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Abstract

A generalized convex shelling was introduced by Kashiwabara et al. for their representation theorem of convex geometries.
Motivated by the work by Edelman and Reiner, we study local topology of the free complex of a two-dimensional separable
generalized convex shelling. As a result, we prove a deletion of an element from such a complex is homotopy equivalent to a
single point or two distinct points, depending on the dependency of the element to be deleted. Our result resolves an open problem
by Edelman and Reiner for this case, and it can be seen as a first step toward the complete resolution from the viewpoint of a
representation theorem for convex geometries by Kashiwabara et al.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A convex geometry is introduced by Edelman and Jamison [4] as a combinatorial abstraction of “convexity” appear-
ing in many objects. Recently, a representation theorem for convex geometries has been established by Kashiwabara
et al. [8], which states that every convex geometry is isomorphic to some “separable generalized convex shelling.”
A generalized convex shelling is defined in terms of two finite point sets in a certain dimension. Therefore, their
representation theorem gives a stratification of the convex geometries by the minimum dimension in which a convex
geometry can be realized as a separable generalized convex shelling. We study the topology of the free complex of a
two-dimensional generalized convex shelling. As a result, we prove the following. (The necessary definitions will be
given later.)

� The abstract version has appeared as “The free complex of a two-dimensional generalized convex shelling” in EUROCOMB’03—Abstracts,
ITI Series 2003-145, Institute for Theoretical Computer Science (ITI), Charles University, 2003, pp. 289–293.
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Theorem 1. Let P and Q be nonempty finite point sets in R2 such that conv(P ) ∩ conv(Q) = ∅. In addition, let L be
the generalized convex shelling on P with respect to Q. Consider the free complex Free(L) of L. Then the following
holds.

1. If DepL(x) �= P , then the deletion delFree(L)(x) of an element x ∈ P is contractible (i.e., homotopy equivalent to
a single point).

2. If DepL(x) = P , then delFree(L)(x) is contractible or homotopy equivalent to a zero-dimensional sphere (i.e., two
distinct points).

The motivation of this work stems from Edelman and Reiner [5]. An Euler–Poincaré type formula for the number of
interior points in a d-dimensional point configuration was proved by Ahrens et al. [1] for d =2, and proved by Edelman
and Reiner [5] and Klain [10] independently for arbitrary d. The approach by Klain [10] used a more general theorem
on valuation, while that by Edelman and Reiner [5] was topological. (Another proof based on oriented matroids was
given by Edelman et al. [6].) In the paper by Edelman and Reiner [5], they studied the topology of deletions of the free
complex of a convex shelling (arising from a point configuration), and also mentioned a possible generalization to a
convex geometry. More precisely speaking, their open problems are as follows.

Open Problem 2 (Edelman and Reiner [5]). Let L be a convex geometry on E and denote the free complex of L by
Free(L).

1. Is the deletion delFree(L)(x) of an element x ∈ E contractible if DepL(x) �= E?
2. Is delFree(L)(x) homotopy equivalent to a bouquet of spheres if DepL(x) = E?

Edelman and Reiner [5] showed that this generalization can be successfully done for poset double shellings and
simplicial shellings of chordal graphs. Subsequently Edelman et al. [6] showed that this can also successfully be done
for a convex shelling of an acyclic oriented matroid. Theorem 1 states that this can also be done for a two-dimensional
separable generalized convex shelling. However, our case is not just a special case. Thanks to Kashiwabara et al. [8],
every convex geometry is isomorphic to some generalized convex shelling. An explicit statement is as follows.

Proposition 3 (Kashiwabara et al. [8]). For every convex geometry L on a finite set E, there exist a natural number d
and two point sets P, Q ⊆ Rd satisfying conv(P ) ∩ conv(Q) = ∅ such that L is isomorphic to the generalized convex
shelling of P with respect to Q.

Therefore, our result is a step toward a resolution of Open Problem 2.
The organization of this paper is as follows. In the next section we introduce the necessary terminology about

simplicial complexes and convex geometries. Section 3 sketches the proof of our theorem. We conclude the paper in
Section 4 with some examples.

2. Preliminaries

In this article, we assume a moderate familiarity with graph theory.

2.1. Simplicial complexes

Let E be a finite set. An abstract simplicial complex on E is a nonempty family � of subsets of E satisfying that:
if X ∈ � and Y ⊆ X then Y ∈ �. Often an abstract simplicial complex is simply called a simplicial complex, and in
the literature they are also called independence systems and hereditary set systems. For a simplicial complex � on E,
a subset of E is called a face of the simplicial complex � if it belongs to �; if not it is called a nonface.

For a simplicial complex � on E and an element x ∈ E, the deletion of x in � is defined by del�(x) := {X ∈ � :
x /∈ X}. Note that the deletion is a simplicial complex on E\{x}.

When we talk about topology of a simplicial complex, we refer to a geometric realization of the simplicial complex.
For details, see Matoušek’s book [11].



3838 Y. Okamoto / Discrete Mathematics 308 (2008) 3836–3846

Our topological investigation is restricted to the Euclidean case. So we just define some terms within the Euclidean
space. Let X and Y be sets in Rd . Two continuous maps f0, f1: X → Y are homotopic if there exists a continuous map
F : X × [0, 1] → Y such that F(x, 0) = f0(x) and F(x, 1) = f1(x) for all x ∈ X. Two sets X, Y ⊆ Rd are homotopy
equivalent if there exist two continuous maps f : X → Y and g: Y → X such that the composition f ◦ g: Y → Y and
the identity map idY : Y → Y are homotopic and also the composition g ◦f : X → X and the identity map idX: X → X

are homotopic.

2.2. Convex geometries

Let E be a nonempty finite set. A convex geometry is a family L of subsets of E satisfying the following three
conditions:

∅ ∈ L and E ∈ L, (1)

if X, Y ∈ L then X ∩ Y ∈ L, (2)

if X ∈ L\{E} then there exists e ∈ E\X such that X ∪ {e} ∈ L. (3)

For a convex geometry L on E, we define an operator �L : 2E → 2E as

�L(A) :=
⋂

{X ∈ L : A ⊆ X}.
The operator �L is called the closure operator of L. Note that X ∈ L if and only if �L(X) = X, by the definition.
Moreover, the closure operator � of a convex geometry L on E has the following important properties, which are not
difficult to derive from the definition.

Extensionality: A ⊆ �L(A) for all A ⊆ E.
Monotonicity: If A ⊆ B ⊆ E then �L(A) ⊆ �L(B).
For a set A ⊆ E, an element e ∈ A is called an extreme point if e /∈ �L(A\{e}). We denote the set of extreme points

of A by exL(A). Namely, define the operator exL: 2E → 2E as

exL(A) := {e ∈ A : e is an extreme point of A}.
We call exL the extreme point operator. Note that the extreme point operator exL of a convex geometry L on E
satisfies the following properties:

Intensionality: exL(A) ⊆ A for all A ⊆ E,
which is clear from the definition. Ando [2] gives a detailed treatment on closure operators and extreme point operators
in a more general setting.

A set A ⊆ E is called independent if exL(A) = A. We say that e depends on f if there exists an independent set A
such that f ∈ A, e ∈ �L(A) and e /∈ �L(A\{f }). We denote the set of all elements on which e depends by DepL(e).
A set X ⊆ E is called free if X ∈ L and exL(X) = X. We denote the family of free sets of a convex geometry L by
Free(L). The following lemma is well-known and relatively easy to show.

Lemma 4. Let L be a convex geometry on E. Then Free(L) is a simplicial complex on E.

Thus, it is natural that we call Free(L) the free complex of a convex geometry L. Note that in general there might
exist an element x ∈ E such that {x} /∈ Free(L).

Now we define a generalized convex shelling. Let P and Q be finite point sets in Rd (where d is a positive integer)
such that P ∩conv(Q)=∅. Then the generalized convex shelling on P with respect to Q is a convex geometryL defined
as follows: L = {X ⊆ P : P ∩ conv(X ∪ Q) = X}. We also call a convex geometry L a d-dimensional generalized
convex shelling if there exist finite point sets P and Q in Rd such that P ∩ conv(Q) = ∅ and L is isomorphic to the
generalized convex shelling on P with respect to Q. Note that a generalized convex shelling does not depend on Q, but
only on the convex hull of Q. However, we keep the phrase “the generalized convex shelling with respect to Q,” not
“the generalized convex shelling with respect to the convex hull of Q,” for the simplicity.

The next lemma tells us the closure operator and the extreme point operator of a generalized convex shelling.
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Lemma 5. Let L be a generalized convex shelling on P with respect to Q. Then, we have

�L(X) = P ∩ conv(X ∪ Q),

exL(X) = {x ∈ X : x is an extreme point of conv(X ∪ Q)}
for each set X ⊆ P .2 In particular, X ⊆ P is free if and only if P ∩ conv(X ∪ Q) = X and every element of X is an
extreme point of conv(X ∪ Q).

Proof. The statement for the closure operator has already been proved by Kashiwabara et al. [8]. Here, we prove that
the extreme point operator is as claimed. The proof is based on the following chain of equivalences.

p ∈ exL(X) ⇔ p /∈ �L(X\{p}) (definition of exL)

⇔ p /∈ P ∩ conv((X\{p}) ∪ Q) (the first part of this lemma)

⇔ p /∈ conv((X\{p}) ∪ Q) (p ∈ P)

⇔ p /∈ conv((X ∪ Q)\{p})
⇔ p is an extreme point of conv(X ∪ Q) (definition of an extreme point).

The last part is immediate from the first two parts of this lemma and the definition of a free set. �

In this paper, we study the free complex of a two-dimensional separable generalized convex shelling. Since we
already know that Open Problem 2 has been solved when Q = ∅ [5], we may make the following assumption, which
is important in this paper.

Assumption 6. When we talk about the generalized convex shelling on P with respect to Q in the rest of this paper, Q
is always nonempty unless stated otherwise.

Here, we define a clique complex of a graph. Let G be a graph. A clique of G is a vertex subset of G which induces
a complete subgraph. The clique complex of G is the family of cliques of G. We also treat the empty set and the single
vertices as cliques, so the clique complex is actually a simplicial complex. In the literature, a clique complex is also
called a flag complex.

3. Proof of Theorem 1

3.1. Basic properties and the outline

Now we concentrate on two-dimensional separable generalized convex shellings. Let P and Q be two nonempty
finite point sets in R2 such that conv(P ) ∩ conv(Q) = ∅. Denote by L the generalized convex shelling on P with
respect to Q. Since conv(P )∩ conv(Q)=∅, there exists a line which strictly separates conv(P ) and conv(Q). Fix such
a line, and call it �. In the rest of the paper, we visualize � as a vertical line, and P is put left to � and Q right to �.

To prove Theorem 1, we use the following fact.

Lemma 7 (Hachimori and Nakamura [7]). A minimal nonface of the free complex Free(L) of a d-dimensional gen-
eralized convex shelling is of size at most d.

It is well known that a simplicial complex whose minimal nonfaces are of size 2 is a clique complex of some graph.
(Although this fact is folklore, a proof can be found in a paper by Kashiwabara et al. [9], for example.) Therefore, the
free complex of a two-dimensional generalized convex shelling L is the clique complex of some graph, and this graph
is actually the one-dimensional skeleton of Free(L). Here, the d-dimensional skeleton of a simplicial complex � is a
collection {X ∈ � : |X|�d + 1}. A one-dimensional skeleton can be regarded as a graph in the following way: The

2 Here, you would notice that we are using the phrase “extreme point” in two different meanings. One for an extreme point of a convex geometry,
one for an extreme point of the convex hull. But they should be clear from the context.
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Fig. 1. (Left) given sets of points. (Right) the resulting geometric graph G(L).

vertex set of the graph is the set of faces of size 1, and the edge set of the graph is the set of faces of size 2. Denote by
G(L) the one-dimensional skeleton of Free(L). The following lemma tells what G(L) is.

Lemma 8. A point x ∈ P is a vertex of G(L) if and only if P ∩ conv({x} ∪ Q) = {x} holds, i.e., conv({x} ∪ Q)

contains no point of P except for x. Two points x, y ∈ P form an edge of G(L) if and only if they are vertices of G(L)

and P ∩ conv({x, y} ∪ Q) = {x, y} holds, i.e., conv({x, y} ∪ Q) contains no point of P except for x, y.

Proof. First of all, notice that x ∈ P is a vertex of G(L) if and only if {x} ∈ Free(L), and that {x, y} ⊆ P is an edge
of G(L) if and only if {x, y} ∈ Free(L).

Assume that x ∈ P satisfies {x} ∈ Free(L). Then, from Lemma 5, this is equivalent to saying that P ∩ conv({x} ∪
Q) = {x} and x is an extreme point of conv({x} ∪ Q). However, x is always an extreme point of conv({x} ∪ Q) since
we have the assumption that P ∩ conv(Q) = ∅. Thus, we have shown that x ∈ P is a vertex of G(L) if and only if
P ∩ conv({x} ∪ Q) = {x}.

For the second part, first choose arbitrary two verticesx, y ∈ V (G(L))ofG(L). Namely, x and y satisfy the condition
in the first part. Now we show that {x, y} is an edge of G(L) if and only if P ∩ conv({x, y}∪Q)={x, y}. Assume that
{x, y} is an edge of G(L). Again, from Lemma 5, this is equivalent to saying that P ∩ conv({x, y} ∪Q)={x, y} and x
and y are extreme points of conv({x, y}∪Q). However, the property that x and y are extreme points of conv({x, y}∪Q)

can be derived from our assumption that x and y are vertices of G(L). To verify this, suppose that x is not an extreme
point of conv({x, y} ∪ Q). This means that x ∈ conv({y} ∪ Q). However, this implies that y violates the condition that
P ∩ conv({y} ∪ Q) = {y}. So this is a contradiction to the first part of this lemma. Thus, we have shown the second
part. �

Thanks to Lemma 8, we can regard G(L) as a geometric graph. Namely, we can geometrically construct G(L)

in the following way. First, we remove a point x ∈ P if and only if the condition that P ∩ conv({x} ∪ Q) = {x} is
violated. The remaining points from P are the vertices of G(L) (by Lemma 8). Among these remaining points, we
connect two points x, y ∈ P by a line segment if and only if P ∩ conv({x, y} ∪ Q) = {x, y} holds. This process gives
the edges of G(L). Fig. 1 is an example of G(L), where P consists of eight points 1, . . . , 8 and Q of two points q1
and q2. The right one is the resulting geometric graph G(L). The point 2 does not remain in G(L) as a vertex since
P ∩ conv({2} ∪ Q) = {2, 5, 6}.

The rest of the proof is organized in the following way.

1. We prove that G(L) is connected (Lemma 9).
2. We prove that G(L) is chordal (Lemma 10).
3. We observe that the clique complex of a connected chordal graph is contractible (Lemma 11).
4. We show the relation of a cut-vertex of G(L) and a dependency set (Lemmas 14 and 15).

The rest of the section is divided according to the proof scheme above.
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Fig. 2. v is not an isolated vertex.

3.2. Connectedness of the graph

First, we show the connectedness of G(L).

Lemma 9. In the setup above, G(L) is connected.

Proof. The proof is done by induction on the number of points in P. When |P | = 1, G(L) consists of only one vertex.
So G(L) is connected.

Assume that |P | > 1. Let us choose a point v of P which is the furthest from conv(Q).
Let P ′ = P \{v} and L′ be the generalized convex shelling on P ′ with respect to Q. We have two cases.
Case 1: v is not a vertex of G(L). In this case, we claim that G(L′) = G(L). First we show that the vertex sets

are the same. To show that, suppose not. If G(L′) owns a vertex u which is not a vertex of G(L), then it must hold
that v ∈ conv({u} ∪ Q). However, this means that v is closer to conv(Q) than u. This contradicts the choice of v. On
the other hand, if G(L) owns a vertex w which is not a vertex of G(L′), then there must exist a point x ∈ P ′\P such
that x ∈ conv({w} ∪ Q). However, this is impossible because P ′ ⊆ P , consequently P ′\P = ∅. Thus, the vertex sets
of G(L) and G(L′) are the same.

Secondly we show that the edge sets are the same. This can be done in a similar way to the vertex sets. Thus, the
claim follows.

By induction hypothesis, G(L′) is connected. Then from the claim above, we conclude that G(L) is connected.
Case 2: v is a vertex of G(L). In this case, we introduce the following notation. Let � be a line supporting conv(Q)

and perpendicular to the line spanned by v and the point in conv(Q) closest to v. Further, let �v be a line parallel to �

and passing through v. Denote by �� and �⊥ the lines supporting conv({v} ∪ Q) and passing through v. These lines �,
�v , �� and �⊥ are well-defined since conv(P ) ∩ conv(Q) = ∅. See Fig. 2. Note that �� and �⊥ coincide when |Q| = 1.
By an argument similar to the first case, we can observe that G(L′) = G(L) − v.

Now, by the induction hypothesis, G(L′) is connected. Therefore, it suffices to show that v is not an isolated vertex
of G(L).

From our choices, the vertices of G(L) other than v should lie either in the space bounded by �v and �� or in the
space bounded by �v and �⊥. Let V� (and V⊥) be the set of vertices of G(L) lying in the former (and latter, respectively)
space, as in Fig. 2. Note that at least one of the two is nonempty since the number of vertices of G(L) is more than
one. Assume that V� is nonempty, without loss of generality. Then choose a vertex in V� which is closest to �� and
name it v�. We can see that P ∩ conv({v, v�} ∪ Q) = {v, v�} because of our choices. This means that {v, v�} forms
an edge in G(L), thus v is not an isolated vertex of G(L). �
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3.3. Chordality of the graph

Next, we show the chordality of G(L). A graph is chordal if it has no induced cycle of length more than three.

Lemma 10. In the setup above, G(L) is chordal.

Proof. Suppose, for the contradiction, that G(L) has an induced cycle of length more than 3. Choose such an induced
cycle C arbitrarily, and denote by VC the set of vertices of C.

The convex hull of VC and the convex hull of Q have two outer common tangents �1 and �2.3 Choose v1 ∈ VC ∩ �1
and v2 ∈ VC ∩ �2 arbitrarily.

We observe that v1 �= v2. To show that, suppose not. Then, since �1 and �2 are outer common tangents of conv(VC)

and conv(Q), all points of VC must be contained in conv(v1 ∪ Q). However, this is a contradiction to the fact that v1
is a vertex of G(L). Therefore, v1 is distinct from v2.

Now, we have two cases.
Case 1: {v1, v2} is an edge of C. In the cycle C, two vertices v1 and v2 are joined by two distinct paths. By our

assumption, one of them is v1v2, namely a path of length one. Let v1u1 · · · ukv2 be the other path. Since the length of
C is more than three, it holds that k�2.

Since {v1, v2} is an edge of G(L),by Lemma 8 it follows that conv({v1, v2} ∪Q) contains no point of P \{v1, v2},in
particular none of {u1, . . . , uk}. Since we chose v1 and v2 via the outer common tangents of conv(VC) and conv(Q),this
implies that all points of {u1, . . . , uk} lie in the region bounded by �1,�2 and the line spanned by v1, v2. Take a point
ui ∈ {u1, . . . , uk} which is closest to the line segment v1v2. Since k�2,at least one of {v1, ui} and {v2, ui} is not an
edge of G(L). Without loss of generality,assume that {v1, ui} is not an edge. Since all points of {u1, . . . , uk} lie in
the region bounded by �1,�2 and the line spanned by v1, v2, we have conv({v1, v2} ∪ Q) ⊆ conv({v1, v2, ui} ∪ Q).
Since {v1, ui} is not an edge of G(L), by Lemma 8 there must exist a point p ∈ conv({v1, ui} ∪ Q). However,
{v1, u1}, {u1, u2}, . . . , {ui−1, ui} are edges of G(L) and we have conv({v1, ui} ∪ Q) ⊆ ⋃i−1

j=0conv({uj , uj+1} ∪ Q)

by our choices, where u0 is set to v1. This means that there exists some index j ∈ {0, . . . , i − 1} such that
the set conv({uj , uj+1} ∪ Q) contains p. Lemma 8 implies that {uj , uj+1} is not an edge of G(L). This is a
contradiction.

Case 2: {v1, v2} is not an edge of C. By Lemma 8, there must exist a point of P \{v1, v2} belonging to
conv({v1, v2} ∪Q). Let p be the furthest point from the line spanned by v1 and v2 among all such points in P \{v1, v2}.
Consider a path in C joining v1 and v2, and denote it by v1u1 · · · ukv2. Since {v1, v2} is not an edge, we have k�1.

Now we claim that this path has p as a vertex. To show that, denote by � the line spanned by v1 and v2 and
further denote by �p the line parallel to � which passes the point p. Because of our choice, the points u1, . . . , uk

must lie in the region bounded by �, �p, �1 and �2. Then, we can see that
⋃k

j=0 conv({uj , uj+1} ∪ Q) contains p,
where u0 and uk+1 are set to v1 and v2, respectively. This implies the existence of some j ∈ {0, . . . , k} such that
conv({uj , uj+1} ∪ Q) contains p. This contradicts the fact that {uj , uj+1} is an edge of G(L). Thus the claim is
proved.

Now, we know that a path in C joining v1 and v2 passes p. However, we have two such paths in C. Since they must
not share a vertex other than v1 and v2, this is a contradiction. �

Then we observe the next lemma.

Lemma 11. The clique complex of a connected chordal graph is homotopy equivalent to a single point.

Proof. We prove it by induction on the number of vertices. If a graph has only one vertex, it is always connected and
chordal, and the clique complex consists of a single point. So the statement is true.

Assume that a connected chordal graph G has at least two vertices. Then we use a useful property of chordal graphs
due to Dirac [3]: Every chordal graph has a vertex whose neighbors form a clique. Let us take such a vertex and

3 Here, an outer common tangent of two convex sets A and B is a line � which touches A, B and determines a halfplane containing both of A
and B.
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name v. Then v and its neighbors form a clique in G. Since G is connected, the neighborhood of v is not empty. Now
remove v from G to obtain a smaller graph G − v. Since G − v is also connected and chordal, the clique complex of
G−v is homotopy equivalent to a single point by the induction hypothesis. Then we put v back to G. This corresponds
to gluing the clique complex of G−v and a simplex by a facet of the simplex. So the result is also homotopy equivalent
to a single point. �

Therefore, from Lemmas 10 and 11, we immediately obtain the following.

Corollary 12. The free complex Free(L) of a two-dimensional generalized convex shelling is homotopy equivalent to
a single point.

Note that Corollary 12 holds for all d-dimensional generalized convex shellings even if Q = ∅. This has been shown
by Edelman and Reiner [5] (based on a theorem by Edelman and Jamison [4]) as a statement that the free complex
of an arbitrary convex geometry is homotopy equivalent to a single point. We may notice that Corollary 12 and their
statement are linked via the affine representation theorem for convex geometries by Kashiwabara et al. [8]. However,
our approach is discrete-geometric while they used tools from topological combinatorics.

Since an induced subgraph of a chordal graph is also chordal, we can immediately see the following.

Lemma 13. Let x be a vertex of G(L) and cx be the number of connected components of G(L)−x. Then delFree(L)(x)

is homotopy equivalent to cx distinct points.

Therefore, in order to prove Theorem 1, we only have to show the following two lemmas.

3.4. Relationship of a cut-vertex and a dependency set

Lemma 14. Let x be a cut-vertex of G(L). Then G(L) − x has exactly two connected components.

Proof. Since x is a vertex of G(L), we have P ∩ conv({x} ∪ Q) = {x}. Consider two connected components C1 and
C2 of G(L)− x. Choose u ∈ V (C1) and v ∈ V (C2) such that {x, u} and {x, v} are edges of G(L). Since {u, v} is not
an edge of G(L), it should hold that P ∩ conv({u, v} ∪ Q) �= {u, v}. Let P ′ := (P ∩ conv({u, v} ∪ Q))\{u, v}. From
the observation above, P ′ �= ∅. We claim that x ∈ P ′. To show that, suppose that x /∈ P ′ for the sake of contradiction.
Let P ′′ be the set of vertices of G(L) which also belong to P ′, namely P ′′ := V ∩ P ′. (Note that P ′′ �= ∅.) Then each
y ∈ P ′′ lies in either

(1) conv({u} ∪ Q),
(2) conv({v} ∪ Q), or
(3) conv({u, v} ∪ Q)\(conv({u} ∪ Q) ∪ conv({v} ∪ Q)).

When (1) or (2) happens, u or v cannot be a vertex of G(L) by Lemma 8, respectively. This is a contradiction.
Therefore, it holds that P ′′ ⊆ conv({u, v} ∪ Q)\(conv({u} ∪ Q) ∪ conv({v} ∪ Q)). Now, let us take the convex hull of
P ′′ ∪ {u, v}, and it has two chains of edges connecting u and v. By our assumption, one is the edge {u, v} and the other
consists of at least two edges. Consider the latter one. (In Fig. 3, the gray region is the convex hull of P ′′ ∪ {u, v}.) Then
this chain corresponds to a path from u to v in G(L). However, this means that C1 and C2 are not distinct connected
component of G(L) − x, which gives a contradiction. Thus, we have x ∈ P ′.

Now, suppose that G(L) − x has at least three connected components, say C1, C2, C3. As before, choose
u ∈ V (C1), v ∈ V (C2), w ∈ V (C3) such that {x, u}, {x, v} and {x, w} are edges of G(L). Consider two outer
common tangents �1, �2 of conv({u, v, w}) and conv(Q). Without loss of generality, let u be the intersection of �1 and
conv({u, v, w}), and v be the intersection of �2 and conv({u, v, w}). Note that these intersection points must be distinct
by the same reason as in the proof of Lemma 10. We have two cases. Let � be the line spanned by u and v.

Case 1: w and Q lie on the same side of �. In this case, we can see that conv({w} ∪ Q) is identical to the intersection
of conv({u, v} ∪ Q), conv({v, w} ∪ Q) and conv({u, w} ∪ Q). By the claim above, x belongs to all of these three sets.
Therefore, x belongs to conv({w} ∪ Q). However, since w is a vertex of G(L), this contradicts Lemma 8.
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Fig. 3. Where does x lie?

Case 2: w and Q lie on the different sides of �. By an argument similar to Case 1, we can observe that x belongs to
conv({w} ∪ Q), which is again a contradiction. �

Lemma 15. Let x be a vertex of G(L). If x is a cut-vertex of G(L), then DepL(x) = P .

Proof. Assume that x is a cut-vertex of G(L). We have to show that DepL(x) = P , namely, for every y ∈ P there
exists a set A ⊆ P such that

(1) exL(A) = A,
(2) y ∈ A,
(3) x ∈ �L(A), and
(4) x /∈ �L(A\{y}).

Fix y ∈ P arbitrarily. According to the position of y, we have several cases. Let �� and �⊥ be lines supporting
conv({x} ∪ Q) which pass through x. (In case |Q| = 1, they coincide.) Denote by �

⊇
� the closed halfplane determined

by �� which contains Q, and by �
�
� the closed halfplane determined by �� which does not contain Q. We define �

⊇
⊥

and �
�
⊥ analogously. Then, the whole plane is decomposed into four parts:

R1 := �
⊇
� ∩ �

⊇
⊥,

R2 := �
⊇
� ∩ �

�
⊥ ,

R3 := �
�
� ∩ �

⊇
⊥,

R4 := �
�
� ∩ �

�
⊥ .

Fig. 4 illustrates this decomposition.
First, let us observe that R1 contains no point from P \{x}. To show that, suppose that it contains a point p. If it lies in

“front” of conv(Q) (i.e., the bounded region determined by ��, �⊥ and conv(Q)), then it holds that p ∈ conv({x}∪Q).
However, this means that x is not a vertex of G(L) by Lemma 8, which is a contradiction. Otherwise, the line segment
connecting p and x intersects conv(Q). However, this implies that conv(P ) ∩ conv(Q) is not empty, which is also a
contradiction. Thus, R1 contains no point from P \{x}.

Hence we obtain three cases to consider about the position of y. However, the cases of R2 and R3 are symmetric. So
the essential cases are the following two.

Case 1: y lies in R4. In this case, we can choose {y} as A. We claim that this A satisfies the conditions (1)–(4) above.
Since y is an extreme point of conv({y} ∪ Q), by Lemma 5 the first condition is fulfilled. The second condition is true
by definition. The third and fourth conditions can be verified via Lemma 5. This case is done.

Case 2: y lies in R3. From the argument in the proof of Lemma 14, we can see that one component G� of G(L)− x

lies in R3 and the other component G⊥ of G(L) − x is contained in R2. Both of them are nonempty. Now, let A be the
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Fig. 4. The whole plane is divided into four parts.

set of points of P which are moreover the extreme points of conv({y} ∪ V (G⊥) ∪ Q). We claim that this A satisfies the
conditions (1)–(4) above.

By Lemma 5, the condition (1) is clear. Since y lies on the different side of �� than Q and V (G⊥), we can see that y is
an extreme point of conv({y} ∪ V (G⊥) ∪ Q). Hence, the condition (2) is fulfilled. Since Q and V (G⊥) lie on different
sides of �⊥, and no vertex of G⊥ lies on � (because of Lemma 8), we can see that x /∈ conv(V (G⊥)∪Q), which means
that the condition (4) is satisfied.

To verify the condition (3), we use the following property of the closure operator [4].
Anti-exchange property: Let A ⊆ E be a set and e, f ∈ E be two distinct elements such that e, f /∈ �L(A). If

f ∈ �L(A ∪ {e}) then e /∈ �L(A ∪ {f }).
Take any vertex v of G⊥. By the anti-exchange property and Lemma 5, we can find a point z ∈ conv({y}∪Q) which

is a vertex of G�. Since x is a cut-vertex of G(L), {z, v} is not an edge of G(L). Then, by Lemma 8 and the fact that
x is a cut-vertex, we see that conv({z, v} ∪ Q) contains x. Namely, we have

x ∈ conv({z, v} ∪ Q) ⊆ conv({y, v} ∪ Q) ⊆ conv({y} ∪ V (G⊥) ∪ Q),

which implies that the condition (3) holds by Lemma 5. In this way, the whole proof is completed. �

Thus, we are able to conclude Theorem 1, namely, for the two-dimensional generalized convex shelling L on P
with respect to Q and an element x ∈ P , if DepL(x) �= P then delFree(L)(x) is contractible, and if DepL(x)=P then
delFree(L)(x) is contractible or homotopy equivalent to a zero-dimensional sphere. Furthermore, note that we proved a
stronger statement than Theorem 1 on the way, i.e., we proved that G(L) is chordal and it has some special properties
indicated in Lemmas 14 and 15.

4. Examples

In this section, we show that both cases in Theorem 1 can really occur by exhibiting such examples.
Look at Fig. 5. In both of the examples, P ={1, 2, 3, 4, 5} and Q={q1, q2}. Let L be the generalized convex shelling

on P with respect to Q. The solid lines show the edges of G(L), and the dotted lines are just used for the clarification
of the placement of points.

In both cases, we can observe that DepL(4)=P . In the left case, the deletion of 4 from G(L) results in a disconnected
graph, therefore delFree(L)(4) is homotopy equivalent to two distinct points. However, in the right case, the deletion of
4 from G(L) results in a connected graph, therefore delFree(L)(4) is contractible.
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Fig. 5. Examples.
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Note added in proof

The conjecture by Edelmen and Reiner has recently been resolved by Hachimori and Kashiwabara in the following
article:
M. Hachimori, K. Kashiwabara, On the topology of the free complexes of convex geometries, Discrete Math. 307
(2007) 274–279.
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