are included in the table (even if there exist more
than two graphs).

The problem of the complete constructive enumeration of d.s.r.g.’s with the pa-
rameters from the Duval’s list requires the use of a computer based on the techniques
of a constructive enumeration of combinatorial objects (see [6,7]).

Remarks
1. In all our examples the rank of the automorphism group Aut(�) coincides with

the rank of the coherent algebra generated by A(�).
2. A number in column “Remarks” means the number of the initial graph which

is used for the construction via Proposition 7.1.
3. All graphs besides the graph in line 9 have a transitive automorphism group.
4. Fm

n denotes the Frobenius group of order mn which is isomorphic to the semi-
direct product Zn�Zm.

We believe that the following questions also appear worthy of investigation:

• continuation of Duval’s list up to 50–100 vertices;
• complete interpretation of all Duval’s results in terms of coherent algebras;
• determination of the smallest genuine d.s.r.g.’s � for which rank of W(�) is smaller

than rank of Aut(�) (the existence of such examples follows from the existence
of BIBD’s with λ = 1 which do not have flag-transitive automorphism group);

• classification of d.s.r.g.’s with small value of k − t , especially with k − t = 1;
• description of new infinite series of d.s.r.g.’s;
• Duval’s question about the existence of a (486, 22, 1, 0, 21)-graph;
• classification of d.s.r.g.’s with the small values of rank of W(�), especially with

the rank equal to 6 and 7.
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