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Abstract

We present a method for efficiently providing algebraic correctness proofs for communication
systems. It is described in the setting of �CRL [J.F. Groote, A. Ponse, The syntax and semantics of
�CRL, in: A. Ponse, C. Verhoef, S.F.M. van Vlijmen (Eds.), Algebra of Communicating Processes,
Workshops in Computing, Springer, Berlin, 1994, pp. 26–62] which is, roughly, ACP [J.C.M. Bae-
ten, W.P. Weijland, Process Algebra, Cambridge Tracts in Theoretical Computer Science, vol. 18,
Cambridge University Press, Cambridge 1990, J.A. Bergstra, J.W. Klop, The algebra of recursively
defined processes and the algebra of regular processes, in: Proceedings of the 11th ICALP, Antwerp,
Lecture Notes in Computer Science, vol. 172, Springer, Berlin, 1984, pp. 82–95] extended with a
formal treatment of the interaction between data and processes. The method incorporates assertional
methods, such as invariants and simulations, in an algebraic framework, and centers around the idea
that the state spaces of distributed systems are structured as a number of cones with focus points.
As a result, it reduces a large part of algebraic protocol verification to the checking of a number
of elementary facts concerning data parameters occurring in implementation and specification. The
resulting method has been applied to various non-trivial case studies of which a number have been
verified mechanically with the theorem checker PVS. In this paper the strategy is illustrated by
several small examples and one larger example, the Concurrent Alternating Bit Protocol (CABP).
© 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

One of the main aims of process theory is to be able to formally describe distributed
systems and to verify their correctness w.r.t. some specification. In this paper we present
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a proof strategy to verify the correctness of such systems in the framework of process
algebra. The method has been used (explicitly or implicitly) in a number of non-trivial
case studies. We mention a few examples. Bezem and Groote [3] verified a sliding window
protocol and Fredlund et al. [8] proved an efficient, but complex leader election protocol
in a ring topology correct. In [22], part of the IEEE P1394 high-speed bus protocol [15] is
proven correct and in [10] a distributed summation algorithm is verified. We work within
the theory �CRL [11], which is, roughly, ACP [1,2] extended with a formal treatment of
the interaction between data and processes.

The task we set ourselves can be described as follows. An implementation of a com-
munication protocol can be described as the parallel composition of several components
C1, . . . , Cn. These components can be receivers, senders, timers, channels, etc. They com-
municate via internal actions (in a set H), resulting in internal communications (in a set I).
The specification that this implementation should satisfy is given by a process Spec. Typ-
ically, Spec defines a one-bit buffer or a bidirectional queue, etc. In our process algebraic
framework, satisfying a specification means being equal to it (according to some preferred
equality relation). Thus, in �CRL notation, we want to show that

τI (�H (C1‖ . . . ‖Cn)) = Spec.

Here, the τI -operator hides the communication actions in I, while the �H -operator forces
the send and read actions in H to synchronise; these operators are explained below.

Classical proof strategies for verification in an algebraic style appear among others in
[17,18,24]. A fundamental approach towards proving the equation is as follows. First, find
a guarded recursive equation G, where guarded means that each occurrence of a recur-
sive process variable must be in the scope of an action, not being τ . Then show that both
τI (�H (C1‖ . . . ‖Cn)) and Spec are solutions of this equation (possibly applying some fair-
ness principle). Usually, G is the expanded version of the protocol. Then the desired equali-
ty follows from RSP, the principle stating that guarded recursive equations have at most one
solution. Actually it suffices that the recursive equation is weakly guarded, or convergent,
in the sense that infinite chains of unguarded occurrences of recursive process variables do
not exist.

Our strategy can be seen as a considerably refined version of the above strategy. The re-
finements are based on a particular format for the notation of processes, the so-called linear
process operators. This format, similar to the UNITY format of [5,7] and to the precon-
dition/effect notation of [16,19], enriches the process algebraic language with a symbolic
representation of the (possibly infinite) state space of a process by means of state variables
and formulas concerning these variables. Thus it combines the advantages of a compact
and easy to manipulate algebraic notation with the advantages of the precondition/effect
style.

Instead of using the principle RSP, we reduce the task of proving implementation and
specification equal to the existence of a state mapping, satisfying certain constraints, the
matching criteria. A state mapping maps states of the implementation to matching states
of the specification. Here, matching means that the same set of external actions can be
executed directly. The matching criteria are comparable to the defining clauses of weak
refinements [20]. The criteria are formulated as simple formulas over the data parameters
and conditions occurring in implementation and specification. Thus we reduce a large
part of the correctness of the implementation w.r.t. the specification to a number of most-
ly trivial facts concerning data parameters and conditions occurring in implementation
and specification. This greatly simplifies protocol verifications and makes our approach
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amenable to mechanical assistance; a number of the above mentioned proofs of veri-
fied systems have been checked mechanically with the theorem provers PVS [21] and
Coq [6].

The matching criteria embody an important concept, that of a focus point (in the litera-
ture sometimes called stable points). It is often the case that states in the implementation
do not match directly with a state of the specification, yet from these states a state can
be reached, after some internal computation, that does match directly with a state of the
specification. To deal with this, we employ a case distinction between states in which the
protocol cannot perform internal actions, the focus points, and non-focus points, where
the protocol can perform internal actions. Focus points must match directly with states in
the specification. In case the implementation is convergent, a focus point must be reached
by performing finitely many internal actions. The set of states from which a focus point
can be reached by internal activity is called a cone. Under the assumption that there is no
unbounded internal activity, every state belongs to some cone. The state mapping maps all
states of a cone to the state corresponding to the focus point of the cone.

For distributed systems that only perform bounded internal activity, the proof strat-
egy is formulated as Theorem 3.3. For the case where the implementation can perform
unbounded activity, we provide Theorem 4.9. Here one must in addition distinguish
between progressing and non-progressing internal actions in the implementation in or-
der to guarantee convergence. Intuitively, progressing internal steps are those that lead
towards focus points, whereas non-progressing internal actions lead away from focus
points.

As shown in a number of verifications, the ingredients outlined above appear suffi-
cient for the systematic verification of numerous protocols and distributed systems (see
e.g. [3,8]). The main contribution of the present paper is that it explicitly identifies the
strategy outlined above, in the form of definitions and theorems. We provide an ex-
ample of the verification of the Concurrent Alternating Bit Protocol with a correctness
proof that consists of 4 amply commented pages. We hope that this example provides
some intuition how progressing internal actions, state mappings, and invariants can be
identified.

In its present form, our strategy is not complete; in particular the specification is not
allowed to contain τ -steps, so these cases cannot be dealt with. Example 5.3 gives a coun-
terexample to our main results in case the specification is allowed to contain τ -steps. We
provide an example where a state mapping does not exist, even though implementation
and specification are evidently branching bisimilar. A thorough treatment of completeness
is deferred to a future paper. Recently, the cones and foci technique has been generalized
to timed processes in [25].

Organisation

In Section 2, we present the preliminaries of the theory. In Section 3, we present a
general result that formulates sufficient conditions for two processes to be equal in the
case where there are no infinite chains of internal action in the implementation. This result
is generalized in Section 4 to the verification of systems that do have unbounded internal
activity. In Section 5, we illustrate the proof strategy with some positive and negative ex-
amples. One of the positive examples is the Concurrent Alternating Bit Protocol. Appendix
A contains technical lemmas that are used in the paper. Finally, Appendix B contains the
�CRL axioms plus some additional axioms that are used in the verification.
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2. Preliminaries

In this section, we present some basic definitions, properties and results that we use in
this paper. We apply the proof theory of �CRL as presented in [11], which can be viewed as
ACP [1,2] extended with a formal treatment of the interaction between data and processes.
Furthermore, an overview of several verification techniques appeared in [14], including a
summary of the cones and foci technique.

2.1. A short description of µCRL

The language �CRL is a process algebra comprising data developed in [12]. We do not
describe the treatment of data types in �CRL in detail, as we make little use of it in this
paper. For our purpose it is sufficient that processes can be parameterised with data. We
assume the data sort of booleans Bool with constants true T and false F, and the usual
operators. Furthermore, we assume for all data types the existence of an equality function
eq that faithfully reflects equality, and an if_then_else-function such that if (b, t1, t2) equals
t1 if b equals T and equals t2 otherwise.

Starting from a set Act of actions that can be parameterised with data, processes are
defined by means of guarded recursive equations and the following operators. (In Section
2.2, we will discuss a useful variant of guarded recursive equations.)

First, there is a constant δ (δ �∈ Act) that cannot perform any action and is henceforth
called deadlock or inaction.

Next, there are the sequential composition operator · and the alternative composition
operator +. The process x · y first behaves as x and if x successfully terminates continues
to behave as y. The process x + y can either do an action of x and continue to behave as
the rest of x or do an action of y and continue to behave as the rest of y.

Interleaving parallelism is modelled by the operator ‖. The process x‖y is the result of
interleaving actions of x and y, except that actions from x and y may also synchronise to a
communication action, when this is explicitly allowed by a communication function. This
is a partial, commutative and associative function γ : Act × Act → Act that describes how
actions can synchronise; parameterised actions a(d) and b(d ′) synchronise to γ (a, b)(d),
provided d = d ′ and γ (a, b) defined. A specification of a process typically contains a
specification of a communication function.

In order to axiomatise the parallel operator there are two auxiliary parallel operators. First,
the left merge ��, which behaves as the parallel operator, except that the first step must come
from the process at the left. Secondly, the communication merge | which also behaves as the
parallel operator, except that the first step is a communication between both arguments.

To enforce that actions in processes x and y synchronise, we can prevent actions from
happening on their own, using the encapsulation operator �H . The process �H (x) can per-
form all actions of x except that actions in the set H are blocked. So, assuming γ (a, b) = c,
in �{a,b}(x‖y) the actions a and b are forced to synchronise to c.

We assume the existence of a special action τ (τ �∈ Act) that is internal and cannot
be directly observed. A useful feature is offered by the hiding operator τI that renames
the actions in the set I to τ . By hiding all internal communications of a process only the
external actions remain. In this way we can obtain compact descriptions of the external
functionality of a set of cooperating processes. A nice example is provided in Theorem
5.4 where the external behaviour of a set of parallel processes modelling the Concurrent
Alternating Bit Protocol appears to be the same as that of a simple one place buffer.
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Another useful operator is the general renaming ρf , where f : Act → Act is a renaming
function on actions. If process x can perform an action a, then ρf (x) can perform the action
f (a).

The following two operators combine data with processes. The sum operator �d:Dp(d)

describes the process that can execute the process p(d) for some value d selected from the
sort D. The conditional operator _ � _ � _ describes the then-if-else. The process x � b � y

(where b is a boolean) has the behaviour of x if b is true and the behaviour of y if b is false.
We apply the convention that · binds stronger than �, followed by _ � _ � _, and +

binds weakest. Moreover, · is usually suppressed. Axioms and rules that characterise the
operators are given in Appendix B. These axioms equate processes that are (rooted) branch-
ing bisimilar. As the results are proven from these axioms and CL-RSP, all results in
this paper are valid for branching bisimulation and all weaker equivalence relations that
are congruences. Only Lemma 3.4 and Theorem 3.5 are specifically formulated for weak
bisimulation.

2.2. Linear process operators

We recapitulate some terminology that has been introduced in [3,4]. Especially the no-
tion of a linear process forms the cornerstone for the developments in this paper.

Intuitively, a linear process is a process of the form X(d:D) = RHS, where d is a pa-
rameter of type D and RHS consists of a number of summands of the form∑

e:E
a(f (d, e)) X(g(d, e)) � b(d, e) � δ.

Such a summand means that if for some e of type E the guard b(d, e) is satisfied, the
action a can be performed with parameter f (d, e), followed by a recursive call of X with
new value g(d, e).

The main feature of linear processes is that for each action there is a most one alter-
native. This makes it possible to describe them by means of a finite set Act of actions as
indices, giving for each action a the set Ea over which summation takes place, the guard
ba that enables the action, the function fa that determines the data parameter of the action
and the function ga that determines the value of the recursive call.

In the next definition the symbol �, used for summation over data types, is also used to
describe an alternative composition over a finite set of actions. If Act = {a1, . . . , an}, then
�a∈Act pa denotes pa1 + pa2 + · · · + pan . The pa’s are called summands of �a∈Act pa .
Note that for summation over actions the symbol ∈ is used (instead of the symbol :).

Formally, we define linear processes by means of linear process operators.

Definition 2.1. Let Act ⊂ Act be a finite set of actions, possibly extended with τ . A linear
process operator (LPO) over Act is an expression of the form

� = λp.λd:D.
∑

a∈Act

∑
ea :Ea

a(fa(d, ea)) p(ga(d, ea)) � ba(d, ea) � δ,

i.e., � is a function from p and a value of type D to a process, where p is a function from
sort D to processes.

LPOs are traditionally defined equationally. Instead of writing, e.g. �
def= λpλn:Nat.a

p(n + 1) one generally writes p(n:Nat) = a.p(n + 1), see for instance all examples
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below. We however introduce the operator notation as both views can easily be exchanged,
it avoids the implicit style of definition of behaviour that occur in equations, and it is
convenient in proofs. Notably, it is useful to define new LPOs based on others, with slight-
ly adapted behaviour, see for instance Definition 4.1. Observe that we mix notation for
function application common in general mathematics and lambda calculus. Sometimes we
write �pd meaning apply operator � to arguments p and d. Elsewhere we write p(d) to
denote the application of p to d.

LPOs are defined having a single data parameter. The LPOs that we consider generally
have more than one parameter, but using cartesian products and projection functions, it
is easily seen that this is an inessential extension. Often, parameter lists get rather long.
Therefore, we use the following notation for updating elements in the list. Let �d abbreviate
the vector d1, . . . , dn. A summand of the form∑

ea :Ea

a(fa( �d, ea)) p(d ′
j /dj ) � ba( �d, ea) � δ

in the definition of a process p( �d ) abbreviates∑
ea :Ea

a(fa( �d, ea)) p(d1, . . . , dj−1, d ′
j , dj+1, . . . dn) � ba( �d, ea) � δ.

Here, the parameter di is in the recursive call updated to d ′
i . This notation is extended in

the natural way to multiple updates. If no parameter is updated, we write the summand as
�ea :Ea a(fa( �d, ea)) p � ba( �d, ea) � δ.

We give an example of an LPO K which is a channel that reads a pair of a datum from
some data type D and a bit. It either delivers this pair correctly, or loses or garbles it. In
the last case a checksum error ce is sent. The non-deterministic choice between the three
options is modelled by the actions j and j ′. If j is chosen, the data are delivered correctly
and if j ′ happens, it is garbled or lost. The state of the channel is modelled by the parameter
ik .

proc K(d:D, b:Bit, ik:Nat) =
∑
d ′:D

∑
b′:Bit

r(d ′, b′)K(d ′/d, b′/b, 2/ik) � eq(ik, 1) � δ

+ (j ′ K(1/ik) + j K(3/ik)

+ j ′ K(4/ik)) � eq(ik, 2) � δ

+ s(d, b) K(1/ik) � eq(ik, 3) � δ

+ s(ce) K(1/ik) � eq(ik, 4) � δ.

Note that we have deviated from the LPO format in the ‘strict’ sense: in the last three
summands there is no summation over a data type Ei , in the second summand j and j ′
do not carry a parameter (like the τ -action) and the + operator occurs within the scope of
the conditional. But it is obvious that the example can be transformed to LPO format, and
therefore, we allow ourselves such deviations.

Processes can be defined as solutions for convergent LPOs.

Definition 2.2. A solution or fixed point of an LPO � is a process p, parameterised with a
datum of sort D, such that, for all d:D, p(d) = �pd .

We call an LPO convergent if the process it defines cannot perform infinite sequences
of τ -actions.



J.F. Groote, J. Springintveld / Journal of Logic and Algebraic Programming 49 (2001) 31–60 37

Definition 2.3. An LPO � written as in Definition 2.1 is called convergent if there is a
well-founded ordering < on D such that for all eτ :Eτ , d:D we have that bτ (d, eτ ) implies
gτ (d, eτ ) < d .

For each LPO �, we assume an axiom which postulates that � has a canonical solution,
which we denote by 〈�〉. Then, we postulate that every convergent LPO has at most one
solution. In this way, convergent LPOs define processes. The two principles reflect that we
only consider process algebras where every LPO has at least one solution and converging
LPOs have precisely one solution.

Thus we assume the following two principles:
• Recursive Definition Principle (L-RDP): For all d of sort D and LPOs � over D we have

〈�〉(d) = �〈�〉d .
• Recursive Specification Principle (CL-RSP): Every convergent linear process operator

has at most one fixed point (solution): for all d of sort D and convergent LPOs � over
D we have p(d) = �pd → p = 〈�〉.

Usually, we do not mention 〈�〉 explicitly and just speak about solutions for �.
The following general theorem, taken from [4] on invariants is the basis for our proofs.

Roughly, it says that if an LPO is convergent in the part of its state space that satisfies an
invariant I, then it has at most one solution in that part of the state space.

Definition 2.4. An invariant of an LPO � written as in Definition 2.1 is a function I :
D → Bool such that for all a ∈ Act, ea :Ea , and d:D we have

ba(d, ea) ∧ I (d) → I (ga(d, ea)).

Theorem 2.5 (Concrete invariant corollary). Let � be an LPO. If, for some invariant I of �,

the LPO λp.λd.�pd � I (d) � δ is convergent and for some processes q, q ′, parameterised
by a datum of type D, we have

I (d) → q(d) = �qd,

I (d) → q ′(d) = �q ′d,

then

I (d) → q(d) = q ′(d).

Remark 2.6. In this paper we will restrict ourselves to processes defined by LPOs. This
is not as restrictive as it may seem, as general �CRL processes can effectively be rewritten
to equivalent processes in LPO format [13,23].

2.3. Internal actions

We work in the setting of (rooted) branching bisimulation [9], but provide results for
(rooted) weak bisimulation too in those cases where they differ. So, we generally use the
following two laws.

B1: xτ = x,
B2: z(τ (x + y) + x) = z(x + y).
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We write x ⊆ y if there exists a z such that x + z = y. It is easily verified that if x ⊆ y and
y ⊆ x, then x = y. Using this notation, we have the following easy fact.

Lemma 2.7.

y ⊆ x → τx = τ(τx + y).

Proof. τx = τ(x + y)
B2= τ(τ (x + y) + y) = τ(τx + y). �

We also assume a principle of fair abstraction, in the form of Koomen’s Fair Abstraction
Rule (KFAR), which expresses that it is not possible to infinitely execute an internal action
(the hidden action i in the formulation below); ultimately the alternative must be chosen.
The formulation below is the one valid in branching bisimulation:

p(d) = ip(d) + y

ττ{i}(p(d)) = ττ{i}(y)
.

Here p represents a process that can be parameterised, y represents a process and i repre-
sents an action.

3. Sufficient conditions for the equality of LPOs

In this section, we are concerned with proving equality of solutions of LPOs � and �.
The LPO � defines an implementation and the LPO � defines the specification of a system.
We assume that τ -steps do not occur in the specification �. Example 5.3 in Section 5 shows
that this restriction is necessary. We want to show that after abstraction of internal actions
in a set Int the solution of � is equal to the solution of �. In this section we assume that �
cannot perform an infinite sequence of internal actions, but in the next section we relax this
restriction. It turns out to be convenient to consider � where the actions in Int are already
renamed to τ . Hence, we speak about an LPO � which is � where actions in Int have been
hidden. Note that � is convergent, and hence defines a process. We fix the LPOs � and �
as follows (where the actions are taken from a set Act):

� = λp.λd:D�.
∑

a∈Act

∑
ea :Ea

a(fa(d, ea))p(ga(d, ea)) � ba(d, ea) � δ,

� = λq.λd:D�.
∑

a∈Act\{τ }

∑
ea :Ea

a(f ′
a(d, ea)) q(g′

a(d, ea)) � b′
a(d, ea) � δ.

The issue that we consider is how to prove the solutions of � and � equal. This is done by
means of a state mapping h:D� → D�. The mapping h maps states of the implementation
to states of the specification. It explains how the data parameter that encodes states of the
specification is constructed out of the data parameter that encodes states of the implemen-
tation. In order to prove implementation and specification branching bisimilar, the state
mapping should satisfy certain properties, which we call matching criteria because they
serve to match states and transitions of implementation and specification.

We first describe what a perfect match is for h. This means that in states of the im-
plementation and specification that are h-related, the same set of external actions can be
executed directly, with the same data parameter and leading to h-related states. In general, it
may be the case that the implementation, say in state d, has to do some internal computation
before it can perform the external actions that are possible from h(d) in the specification.
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Fig. 1. A cone with its focus point.

In this case, h accomplishes only an “indirect” match: whatever the implementation can
do, the specification can do, but not necessarily vice versa. Since the implementation is
convergent, it is guaranteed that after finitely many internal steps the internal computation
stops and we reach a so-called focus point. A focus point is a state in the implementation
without outgoing τ -steps. We demand that the focus point that is reached by the implemen-
tation should be h-related to h(d) in the specification, and the match should be perfect. The
set of states from which a focus point can be reached via internal actions is called the cone
belonging to this focus point. Now the matching criteria below express that focus points
in the state space of the implementation must match perfectly with their h-image in the
specification, whereas points in a cone only have to match indirectly.

States without outgoing τ -steps are in the literature also known as stable states. We
use the terminology focus points to stress that in a focus point there is a perfect match
between implementation and specification, and in this sense, a focus point is a goal of the
implementation, and the internal actions in the cone (which are directed to the focus point)
are progressing towards this goal. The situation is depicted very schematically in Fig. 1.
Here the arrows labelled with τ ’s are internal actions that are all directed towards the focus
point.

Note that as we have assumed that � is convergent, each internal step in a cone is
indeed directed towards the focus point. In general there may be loops of internal actions,
for instance if data must be retransmitted over unreliable channels. Actions that give rise to
such loops may be considered non-progressing (w.r.t. the focus point). We will deal with
them in Section 4.

Before presenting the matching criteria, we give a formal characterisation of focus
points of � by means of the focus condition FC�(d), which is true if d is a focus point, and
false if not. It simply states that in state d there is no element e of Eτ such that the enabling
condition bτ (d, e) of the τ -action is satisfied.
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Definition 3.1. The focus condition, FC�(d), of � is the formula

¬∃e:Eτ (bτ (d, e)) (“in state d, τ is not enabled”).

Now we formulate the criteria. We discuss each criterion directly after the definition.
Here, = binds stronger than ¬, which binds stronger than ∧ and ∨, which in turn bind
stronger than →.

Definition 3.2. Let h :D� → D� be a state mapping. The following criteria referring to
�, � and h are called the matching criteria. We refer to their conjunction by C�,�,h(d).

∀eτ :Eτ

(
bτ (d, eτ ) → h(d) = h(gτ (d, eτ ))

)
, (1)

∀a ∈ Act\{τ } ∀ea :Ea

(
ba(d, ea) → b′

a(h(d), ea)
)
, (2)

∀a ∈ Act\{τ } ∀ea :Ea

(
FC�(d) ∧ b′

a(h(d), ea) → ba(d, ea)
)
, (3)

∀a ∈ Act\{τ } ∀ea :Ea

(
ba(d, ea) → fa(d, ea) = f ′

a(h(d), ea)
)
, (4)

∀a ∈ Act\{τ } ∀ea :Ea

(
ba(d, ea) → h(ga(d, ea)) = g′

a(h(d), ea)
)
. (5)

To recapitulate: if in a focus or non-focus point d of the implementation a visible action
can be done, then this action must also be possible in h(d) in the specification (criterion
(2)). But, conversely, if h(d) in the specification can perform an action, the non-focus point
d need not match it directly. As the implementation is convergent (see Theorem 3.3) a focus
point will be reached after a finite number of internal steps. Due to criterion (1) this focus
point will have the same h-image as d. By criterion (3) this focus point can perform the
same actions as h(d). These actions carry the same data parameter (4) and lead to h-related
states (5).

Now we come to the main result of this section. Its formulation and proof reflect the
discussion above except for two points. First, the theorem is formulated under the condition
of an invariant of �. The reason for this is that a specification and an implementation are
in general only equivalent for the reachable states in the implementation. A common tool
to exclude non-reachable states is an invariant, which is therefore added.

As to the second point, assume that r and q are solutions of � and �, respectively.
Let d:D� be given and assume that I (d) and I (d) → C�,�,h(d) hold. We distinguish two
cases. If FC�(d) holds, so r(d) is in a focus point and cannot perform a τ -action, we
prove that r(d) = q(h(d)). If FC�(d) does not hold, then r(d) can perform a τ -action,
while q(h(d)) cannot (� does not contain τ ). So r(d) and q(h(d)) cannot be equal. In the
setting of branching bisimulation we can in this case only prove τr(d) = τq(h(d)). (In the
setting of weak bisimulation this simplifies to r(d) = τq(h(d)).)

Theorem 3.3 (General equality theorem for branching bisimulation). Let �, � and h be as
above (recall that � does not contain τ -steps). Assume that r and q are solutions of � and
�, respectively. If I is an invariant of �, the LPO λp.λd:D.�pd � I (d) � δ is convergent
and ∀d:D� (I (d) → C�,�,h(d)), then

∀d:D� I (d) → r(d) � FC�(d) � τr(d) = q(h(d)) � FC�(d) � τq(h(d)).

Proof. Define the LPO � by

� = λr.λd:D�.�rd � FC(d) � τ�rd.
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We prove the theorem as an application of the Concrete Invariant Corollary (Theorem 2.5)
with � as LPO. We verify the conditions of that result.

As the invariant implies that � is convergent, it is straightforward to see that the LPO
λr.λd:D�.*rd � I (d) � δ is convergent too.

Using Lemma A.3 and the fact that r is a solution of �, it is also easy to see that
λd:D�.r(d) � FC(d) � τr(d) is a solution of �.

It is slightly more involved to check that λd:D�.q(h(d)) � FC(d) � τq(h(d)) is a solu-
tion of �. After applying Lemma A.3, this boils down to proving the following equation.

q(h(d)) � FC(d) � τq(h(d))

= �
[
λd:D�.q(h(d))

]
d � FC(d) � τ�

[
λd:D�.q(h(d))

]
d

We distinguish two cases. The first case is where FC(d) holds. We must show that

q(h(d)) =
∑

a∈Act

∑
ea :Ea

a(fa(d, ea)) q(h(ga(d, ea))) � ba(d, ea) � δ.

We proceed as follows:

q(h(d)) =
∑

a∈Act

∑
ea :Ea

a(f ′
a(h(d), ea)) q(g′

a(h(d), ea)) � b′
a(h(d), ea) � δ

(2),(3)=
∑

a∈Act

∑
ea :Ea

a(f ′
a(h(d), ea)) q(g′

a(h(d), ea)) � ba(d, ea) � δ

(4),(5)=
∑

a∈Act

∑
ea :Ea

a(fa(d, ea)) q(h(ga(d, ea))) � ba(d, ea) � δ.

The second case is where FC(d) does not hold. Now we must show that

τq(h(d)) = τ
∑

a∈Act

∑
ea :Ea

a(fa(d, ea)) q(h(ga(d, ea))) � ba(d, ea) � δ.

First note the following Fact:

q(h(d)) =
∑

a∈Act

∑
ea :Ea

a(f ′
a(h(d), ea)) q(g′

a(h(d), ea)) � b′
a(h(d), ea) � δ

⊇
∑

a∈Act\{τ }

∑
ea :Ea

a(f ′
a(h(d), ea)) q(g′

a(h(d), ea))

�b′
a(h(d), ea) ∧ ba(d, ea) � δ

(4),(5)=
∑

a∈Act\{τ }

∑
ea :Ea

a(fa(d, ea)) q(h(ga(d, ea)))

�b′
a(h(d), ea) ∧ ba(d, ea) � δ

(2)=
∑

a∈Act\{τ }

∑
ea :Ea

a(fa(d, ea)) q(h(ga(d, ea))) � ba(d, ea) � δ.

The theorem now follows from

τq(h(d))
‡=τ

(
τq(h(d)) +

∑
a∈Act\{τ }

∑
ea :Ea

a(fa(d, ea))q(h(ga(d, ea))) � ba(d, ea) � δ

)
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�=τ

( ∑
eτ :Eτ

τq(h(gτ (d, eτ ))) � bτ (d, eτ ) � δ

+
∑

a∈Act\{τ }

∑
ea :Ea

a(fa(d, ea))q(h(ga(d, ea))) � ba(d, ea) � δ

)

=τ

( ∑
a∈Act

∑
ea :Ea

a(fa(d, ea))q(h(ga(d, ea))) � ba(d, ea) � δ

)
.

At ‡, we have used Lemma 2.7 and the Fact stated above. At �, we have used Lemma A.2
and matching criterion (1). Recall that, since ¬FC�(d) holds, there exists an eτ such that
bτ (d, eτ ). For the same reason, τ ∈ Act; this justifies the last step. �

We can formulate a result similar to Theorem 3.5 in the setting of weak bisimulation
semantics, which is axiomatised by the following laws (where a /= τ ).

T1: x τ = x,
T2: τ x = τ x + x,
T3: a(τ x + y) = a(τ x + y) + ax.

First, we prove the following variant of Lemma 2.7.

Lemma 3.4 (Lemma 2.7 for weak bisimulation).

y ⊆ x → τx = τx + y.

Proof. τx
T2= τx + x = τx + x + y

T2= τx + y. �

Using Lemma 3.4 rather than Lemma 2.7, we can prove the following adaptation of
Theorem 3.3.

Theorem 3.5 (General equality theorem for weak bisimulation). Let �, � and h be as
above (recall that � does not contain τ -steps). Assume that r and q are solutions of �
and �, respectively. If I is an invariant of �, λp.λd:D.�pd � I (d) � δ is convergent and
∀d:D� (I (d) → C�,�,h(d)), then

∀d:D� I (d) → r(d) = q(h(d)) � FC�(d) � τq(h(d)).

4. Abstraction and idle loops

The main result of this section, Theorem 4.9, is an adaptation of Theorem 3.3 to the
setting where implementations can perform unbounded sequences of internal activity.

Recall that we are concerned with the following situation. We have an implementation,
defined by the LPO �, and a specification, defined by the LPO �. We want to prove that
� is equal to �, after abstraction of internal actions in �. In the previous section, we have
shown how to prove equality of � and �, which is an abstract version of �, where internal
actions, i.e. actions not in �, are hidden.

Thus our next task is to rename internal actions in � in such a way that the resulting
LPO � is convergent, i.e. does not contain τ -loops, and such that a state mapping h from
� to �, satisfying the matching criteria, can be defined.
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In the previous section, we identified τ -steps with internal actions that make progress
towards a focus point, and so make progress in the protocol. Following this intuition, we
only rename those occurrences of actions to τ that constitute progress in the protocol.
Consider for instance the Concurrent Alternating Bit Protocol, which is explained in detail
in Section 5, where a sender S repeatedly sends a pair of a datum and an alternating bit b
to a receiver R through the channel K of Section 2, until an acknowledgement arrives via
channel L. Obviously, losing or garbling the datum in the channel K does not constitute
progress in any sense; indeed, these events give rise to an internal loop, since the sender
S retransmits the datum. So these transitions are not renamed to τ . Also, the transmission
of the datum by the sender is useful only when the receiver has not yet received it, i.e. is
still willing to accept data with alternating bit b. Suppose that we have a formula ϕ that
expresses that R will accept data with alternating bit b. Then we split this transmission into
two transitions: one where the transmission is renamed to τ and the enabling condition is
strengthened by the conjunct ϕ, and one where the transition is unchanged but the enabling
condition is strengthened by the conjunct ¬ϕ.

It requires experience to identify progressing internal actions for particular applications;
we hope that the examples in Section 5.1 provide sufficient intuition.

We have seen that, when the implementation has unbounded internal behaviour, not all
occurrences of all internal actions can be renamed to τ , since this would give rise to a
non-convergent LPO �. Hence some occurrences of some internal actions in the imple-
mentation remain unchanged. However, in order to apply Theorem 3.3, the specification �
and abstracted implementation � should run over the same set of actions, except that � can
perform τ -steps. To arrive at this situation, we augment � with “idle” loops: for each inter-
nal action j that still occurs in �, we augment � with a j-loop of the form j p(d) � T � δ. As
a consequence, the augmented specification is in every state able to do a j-step. In general,
the abstracted implementation � is not in every state able to perform a j-step. To remedy
this we also add a j-loop to �.

After these preparations, Theorem 3.3 yields that � plus idle loops is equal to � plus
idle loops. Now by KFAR, we can abstract from these idle loops to obtain equality of
implementation � (after abstraction of all internal actions) and specification �.

Since the internal actions are eventually all renamed to τ , we may as well rename them
first to a single internal action i, and add just a single idle loop (an i-loop) to � and �. This
considerably smoothens the presentation.

As opposed to the previous section, the main result of this section, Theorem 4.9, is the
same for weak bisimulation and branching bisimulation. In the sequel, we assume that Ext
(the set of external actions of �), Int (the set of internal actions of �), and {τ } are mutually
disjoint and finite sets of actions.

First, we introduce a number of operator transformations that are instrumental in the
proof. The operator i(�) is � extended with an i-loop; ρInt(�) is � with all actions in Int
renamed to i; iInt(�) is a composition of the two.

Definition 4.1. Let � be a convergent LPO over Ext ∪ Int ∪ {τ }. Let i ∈ Act be an action
such that i /∈ Ext ∪ Int ∪ {τ }. Let ρInt be a renaming operator renaming the actions in Int
to i. We define the following operators on LPOs.

i(�)
def= λp.λd:D�.�pd + ip(d),

ρInt(�)
def= λp.λd:D�.ρInt(�pd),
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iInt(�)
def= i(ρInt(�)).

The following theorem gives the relevant properties of these operators. It is proven in
Appendix A as Theorem A.4; the proof uses KFAR and CL-RSP.

Theorem 4.2. Let � be a convergent LPO over Ext ∪ Int ∪ {τ } such that i /∈ Ext ∪ Int ∪
{τ }. Assume that p1 is a solution of �, p2 is a solution of i(�), and p3 is a solution of
iInt(�). Then we have, for all d:D:
1. τp1(d) = ττ{i}(p2(d)),

2. ρInt(p2(d)) = p3(d) and
3. ττInt(p1(d)) = ττ{i}(p3(d)).

The essential technical concept in this section is a pre-abstraction or partial abstraction
function ξ . If for action a and values d and ea, ξ(a)(d, ea) = T, the action a in the sum-
mand is replaced by τ , while if ξ(a)(d, ea) = F, the summand remains unchanged. In this
way, the function ξ divides occurrences of internal actions in the implementation into two
categories, namely the progressing and non-progressing internal actions. In this setting, a
focus point is not defined in terms of τ -steps, as in the previous section, but in terms of
progressing internal actions.

In order to apply Theorem 4.9 below, one must provide not only an invariant and a state
mapping h, but also a pre-abstraction.

Definition 4.3. Let � be an LPO and let Int be a finite set of actions. A pre-abstraction
function ξ is a mapping that yields for every action a ∈ Int an expression of sort Bool. The
pre-abstraction �ξ is defined by replacing every summand in � of the form

∑
ea :Ea

a(fa(d, ea)) p(ga(d, ea)) � ba(d, ea) � δ

with a ∈ Int by

∑
ea :Ea

(τ p(ga(d, ea)) � ξ(a)(d, ea) � a(fa(d, ea)) p(ga(d, ea))) � ba(d, ea) � δ.

We extend ξ to all actions by assuming that ξ(τ )(d, eτ ) = T and ξ(a)(d, ea) = F for all
remaining actions.

Observe that D� = D�ξ and that convergence of �ξ implies convergence of �.
We redefine the notions convergent and focus point in a setting where there is a pre-

abstraction.

Definition 4.4. Let � be an LPO with internal actions Int and let ξ be a pre-abstraction
function. The LPO � is called convergent w.r.t. ξ iff there is a well-founded ordering < on
D such that for all a ∈ Int ∪ {τ }, d :D and all ea :Ea we have that ba(d, ea) and ξ(a)(d, ea)

imply ga(d, ea) < d . Note that this is equivalent to convergence of �ξ , defined in terms of
� and ξ .
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The difference between � and �ξ disappears when the internal actions in Int are hidden.
This is stated in the next lemma, which is proven as Lemma A.5 in Appendix A.

Lemma 4.5. Let � be an LPO that is convergent w.r.t. a pre-abstraction function ξ . Let p
be a solution of � and p′ be a solution of �ξ . Then

τInt(p) = τInt(p
′).

Definition 4.6. Let ξ be a pre-abstraction function. The focus condition of � relative to ξ

is defined by

FC�,Int,ξ (d)
def= ∀a ∈ Int ∪ {τ }∀ea :Ea¬

(
ba(d, ea) ∧ ξ(a)(d, ea)

)
.

Note that this is exactly the focus condition of �ξ , defined in terms of � and ξ .

In the next definition we define the matching criteria for the case where the implemen-
tation can perform unbounded internal activity. After an instrumental technical lemma we
formulate the main theorem.

Definition 4.7. Let �, � be LPOs, where � runs over Ext ∪ Int ∪ {τ } (Ext, Int and {τ }
mutually disjoint) and � runs over Ext. Let h : D� → D� and let ξ be a pre-abstraction
function. The following five conditions are called the matching criteria for idle loops and
their conjunction is denoted by CI�,�,ξ,h(d).

∀a ∈ Int ∪ {τ } ∀ea :Ea

(
ba(d, ea) → h(d) = h(ga(d, ea))

)
, (1)

∀a ∈ Ext ∀ea :Ea

(
ba(d, ea) → b′

a(h(d), ea)
)
, (2)

∀a ∈ Ext ∀ea :Ea

(
FC�,Int,ξ (d) ∧ b′

a(h(d), ea) → ba(d, ea)
)
, (3)

∀a ∈ Ext ∀ea :Ea

(
ba(d, ea) → fa(d, ea) = f ′

a(h(d), ea)
)
, (4)

∀a ∈ Ext ∀ea :Ea

(
ba(d, ea) → h(ga(d, ea)) = g′

a(h(d), ea)
)
. (5)

Lemma 4.8. Let �, �, h and ξ as in Definition 4.7. We find

CI�,�,ξ,h(d) → CiInt(�ξ ),i(�),h(d).

Proof. Below we show that the conditions in CiInt(�ξ ),i(�),h(d) follow from the conditions
in CI�,�,ξ,h(d). In order to see this, we formulate the conditions of CiInt(�ξ ),i(�),h(d) in
terms of �, � and ξ directly and show how they follow.
1. We must prove

∀a ∈ Int ∪ {τ } ∀ea :Ea

(
ξ(a)(d, ea) ∧ ba(d, ea) → h(d) = h(ga(d, ea))

)
.

(We must consider a ∈ Int as these are renamed to τ if ξ(a)(d, ea) holds.) Note that this
condition is a direct consequence of condition 2 of CI�,�,ξ,h(d).

2. We get

∀a ∈ Int ∪ Ext ∪ {i} ∀ea :Ea

(
ba(d, ea) ∧ ¬ξ(a)(d, ea) → b′

a(h(d), ea)
)
.

In case a ∈ Int or a is the new action i, the action a appears as i in iInt(�ξ ). In this case
b′

i (h(d), eb) equals T and the condition trivially holds.
In case a ∈ Ext, this is exactly condition 3 of CI�,�,ξ,h(d).

3. This condition yields

∀a ∈ Int ∪ Ext ∪ {i} ∀ea :Ea
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FC�,Int,ξ (d) ∧ b′

a(h(d), ea) → ba(d, ea) ∧ ¬ξ(a)(d, ea)
)
.

In case a ∈ Int ∪ {i}, a occurs as i in iInt(�ξ ) and iInt(�). So the conditions bi(d, ei)

and b′
i (h(d), ei) are both equal to T. If ξ(i)(d, ei) = F, we are done; if ξ(i)(d, ei) = T,

the focus condition is false and the theorem follows trivially.
In case a ∈ Ext we have that ξ(a)(d, ea) = F and the theorem follows from condition 4
of CI�,�,ξ,h(d).

4. In this case we get

∀a ∈ Int ∪ Ext ∪ {i}∀ea :Ea(¬ξ(a)(d, ea) ∧ ba(d, ea) → fa(d, ea) = f ′
a(h(d), ea)

)
.

In case a ∈ Int ∪ {i}, a occurs as i in iInt(�) and iInt(�). As i has no parameter, this
condition holds trivially.
In case a ∈ Ext this is exactly condition 5 of CI�,�,ξ,h(d).

5. The last condition is

∀a ∈ Int ∪ Ext ∪ {i} ∀ea :Ea(¬ξ(a)(d, ea) ∧ ba(d, ea) → h(ga(d, ea)) = g′
a(h(d), ea)

)
.

In case a ∈ Int ∪ {i} the action a appears as i in iInt(�ξ ) and iInt(�). So, g′
i is the

identity and we must prove that h(ga(d, ea)) = h(d). This follows from condition 2
of CI�,�,ξ,h(d).
In case a ∈ Ext this is an immediate consequence of condition 6 of CI�,�,ξ,h(d). �

Theorem 4.9 (Equality theorem for idle loops). Let �, � be LPOs, where � runs over
Ext ∪ Int ∪ {τ } (Ext, Int and {τ } mutually disjoint) and � runs over Ext. Let h : D� → D�

and let ξ be a pre-abstraction function. Let p and q be solutions of � and �, respectively.
If I is an invariant of �, λp.λd:D.�pd � I (d) � δ is convergent w.r.t. ξ and ∀d :

D�(I (d) → CI�,�,ξ,h(d)), then

∀d : D�I (d) → ττInt(p(d)) = τq(h(d)).

Proof. Let p, q, p′ and q ′ be solutions of �, �, iInt(�ξ ) and iInt(�), respectively. The
following three facts follow straightforwardly from the work done up to now.
1. ττInt(p(d)) = ττ{i}(p′(d)) (Theorem 4.2.3),
2. τq(h(d)) = ττ{i}(q ′(h(d))) (Theorem 4.2.1) and
3. I (d) → τp′(d) = τq ′(h(d)) (Theorem 3.3 and Lemma 4.8).

Note that for the third case above we must show that iInt(�ξ ) is convergent. This is
an immediate consequence of the fact that λp.λd:D.�pd � I (d) � δ is convergent w.r.t. ξ .
The theorem follows straightforwardly by

ττInt(p(d))
(1)= ττ{i}(p′(d))

(3)= ττ{i}(q ′(h(d)))

(2)= τq(h(d)) �
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5. Examples

In this section we give some examples. We begin with three simple ones, where in-
variants, progressiveness of internal actions, and convergence hardly play a role. The first
example is an easy application of Theorem 4.9. The next example shows that in some cases
a state mapping as required by Theorem 3.3 or Theorem 4.9 does not exist, even though
the processes in question are evidently branching bisimilar. The third example motivates
our restriction to specifications without τ -steps. In Section 5.1, we present a larger exam-
ple, the Concurrent Alternating Bit Protocol. As an application of Theorem 4.9, we prove
the correctness of this protocol. Here, invariants, progressiveness of internal actions and
convergence make their appearance.

Example 5.1. The following LPO describes a person who tosses a coin (this event is
modeled by the internal action j). When head turns up the person performs an external
action out (head), when tail turns up the person tosses again. We write Sides for the sort
consisting of head and tail.

proc X(s:Sides) =
∑

s′:Sides

jX(s′) � eq(s, tail) � δ

+ out(s)X(tail) � eq(s, head) � δ.

After hiding the internal action j, this process implements the process which does nothing
but out(head)-steps, given by

proc Y (s:Sides) = out(head)Y (s)

Here we leave the condition T of the summand implicit. The parameter s is added to Y
for convenience. We use Theorem 4.9 to prove that solutions for X and Y are branching
bisimilar. More precisely, let p and q be solutions for X and Y, respectively: we prove
that for all s ∈ Sides, ττ{j}(p(s)) = τq(s). Here we take X for �, Y for �, {j} for Int and
{out} for Ext. First we define the ξ -function, which determines when the internal action j
is renamed to τ . The coin is tossed when s equals tail. When the side that turns up, s′, is
again tail, we have a j-loop (which after renaming would lead to a τ -loop). To exclude this
situation, we put ξ(j) = eq(s′, head). The focus condition FCX,{j},ξ (s) is now defined as
∀s′:Sides ¬(eq(s, tail) ∧ eq(s′, head)), which is equivalent to eq(s, head). As invariant we
simply take the always true formula T and we define h : Sides → Sides by h(s) = head.

Spelling out the matching criteria of Definition 4.7, we get the following proof obliga-
tions:
1. X is convergent w.r.t. ξ . This is easy: we let the required well-founded ordering on Sides

be given by: head < tail.
2. eq(s, tail) → head = head. This formula is trivially proven.
3. eq(s, head) → T. Equally trivial.
4. (FCX,{j},ξ (s)∧T)→eq(s, head). Easy, since FCX,{j},ξ (s) is equivalent to eq(s, head).
5. eq(s, head) → s = head. Trivial. Remember that we assume that eq faithfully reflects

equality.
6. eq(s, head) → head = head. Trivial.

Example 5.2. Let Y be defined as in Example 5.1. Define a function flip : Sides → Sides
with flip(head) = tail and flip(tail) = head (no other equations hold). Let Z be defined by
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proc Z(st :Sides) = out (head)Z(flip(st))

Processes defined by Y and Z are evidently strongly bisimilar. However, we cannot give a
state mapping h : Sides → Sides that satisfies the matching criteria. Towards a contradic-
tion, suppose that h exists. By criterion (6), we have h(s) = flip(h(s)), which is clearly
impossible.

We conjecture that in cases like this, one can always rewrite the implementation and
specification in a simple way to (branching) equivalent ones, which can be dealt with by
our strategy. (In the present case, just delete the parameter st in Z.) It remains to make this
more precise.

Now we show that the restriction to specifications without τ -steps cannot be dropped.
We present a counterexample to this generalisation of Theorem 3.3, which also serves to
refute the same generalisation of Theorem 4.9.

Example 5.3. Let U be defined by

proc U(st :Nat) = τU(2) � eq(st, 1) � δ

+ bU(3) � eq(st, 2) � δ

+ cU(st) � eq(st, 3) � δ.

Solutions for this LPO can be written as τ b cω. Next, consider

proc V (st :Nat) = τV (2) � eq(st, 1) � δ

+ bV (3) � eq(st, 2) � δ

+ τV (3) � eq(st, 2) � δ

+ cV (st) � eq(st, 3) � δ.

We have that solutions to U and V are not in general branching (or weakly) bisimilar:
the infinite trace cω is an (infinite) trace of a solution for V, but not of a solution for U.
However, it is easy to show that the conditions of Theorem 3.3 are satisfied, contradicting
this result.

We define a state mapping h from U to V, of type Nat → Nat, by

h(st) =
{

2 if eq(st, 1),

st otherwise.

The focus condition FCU(st) is equivalent to ¬eq(st, 1). It is easily seen that the matching
criteria CU,V,h are satisfied. (For convergence, take the > ordering on Nat (restricted to
{1, 2, 3}) as the required well-founded ordering.)

The question arises whether our strategy can deal with τ -steps in the specification at all.
Intuitively, these steps model that the specification internally and invisibly makes choices.
In case the implementation is (after abstraction of internal actions) equal to the specifica-
tion, these choices must also occur in the implementation. Usually, they will be modelled
by internal but visible actions. An adaptation of our strategy could be to make the choices
in the specification visible by replacing the τ -steps by the corresponding internal actions.
Then one might prove this version of the specification equal to the (partially abstracted) im-
plementation. Thereafter, hiding the internal actions in the specification yields the desired
result.
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5.1. The concurrent alternating bit protocol

In this subsection we prove the correctness of the Concurrent Alternating Bit Protocol
(CABP), as an application of Theorem 4.9.

5.1.1. Specification
In this section we give the standard description of the Concurrent Alternating Bit Pro-

tocol and its specification. The system is built from six components. The overall structure
of the CABP is depicted in Fig. 2. Information flows clockwise through this picture. The
components can perform read (rn(. . .)) and send actions (sn(. . .)) to transport data over
port n. A read and a send action over port n can synchronise to a communication action
(cn(. . .)) over port n when they are executed simultaneously. In such a case the parameters
of the send and read action must match.

We use the sort Bit with bits e0 and e1 with an inversion function inv and the sort Nat
of natural numbers. We assume an unspecified sort D that contains the data elements to be
transferred by the protocol. Besides pairs of a datum and a bit that are transferred, there is
also an error message, ce (for checksum error), indicating that transmission fails.

The channels K and L read data at port 3, resp. port 6. They either deliver the data
correctly (via port 4, resp. 7), or lose or garble the data in which case a checksum error ce
is sent. The non-deterministic choice between the three options is modelled by the actions
j and j ′. If j is chosen, the data are delivered correctly and if j ′ happens, they are garbled
or lost. The state of the channels is modeled by parameters ik and il .

proc K(dk:D, bk:Bit, ik:Nat)

=
∑
d:D

∑
b:Bit

r3(d, b) K(d/dk, b/bk, 2/ik) � eq(ik, 1) � δ

+ (j ′K(1/ik) + jK(3/ik) + j ′ K(4/ik)) � eq(ik, 2) � δ

+ s4(dk, bk) K(1/ik) � eq(ik, 3) � δ

+ s4(ce) K(1/ik) � eq(ik, 4) � δ,

L(bl :Bit, il :Nat)

=
∑
b:Bit

r6(b) L(b/bl, 2/il) � eq(il, 1) � δ

+ (j ′ L(1/il) + j L(3/il) + j ′ L(4/il)
) � eq(il, 2) � δ

+ s7(bl) L(1/il) � eq(il, 3) � δ

+ s7(ce) L(1/il) � eq(il, 4) � δ.

Fig. 2. The structure of the CABP.
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The sender S reads a datum of sort D at port 1 and repeatedly offers the datum (with a
bit attached) at port 3 until it receives an acknowledgement ac at port 8 after which the
bit-to-be-attached is inverted, and the next datum over port 1 is awaited.

proc S(ds :D, bs :Bit, is :Nat)

=
∑
d:D

r1(d) S(d/ds, 2/is) � eq(is, 1) � δ

(
s3(ds, bs) S + r8(ac) S(inv(bs)/bs, 1/is)

) � eq(is, 2) � δ.

The receiver R reads a datum at port 4 and if the datum is not a checksum error ce and
if the bit attached is the expected bit, it sends the datum via port 2 and sends (via port
5) an acknowledgement ac to the acknowledgement sender AS, after which the bit-to-be-
expected is inverted. If the datum is a checksum error or the bit attached is not the expected
bit, the datum is ignored.

proc R(dr :D, br :Bit, ir :Nat) =
∑
d:D

r4(d, br) R(d/dr , 2/ir ) � eq(ir , 1) � δ

+ (r4(ce) +
∑
d:D

r4(d, inv(br))) R � eq(ir , 1) � δ

+ s2(dr) R(3/ir ) � eq(ir , 2) � δ

+ s5(ac) R(inv(br)/br , 1/ir ) � eq(ir , 3) � δ.

The acknowledgement sender AS repeatedly sends its acknowledgement bit via port 6, until
it reads an acknowledgement ac at port 5, after which the acknowledgement bit is inverted.

proc AS(b′
r :Bit) = r5(ac)AS(inv(b′

r )) + s6(b
′
r )AS(b′

r ).

The acknowledgement receiver AR reads bits at port 7 and when the bit is the expected ac-
knowledgement bit, it sends via port 8 an acknowledgement ac to the sender S, after which
the bit-to-be-expected is inverted. Checksum errors ce or unexpected bits are ignored.

proc AR(b′
s :Bit, i′s :Nat) = r7(b

′
s) AR(2/i′s) � eq(i′s , 1) � δ

+ (r7(ce) + r7(inv(b′
s))) AR � eq(i′s , 1) � δ

+ s8(ac) AR(inv(b′
s)/b′

s , 1/i′s) � eq(i′s , 2) � δ.

The CABP is obtained by putting the components in parallel and encapsulating the in-
ternal send and read actions at ports n ∈ {3, 4, 5, 6, 7, 8}. Synchronisation between the
components is modelled by communication actions at connecting ports.

We put H = {s3, r3, s4, r4, s5, r5, s6, r6, s7, r7, s8, r8}.
proc CABP(d:D) = �H

(
S(d, e0, 1)‖AR(e0, 1)‖K(d, e1, 1)‖
L(e1, 1)‖R(d, e0, 1)‖AS(e1)

)
.

The specification of the external behaviour of CABP uses the one-datum buffer B, which
can read via port 1 if b is true, and deliver via port 2 if b is false.

proc B(d:D, b:Bool) =
∑
e:D

r1(e) B(e, F) � b � δ + s2(d) B(d, T) � ¬b � δ.
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After abstraction of internal actions, the CABP should behave as a one-datum buffer, up to
initial silent steps. We let I = {c3, c4, c5, c6, c7, c8, j, j ′}. Our goal is to prove the follow-
ing result.

Theorem 5.4. For all d:D we have

ττI (CABP(d)) = τB(d, T).

This result will be proven as Theorem 5.10, as an easy consequence of Theorem 4.9,
taking a certain expansion Sys of CABP for �, B for �, the set I for Int, and {r1, s2} for
Ext. In the next section, we determine Sys.

5.1.2. Expansion
In this section we expand CABP to a linear process term Sys. As a preparation, we first

group S and AR, respectively, R and AS, together. This has the advantage that we can dis-
pose of the parameters b′

s and b′
r . For ds, dr , dk : D, bs, br , bk, bl : Bit and is , i′s , ir , ik, il :

Nat, we define:

proc SAR(ds, bs, is, i′s) = S(ds, bs, is)‖AR(bs, i′s)
RAS(dr , br , ir ) = R(dr , br , ir )‖AS(inv(br))

Sys
(
ds, bs, is, i′s , dr , br , ir , dk, bk, ik, bl, il

)
= �H

(
SAR(ds, bs, is, i′s)‖K(dk, bk, ik)‖L(bl, il)‖RAS(dr , br , ir )

)
.

Lemma 5.5. For all d:D we have

CABP(d) = Sys
(
d, e0, 1, 1, d, e0, 1, d, e1, 1, e1, 1

)
.

Proof. Direct using the definitions. �

Lemma 5.6. For all ds, dr , dk : D, bs, br , bk, bl : Bit and is , i′s , ir , ik, il : Nat, it holds
that

Sys
(
ds, bs, is, i′s , dr , br , ir , dk, bk, ik, bl, il

)
=
∑
d:D

r1(d)Sys(d/ds, 2/is) � eq(is, 1) � δ

+ c3(ds, bs)Sys(ds/dk, bs/bk, 2/ik) � eq(is, 2) ∧ eq(ik, 1) � δ

+ c4(dk, br )Sys(dk/dr , 2/ir , 1/ik) � eq(ir , 1) ∧ eq(br , bk) ∧ eq(ik, 3) � δ

+ c4(dk, br )Sys(1/ik) � eq(ir , 1) ∧ eq(br , inv(bk)) ∧ eq(ik, 3) � δ

+ c4(ce)Sys(1/ik) � eq(ir , 1) ∧ eq(ik, 4) � δ

+ s2(dr)Sys(3/ir ) � eq(ir , 2) � δ

+ c5(ac)Sys(inv(br )/br , 1/ir ) � eq(ir , 3) � δ

+ c6(inv(br))Sys(inv(br )/bl, 2/il) � eq(il, 1) � δ

+ c7(bl)Sys(1/il, 2/i′s) � eq(i′s , 1) ∧ eq(bl, bs) ∧ eq(il, 3) � δ

+ c7(bl)Sys(1/il) � eq(i′s , 1) ∧ eq(bl, inv(bs)) ∧ eq(il, 3) � δ

+ c7(ce)Sys(1/il) � eq(i′s , 1) ∧ eq(il, 4) � δ

+ c8(ac)Sys(inv(bs)/bs, 1/is, 1/i′s) � eq(is, 2) ∧ eq(i′s , 2) � δ



52 J.F. Groote, J. Springintveld / Journal of Logic and Algebraic Programming 49 (2001) 31–60

+ (j ′Sys(1/ik) + j ′Sys(4/ik)
) � eq(ik, 2) � δ

+ jSys(3/ik) � eq(ik, 2) � δ

+ (j ′Sys(1/il) + j ′Sys(4/il)
) � eq(il, 2) � δ

+ jSys(3/il) � eq(il, 2) � δ.

Proof. By straightforward process algebraic calculations. �

Now this expanded version of Sys will play the role of � as introduced in Section 4.
As it would decrease readability, we have chosen not to transform Sys to an LPO. We have
taken care that all theorems are correctly applied to Sys.

5.1.3. Invariant
The process Sys does not behave as the buffer for all its data states. Actually, there are

cases where it can perform two r1 actions in succession without an intermediate s2, or two
successive s2 actions without an intermediate r1. However, such states cannot be reached
from the initial state. We formalise this observation by formulating six invariant properties
of Sys. The first five invariants I1, . . . , I5 state what values is , i′s , ir , ik , and il may have.
The last invariant I6 is less trivial. We first provide the formal definition of the invariant,
thereafter we give an informal explanation of I6.

I1 ≡ eq(is, 1) ∨ eq(is, 2);
I2 ≡ eq(i′s , 1) ∨ eq(i′s , 2);
I3 ≡ eq(ik, 1) ∨ eq(ik, 2) ∨ eq(ik, 3) ∨ eq(ik, 4);
I4 ≡ eq(ir , 1) ∨ eq(ir , 2) ∨ eq(ir , 3);
I5 ≡ eq(il, 1) ∨ eq(il, 2) ∨ eq(il, 3) ∨ eq(il, 4);
I6 ≡ (

eq(is, 1) → eq(bs, inv(bk)) ∧ eq(bs, br ) ∧ eq(ds, dk)

∧ eq(ds, dr) ∧ eq(i′s , 1) ∧ eq(ir , 1)
)

∧ (eq(bs, bk) → eq(ds, dk)
)

∧ (eq(ir , 2) ∨ eq(ir , 3) → eq(ds, dr ) ∧ eq(bs, br ) ∧ eq(bs, bk)
)

∧ (eq(bs, inv(br )) → eq(ds, dr ) ∧ eq(bs, bk)
)

∧ (eq(bs, bl) → eq(bs, inv(br ))
)

∧ (eq(i′s , 2) → eq(bs, bl)
)
.

The invariant I6 can be understood in the following way. Every component can be in ex-
actly two modes, which we call involved and unaware.

If a component is involved, it has received correct information about the datum to be
transmitted and has the duty to forward this information in the clockwise direction. If a
component is unaware, it is not (yet) involved in transmitting the datum. In particular the
sender S is unaware if there is nothing to transmit. The idea behind the protocol is that
initially all components are in the unaware mode. When the sender S reads a datum to be
transmitted it gets involved. By transmitting data the components K, R, L and AR become
subsequently involved. When AR signals the acknowledgement to S by s8(ac), it is clear
that the datum has correctly been delivered, and all components fall back to the unaware
mode. The invariant simply expresses that if a component is in the involved mode, all
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components in the anti-clockwise direction up to and including the sender S must also be
involved. With regard to the components K and R the invariant also expresses the property
that if these components are involved, then the data that these contain must be equal to the
datum of the sender.

Below we present a table indicating in which case a component is involved, and in
case it is involved, what property should hold. It is left to the reader to check that the
invariant indeed encodes the intuition explained above. Note that AS has been omitted as
its parameters do not play a role in Sys.

Component Condition for involvement Property
S eq(is, 2)

K eq(bs, bk) eq(ds, dk)

R eq(ir , 2) ∨ eq(ir , 3) ∨ eq(bs, inv(br)) eq(ds, dr )

L eq(bs, bl)

AR eq(i′s , 2)

We write �d for the vector ds, bs, is, i′s , dr , br , ir , dk, bk, ik, bl, il .

Lemma 5.7.

I ( �d ) =
6∧

j=1

Ij ( �d )

is an invariant of Sys.

5.1.4. Abstraction and focus points
The Concurrent Alternating Bit Protocol has unbounded internal behaviour that occurs

when the channels repeatedly lose data, when acknowledgements are repeatedly being sent
by the receiver without being processed by the sender or when the sender repeatedly sends
data to the receiver that it has already received. We define a pre-abstraction function to
rename all actions in Int into τ except those that give rise to loops. So

ξ(a)( �d) =




F if a = j ′,
eq(bs, br ) if a = c3,

¬eq(bs, br ) if a = c6,

T for all other a ∈ Int.

In case a = j ′ either channel K or L distorts or loses data. In case a = c3 and ¬eq(bs, br )

data are being sent by the sender to the receiver that is subsequently ignored by the receiver.
And in case a = c6 and eq(bs, br ), an acknowledgement sent by the receiver to the sender
is ignored by the sender.

We can now derive the focus condition FC with respect to ξ . FC is the negation of
the conditions that enable τ -steps in Sys. This results in a rather long formula, which is
equivalent to the following formula (assuming that the invariant holds).

Lemma 5.8. The invariant I ( �d) implies that

FCSys,Int,ξ ( �d ) = eq(i′s , 1) ∧ eq(il, 1) ∧ ((eq(is, 1) ∧ eq(ik, 1))

∨ (eq(ir , 2) ∧ (eq(ik, 3) ∨ eq(ik, 4)))
)
.
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Lemma 5.9. Sys( �d) is convergent w.r.t. ξ .

Proof. We define a well-founded ordering � by means of the function f given below as
follows: �a � �b ⇔ f (�a ) < f (�b ), where < is the usual “less than” ordering on the natural
numbers. Since < is well-founded on the natural numbers and—as can easily be checked—
f decreases with every internal step of Sysξ as above, we see that � does the job.

Now we give the function f. For α ∈ {k, l}, we let (x1, x2, x3, x4)
α abbreviate

if
(
eq(iα, 1), x1, if (eq(iα, 2), x2, if (eq(iα, 3), x3, x4))

)
.

Define f (ds, bs, is, i′s , dr , br , ir , dk, bk, ik, bl, il) by

if (eq(is, 2), 9, 0) + if (eq(i′s , 2), 0, 3) + if (eq(ir , 2), 0, 3)

+ if (eq(ir , 3), 5, 0) + if
(
eq(br , bk), (2, 1, 0, 3)k, (3, 5, 4, 4)k

)
+ if

(
eq(bs, bl), (2, 1, 0, 3)l, (3, 5, 4, 4)l

)
. �

Theorem 5.10. For all d:D we have

ττI (CABP(d)) = τB(d, T).

Proof. By Lemma 5.5 it suffices to prove, for all d:D:

ττI

(
Sys(d, e0, 1, 1, d, e0, 1, d, e1, 1, e1, 1)

) = τB(d, T).

Note that the invariant I holds for the parameters of Sys such as displayed. So we can apply
Theorem 4.9, taking Sys for �, B for �, Sys′ for �, the set I for Int, {r1, s2} for Ext, and
I as invariant. It remains to pick an appropriate function h; this function will yield a pair
consisting of a datum of type D and a boolean. We choose h to be

h( �d) = 〈ds, eq(is, 1) ∨ eq(ir , 3) ∨ ¬eq(bs, br )〉.
The first component is the datum that is read by the buffer when eq(is, 1) and exported
when eq(ir , 2). We can take ds , because we can show that when action s2(dr) happens,
ds = dr .

The second component of the triple is the boolean formula that controls, in terms of the
parameters �d of Sys, whether the buffer is enabled to read (the formula is true) or enabled to
write (the formula is false). Typically, Sys is able to read when eq(is, 1) as the read action
in the sender is enabled. The sender is also enabled to read (after some internal activity)
when it is still waiting for an acknowledgement, but the proper acknowledgement is on
its way. This case is characterised by ¬eq(bs, br ). The same holds when the receiver has
delivered a datum, but has not yet informed the acknowledgement handler AS. In this case
eq(ir , 3) holds.

Next, we verify the conditions of Theorem 4.9. We get the following conditions (omit-
ting trivial conditions):
1. Sys is convergent w.r.t. ξ .
2. (a) eq(ir , 3) → T = eq(is, 1) ∨ ¬eq(bs, inv(br)),

(b) eq(is, 2) ∧ eq(i′s , 2) → eq(ir , 3) ∨ ¬eq(bs, br ) = T.
3. eq(ir , 2) → ¬(eq(is, 1) ∨ eq(ir , 3) ∨ ¬eq(bs, br )).
4. (a) FCSys,Int,ξ ( �d) ∧ (eq(is, 1) ∨ eq(ir , 3) ∨ ¬eq(bs, br)) → eq(is, 1).

(b) FCSys,Int,ξ ( �d) ∧ ¬(eq(is, 1) ∨ eq(ir , 3) ∨ ¬eq(bs, br )) → eq(ir , 2).
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5. eq(ir , 2) → dr = ds .
6. eq(is, 1) → eq(ir , 3) ∨ ¬eq(bs, br ) = F.

Lemma 5.9 takes care of condition 1. The remaining conditions are easily verified, under
the invariant I.
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Appendix A: Elementary results

This appendix contains some technical lemmas, which are used in previous sections.
We begin with simple properties of the _ � _ � _ operator and the

∑
-operator.

Lemma A.1. For all processes x, y and (open) terms of sort Bool b, b1, b2 we have:
1. x � b � x = x,

2. x � b � y = y � ¬b � x,

3. x � b � y = x � b � δ + y � ¬b � δ,

4. x � b1 ∧ b2 � δ = (x � b1 � δ) � b2 � δ,

5. x � b1 ∨ b2 � δ = x � b1 � δ + x � b2 � δ.

Proof. (1), (2), (3): By induction on b, i.e. by distinguishing the cases where b equals T
and where b equals F. (4), (5): by induction on b1 and b2. �

Lemma A.2. If there is some e:D such that b(e) holds, then

p =
∑
d:D

p � b(d) � δ,

where d does not occur free in p.

Proof. Assume b(e) holds.(∑
d:D

p � b(d) � δ

)
⊇ (p � b(e) � δ) = p =

(∑
d:D

p

)
⊇
(∑

d:D
p � b(d) � δ

)
.

Note that in the first ⊇-step we use apiom SUM3. In the second =-step, we use SUM1.
The last step can be seen as follows.

∑
d:D

p =
∑
d:D

(p � b(d) � p)

=
∑
d:D

(p � b(d) � δ + p � ¬b(d) � δ)
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=
∑
d:D

(p � b(d) � δ) +
∑
d:D

(p � ¬b(d) � δ).

We use Lemma A.1.1 at the first step, and Lemma A.1.3 at the second. At the last step
SUM4 is used. Note that at the first two steps we also use SUM11. �

The following result is a trivial corollary of τ -law B1.

Lemma A.3. Let � be an LPO. For all processes p and data d:D we have

�pd = �
[
λd.p(d) � b(d) � τp(d)

]
d.

The last two results concern LPOs extended with idle loops. They are used in Sec-
tion 4. Remember that we assume that Ext, Int and {τ } are mutually disjoint and that i �∈
Ext ∪ Int ∪ {τ }.

Theorem A.4. Let � be a convergent LPO over Ext ∪ Int ∪ {τ } such that i /∈ Ext ∪ Int ∪
{τ }. Assume that p1 is a solution of �, p2 is a solution of i(�), and p3 is a solution of
iInt(�). Then we have, for all d:D:
1. τp1(d) = ττ{i}(p2(d)),

2. ρInt(p2(d)) = p3(d) and
3. ττInt(p1(d)) = ττ{i}(p3(d)).

Proof.
1. First we show λd.τp1(d) and λd.ττ{i}(p2(d)) to be solutions of

�
def= λp.λd:D�.τ�pd.

It is straightforward to see that λd.τp1(d) is a solution of �. We only prove that
λd.ττ{i}(p2(d)) is a solution of �.
As p2 is a solution of i(�) it holds that

p2(d) = �p2d + ip2(d).

By an application of KFAR we find

ττ{i}(p2(d)) = ττ{i}(�p2d).

As i does not appear in �, we can distribute τ{i} and we find

ττ{i}(p2(d)) = τ
(
�[λd.(τ{i}(p2(d)))]d).

So, λd.ττ{i}(p2(d)) is a solution of �.
As � is convergent, � is convergent. Hence, using the principle CL-RSP we find for all
d:D

τp1(d) = ττ{i}(p2(d)).

2. First observe that i(ρInt(�)) and ρInt(i(�)) are syntactically identical operators. So we
may assume that p3 is a solution of ρInt(i(�)). Since p2 is a solution of i(�), we also
have that ρInt(p2(d)) is a solution of ρInt(i(�)). Since ρInt(i(�)) is convergent, the
desired equality follows from CL-RSP.

3. By cases 1 and 2 of this theorem we find

τp1(d) = ττ{i}(p2(d)),

ρInt(p2(d)) = p3(d).
(6)
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Using the congruence properties we transform the second equation of (6) above into

ττ{i}(ρInt(p2(d))) = ττ{i}(p3(d)).

By axioms R+ and T + this simplifies to

ττInt(τ{i}(p2(d))) = ττ{i}(p3(d)).

Using the first equation of (6) and the Hiding laws TI, this is reduced to

ττInt(p1(d)) = ττ{i}(p3(d)),

which we had to prove. �

Lemma A.5. Let � be an LPO that is convergent w.r.t. a pre-abstraction function ξ . Let
p be a solution of � and p′ be a solution of �ξ . Then

τInt(p) = τInt(p
′).

Proof. Consider the LPO �new where every summand of � of the form∑
ea :Ea

a(fa(d, ea)) p(ga(d, ea)) � ba(d, ea) � δ

with a ∈ Int is replaced by∑
ea :Ea

(ip(ga(d, ea)) � ξ(a)(d, ea) � a(fa(d, ea)) p(ga(d, ea))) � ba(d, ea) � δ,

where i is a fresh action. Assume �new has solution pnew. Clearly, τ{i}(pnew) = p′ as both
terms are a solution of �ξ (use Lemma A.1.1). Also ρInt(pnew) = ρInt(p) as both terms are
solutions of ρInt(�). Furthermore, τ{i}(p) = p as i does not occur in � (so both terms are
solutions of �).

Using these observations and (at the second and fourth step) axioms R+ and T +, we
derive:

τInt(p) = τInt(τ{i}(p))

= τ{i}(ρInt(p))

= τ{i}(ρInt(pnew))

= τInt(τ{i}(pnew))

= τInt(p
′). �

Appendix B: Axioms and rules for �CRL

In this section, we present tables containing the axioms for the ACP operators, some
axioms for the Sum and the conditional operator, plus some additional axioms that were
necessary. The axioms in Table 1 are standard axioms from ACP (see e.g. [1]). The axioms
and rule in Table 2 are specifically defined for �CRL and concern the sum operator �, the
booleans T and F and the conditional. They stem from [12]. The axioms and rule in Table
3 are various axioms from ACP that we require in the proofs (see also [1]). All axioms
and rules hold in strong bisimulation, except for the axioms B1 and B2 and the rule KFAR
which are typically valid in branching bisimulation.



58 J.F. Groote, J. Springintveld / Journal of Logic and Algebraic Programming 49 (2001) 31–60

Table 1
Axioms for the ACP operators

A1 x + y = y + x CM1 x‖y = x��y + y��x + x|y
A2 x + (y + z) = (x + y) + z CM2 c��x = c · x

A3 x + x = x CM3 c · x��y = c · (x‖y)

A4 (x + y) · z = x · z + y · z CM4 (x + y)��z = x��z + y��z
A5 (x · y) · z = x · (y · z) CM5 c · x|d = (c|d) · x

A6 x + δ = x CM6 c|d · x = (c|d) · x

A7 δ · x = δ CM7 c · x|d · y = (c|d) · (x‖y)

B1 x · τ = x CM8 (x + y)|z = x|z + y|z
B2 z(τ · (x + y) + x) = z(x + y) CM9 x|(y + z) = x|y + x|z
CD1 δ|x = δ DD �H (δ) = δ

CD2 x|δ = δ DT �H (τ) = τ

CT1 τ |x = δ D1 �H (a(d)) = a(d) if a /∈ H

CT2 x|τ = δ D2 �H (a(d)) = δ if a ∈ H

D3 �H (x + y) = �H (x) + �H (y)

CF a(d) | b(e) =



γ (a, b)(d) if d = e and
γ (a, b) defined

δ otherwise
D4 �H (x · y) = �H (x) · �H (y)

TID τI (δ) = δ RD ρR(δ) = δ

TIT τI (τ ) = τ RT ρR(τ) = τ

TI1 τI (a(d)) = a(d) if a /∈ I R1 ρR(a(d)) = R(a)(d)

TI2 τI (a(d)) = τ if a ∈ I

TI3 τI (x + y) = τI (x) + τI (y) R3 ρR(x + y) = ρR(x) + ρR(y)

TI4 τI (x · y) = τI (x) · τI (y) R4 ρR(x · y) = ρR(x) · ρR(y)

Table 2
Axioms for sum and conditional

SUM1 �d:Dp = p d not free in p

SUM2 �d:Dp = �e:D(p[e/d]) e not free in p

SUM3 �d:Dp = �d:Dp + p[e/d]
SUM4 �d:D(p1 + p2) = �d:Dp1 + �d:Dp2

SUM5 �d:D(p1 · p2) = (�d:Dp1) · p2 d not free in p2

SUM6 �d:D(p1��p2) = (�d:Dp1��p2 d not free in p2

SUM7 �d:D(p1|p2) = (�d:Dp1)|p2 d not free in p2

SUM8 �d:D(�H (p)) = �H (�d:Dp)

SUM9 �d:D(τI (p)) = τI (�d:Dp)

SUM10 �d:D(ρR(p)) = ρR(�d:Dp)

D

SUM11 p1=p2
�d:D(p1)=�d:D(p2)

d not free in
the assumptions of D

BOOL1 ¬(T = F)

BOOL2 ¬(b = T) → b = F

COND1 x � T � y = x

COND2 x � F � y = y

In the tables, D is an arbitrary data type, d and e represent elements of D, x, y, z range
over processes, a, b, i are actions, c, d represent either τ, δ or an action a(d), and p, p1, p2
are process terms in which the variable d may occur. (Although some names are over-
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Table 3
Some extra axioms needed in the verification

KFAR p(d) = ip(d) + y → ττ{i}(p(d)) = ττ{i}(y)

T + τI (τI ′ (x)) = τI∪I ′ (x)

R+ τI (ρR(x)) = τI ′ (x) if ran(R) ⊆ I and I ′ = I ∪ dom(R)

SC1 (x��y)��z = x��(y‖z)

SC3 x|y = y|x
SC4 (x|y)|z = x|(y|z)
SC5 x|(y��z) = (x|y)��z

loaded, the context makes clear what is meant. In Table 2, b also ranges over boolean
terms.) Furthermore, R ranges over renaming functions, and I, I ′ and H range over sets
of actions. If R = {a1 → b1, . . . , an → bn}, then dom(R) = {a1, . . . , an} and ran(R) =
{b1, . . . , bn}. Finally, D in Table 2 ranges over derivations.

Beside these axioms, �CRL features two important principles: RSP, stating that guard-
ed recursive specification have at most one solution, and an induction rule, for inductive
reasoning over data types. For more information on �CRL, the reader is referred to [12].
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