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Discussions concerning different structural equation modeling methods draw on an increasing array of concepts
and related terminology. As a consequence, misconceptions about the meaning of terms such as reflective mea-
surement and common factor models as well as formative measurement and composite models have emerged.
By distinguishing conceptual variables and their measurement model operationalization from the estimation
perspective, we disentangle the confusion between the terminologies and develop a unifying framework. Results
from a simulation study substantiate our conceptual considerations, highlighting the biases that occur when
using (1) composite-based partial least squares path modeling to estimate common factor models, and (2) com-
mon factor-based covariance-based structural equation modeling to estimate composite models. The results
show that the use of PLS is preferable, particularly when it is unknown whether the data's nature is common
factor- or composite-based.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
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1. Introduction

The extent to which researchers raise an issue is a subtle indicator of
its importance. The benefits and limitations of partial least squares path
modeling (PLS) is one such issue that scholars have heatedly debated
across a variety of disciplines including marketing (e.g., Fornell &
Bookstein, 1982; Hair, Sarstedt, Ringle, & Mena, 2012), strategic man-
agement (e.g., Bentler & Huang, 2014; Rigdon, 2012, 2014; Sarstedt,
Ringle, Henseler, & Hair, 2014), and management information systems
(e.g., Goodhue, Lewis, & Thompson, 2012; Marcoulides & Saunders,
2006; Ringle, Sarstedt, & Straub, 2012). Such scientific debates are im-
portant since they serve as a catalyst that sparks further careful exami-
nation of a method's properties. Oftentimes, the result is improved
understanding of the advantages and disadvantages of the focalmethod,
but also additional research and methodological advances that stem
from such objective and constructive discussions among scholars.
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Recently, however, the scholarly community has witnessed a sur-
prising level of acrimony towards PLS. Antonakis, Bendahan, Jacquart,
and Lalive (2010, p. 1103) allude that “there is no use for PLSwhatsoev-
er […] thus strongly encourage researchers to abandon it.” Other au-
thors similarly suggest that the use of PLS “is very difficult to justify”
(Rönkkö & Evermann, 2013, p. 443) or that “PLS should not be adopted
as a tool for psychological research.” (Rönkkö, McIntosh, & Antonakis,
2015, p. 82). This new harshness climaxed in an editorial from the edi-
tors in chief of the Journal of Operations Management (Guide &
Ketokivi, 2015, p. vii) who declared that theywere “desk rejecting prac-
tically all PLS-basedmanuscripts.” In a follow-up paper in the very same
journal, Rönkkö, McIntosh, Antonakis, and Edwards (2016, p. 16) echo
this call by suggesting that "the only logical and reasonable action stem-
ming from objective consideration of these issues is to discontinue the
use of PLS."

Leaving aside the tone of these and similar statements, which aim at
shutting down any scholarly debate, the question arises why these au-
thors cannot find even a single positive attribute of PLS despite its accep-
tance in scholarly research. In an effort to disentangle these opposing
views, Rigdon (2016) offers an in-depth discussion of PLS and its origins,
concluding that critics just as proponents of the method frequently offer
incorrect or incomplete rationale for avoiding as well as using PLS. In ad-
dition, Rigdon (2016) concludes that many misconceptions about PLS
have their roots in the method's conceptual underpinnings and particu-
larly the estimation philosophy it relies on (e.g., Rigdon, 2012).

In fact, when deciding to use PLS, researchers—consciously or
unconsciously—opt for a composite-based approach to structural
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1 Note that researchers frequently distinguish between latent variables/constructs and
composites, depending on the type of relationship assumed between the latent variable
(composite) and its indicators (e.g., MacCallum & Browne, 1993).We use the term latent
variable/construct to refer to the entities that represent conceptual variables in a structural
equation model.
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equation modeling (SEM) that linearly combines indicators to form
composite variables (Lohmöller, 1989), which serve as proxies for the
concepts under investigation (Rigdon, 2016). This approach is different
from common factor-based SEM (i.e., covariance-based SEM; CBSEM),
which considers the constructs as common factors that explain the co-
variation between their associated indicators. While this distinction
has long been noted (e.g., Jöreskog & Wold, 1982; Schneeweiß, 1991),
researchers have traditionally emphasized how PLS “is ‘like’ factor-
based SEM butwith advantages and disadvantages across different con-
ditions” (Rigdon, 2012, p. 353)—see, for example, Hair et al. (2012);
Kaufmann and Gaeckler (2015); Peng and Lai (2012). Only recently
have scholars started calling for the emancipation of PLS from CBSEM
by acknowledging its status as a purely composite-based method
(e.g., Rigdon, 2012; Sarstedt, Ringle, Henseler et al., 2014). Addressing
this call, Henseler, Hubona, and Ray (2016, p. 3) attempt to provide
“an updated view on what PLS actually is” and suggest a set of guide-
lines for the interpretation and reporting of results that explicitly con-
sider the distinction between composite-based SEM and common
factor-based SEM. In their guidelines, the authors note that “PLS path
models can contain two different forms of construct measurement: fac-
tor models or composite models” and continue by explaining that the
depicted direction of arrows in the measurement model (i.e., reflective
or formative) does not necessarily indicatewhether PLS estimates a fac-
tor or composite model (Henseler, Hubona et al., 2016, p. 3).

Such statements leave many applied researchers confused as some
misperceive the distinction between reflective and formative measure-
ment specification on the one hand, and common factor and composite
models on the other. The introduction of consistent PLS (PLSc), which
Dijkstra and Henseler (2015) developed in an effort to align common
factor and composite-based SEM methods, further contributed to the
confusion. For example, some researchers have started using both PLS
and PLSc—which assume fundamentally different measurement
philosophies—on the same data without explicitly considering the na-
ture of the data, model, and the implications of their choice of methods
(e.g., Gelhard& vonDelft, 2016). These issues are nicely reflected in a re-
cent query by a thoughtful PhD student from the UK who asked one of
this paper's authors, “what is the real difference between reflective con-
structs and factor models? What would be a reflective composite and
what would be a common factor? And how is such difference trans-
ferred to the PLS context in terms of model specification?”

These queries constitute the research questions this paper sheds
light on. By distinguishing measurement model conceptualization
and operationalization from the model estimation perspective, this
paper disentangles the confusion between reflective measurement
and common factor models as well as formative measurement and
composite models. More precisely, this paper's aim is to clarify the
interplay between measurement model specification and model es-
timation via PLS using different estimation modes (i.e., Mode A vs.
Mode B) and CBSEM. Understanding this interplay is of fundamental
importance when derivingmeasures that suit a specific SEMmethod,
or when choosing a specific SEM method that aligns with existing
measures or a research objective. Results from a simulation study
substantiate our conceptual considerations, highlighting the biases
that occur when using composite-based PLS to estimate common
factor models, and common factor-based CBSEM to estimate composite
models. Specifically, our results show that PLS entails practically no bias
when estimating data from a composite model population, regard-
less of the measurement model specification. In contrast, CBSEM
and PLSc estimation of reflectively measured constructs when the
data stem from a composite population show severe biases in param-
eter estimates, rendering their use inappropriate in these instances.
Further comparisons with common factor model data show that
the parameter bias resulting from using an SEM method on discrep-
ant populations is muchmore severe for CBSEM than for PLS. The real
bias results when researchers don't know the underlying data popula-
tion (i.e., common factor or composite)—as is widespread in social
sciences research—making PLS the preferred SEM method for most
situations.

Based on our findings, we propose a framework that aligns different
measurement and model estimation perspectives. This paper is written
with the confidence that it will (1) offer researchers a clear roadmap for
theconceptionalizationandoperationalizationof their constructs, (2)pro-
vide guidance in their choice of the appropriate SEMmethod, and (3) en-
sure a more balanced perspective concerning recent criticism, which
largely ignored the common factor vs. composite model distinction.

2. Measurement

2.1. Conceptual variables, constructs, and proxies

Irrespective of whether a deductive or an inductive research ap-
proach is undertaken by social science researchers, at some point in
their search to better understand and explain theory, they deal with
conceptual variables and theoretical models. A theoretical model re-
flects a set of structural relationships; usually based on a set of equations
connecting conceptual variables that formalize a theory and visually
represent the relationships (Bollen, 2002). As elements of theoretical
models, conceptual variables represent broad ideas or thoughts about
abstract concepts that researchers establish and propose to measure in
their research (e.g., customer satisfaction).

Constructs represent conceptual variables in statisticalmodels such as
in a structural equation model.1 They are intended to enable empirical
testing of hypotheses that concern relationships between conceptual var-
iables (Rigdon, 2012) and are conceptually defined in terms of the attri-
bute and the object (e.g., MacKenzie, Podsakoff, & Podsakoff, 2011). The
attribute defines the general type of property to which the focal concept
refers, such as an attitude (e.g., attitude towards an advertisement), a per-
ception (e.g., perceived ease of use of technology), or behavioral intention
(e.g., purchase intention). The focal object is the entity towhich the prop-
erty is applied. For example, the focus of interest could be a customer's
satisfaction with the products, satisfaction with the services, and satisfac-
tion with the prices. In these examples, satisfaction constitutes the attri-
bute, whereas products, services, and prices represent the focal objects.

Establishing a construct definition also includes determination of the
dimensionality that describes the conceptual variable, with each dimen-
sion representing a different aspect (e.g., Law, Wong, & Mobley, 1998).
A conceptual variable is not per se characterized as unidimensional or
multidimensional, let alone two-, three- or four-dimensional (Bollen,
2011). Rather it depends on the context-specific definition of the con-
ceptual variable and the denotation that comes with it. The denotation
can, in principle, be infinite, since the same conceptual variable can rep-
resent different levels of theoretical abstraction across contexts
(Diamantopoulos, 2005; Law & Wong, 1999). Thus, a construct defini-
tion is subject to the context within which a conceptual variable is ex-
amined such that the definition can change from one study to another
and, accordingly, can differ in terms of dimensionality and the object
of interest. For example, a customer's satisfaction with the service can
be broken down intomore concrete subdimensions, such as satisfaction
with the speed of service, the servicescape, and the staff. The latter di-
mension can be differentiated into more concrete subdimensions such
as satisfaction with the friendliness, competence, and outer appearance
of the service staff. Each of these aspects can, in principle, be further bro-
ken down into yet more concrete subdimensions (e.g., Rossiter, 2011).
Finally, the construct definition also clarifies how the abstract, concep-
tual variable relates to measurable, observable quantities. That is, the
construct definition guides the conceptualization of the measurement
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models, which entails deciding whether to measure a construct reflec-
tively or formatively.

Constructs are not just theoretical concepts under a different name
as implied by commonly used definitions of this term (e.g., Bollen,
2002; Pedhazur & Pedhazur Schmelkin, 1991), but representations of
conceptual variables in a statistical model. Importantly, constructs do
not represent conceptual variables perfectly since any concept and
any construct definition has some degree of ambiguity associated with
it (e.g., Gilliam & Voss, 2013). In addition, constructs stem from data
and therefore share the data's idiosyncrasies (Cliff, 1983; MacCallum,
Browne, & Cai, 2007), which further detach them from the concepts
they intend to represent. In this context, Michell (2013, p. 20) notes
that constructs “are contrived in a way that is detached from the actual
structure of testing phenomena and held in place by an array of quanti-
tative methods, such as factor analysis, which gratuitously presume
quantitative structure rather than infer it from the relevant phenomena
(…).” Similarly MacCallum et al. (2007, p. 153) state that factor analyt-
ical procedures such as CBSEM cannot fully represent “the undoubtedly
large number of minor common factors that influence measured vari-
ables and account in part for their intercorrelations. There are many
other sources of error in such models. At best, a factor analysis model
is an approximation of real-world phenomena.” Against this back-
ground, Rigdon (2012, pp. 343–344) concludes that constructs should
rather be viewed as “something created from the empirical data
which is intended to enable empirical testing of propositions regarding
the concept.” That is, all measures of conceptual variables are approxi-
mations of or proxies for conceptual variables, independent from how
theywere derived (e.g.,Wickens, 1972). Thus, irrespective of thequality
with which a conceptual variable is theoretically substantiated and op-
erationally defined and the rigor that encompasses measurement
model development, any measurement in structural equation models
produces only proxies for latent variables (Rigdon, 2012). This assess-
ment is in line with the proliferation of all sorts of instruments that
claim to measure essentially the same construct, albeit often with little
chance to convert one instrument's measures into any other
instrument's measures (Salzberger, Sarstedt, & Diamantopoulos,
2016). For example, business research and practice has brought forward
a multitude of measurement instruments for corporate reputation,
which rest on the samedefinition of the concept but differ fundamental-
ly in terms of their underlying conceptualizations and measurement
items (e.g., Sarstedt, Wilczynski, & Melewar, 2013).

2.2. Measurement model conceptualization and operationalization

Based on the construct definition, the next step is to specify a mea-
surement model, which expresses how to measure the construct by
means of a set of indicators (e.g., Jarvis, MacKenzie, & Podsakoff, 2003;
MacKenzie, 2003). Generally, there are two broadways to conceptualize
measurement models (Coltman, Devinney, Midgley, & Venaik, 2008;
Diamantopoulos & Winklhofer, 2001), which entail fundamentally dif-
ferent approaches to generating items (e.g., Churchill, 1979;
Diamantopoulos & Winklhofer, 2001; MacKenzie et al., 2011). The first
approach is referred to as reflective measurement. In a reflective mea-
surement model the indicators are considered to be error-prone mani-
festations of an underlying construct with relationships going from
the construct to its indicators (Bollen, 1989). The relationship between
an observed and an unobserved variable is usually modeled as
expressed in the following equation:

x ¼ l � Y þ e; ð1Þ

where x is the observed indicator variable, Y is the latent variable, the
loading l is a regression coefficient quantifying the strength of the rela-
tionship between x and Y, and e represents the random measurement
error.
Fig. 1 shows a reflective measurementmodel for a latent variable Y1,
measured with four indicators x1, x2, x3, and x4 as well as the conceptual
variable the construct seeks to represent, illustrated by a triangle in the
upper part of the figure (Rigdon, 2012). Reflective indicators, also re-
ferred to as effect indicators, can be viewed as a representative sample
of all the possible items available within the conceptual domain of the
construct (Nunnally & Bernstein, 1994). Since a reflectivemeasurement
model dictates that all items reflect the same construct, indicators asso-
ciated with a particular construct should be highly correlated with each
other (Edwards & Bagozzi, 2000). In addition, individual items should
be interchangeable, and any single item can generally be left out with-
out changing the meaning of the construct, as long as the construct
has sufficient reliability (Jarvis et al., 2003). The fact that the relationship
goes from the construct to its indicators implies that if the evaluation of
the latent trait changes (e.g., because of a change in the standard of com-
parison), all indicators will change simultaneously (e.g., Diamantopoulos
& Winklhofer, 2001).

The second approach is formativemeasurement. In a formativemea-
surement model the indicators form the construct by means of linear
combinations (Fig. 1). A change in an indicator's value due to, for exam-
ple, a change in a respondent's assessment of the trait being captured by
the indicator, changes the value of the construct. That is, “variation in
the indicators precedes variation in the latent variable” (Borsboom,
Mellenbergh, & van Heerden, 2003, p. 208), which means that, by defi-
nition, constructswith a formativemeasurementmodel are inextricably
tied to their measures (Diamantopoulos, 2006). Besides the difference
in the relationship between indicator(s) and construct, formative
measurement models do not require correlated indicators. In practi-
cal applications, however, indicators in formative measurement
models may be highly correlated, yielding satisfactory levels in reli-
ability and validity statistics whose use, from a conceptual perspec-
tive, should be restricted to reflective measurement models (Hair
et al., 2012).

Despite these clear conceptual differences, deciding whether to
specify measurement models reflectively or formatively is not clear-
cut in practice, as constructs do not inherently follow a reflective or for-
mative measurement logic (e.g., Baxter, 2009). Rather, the researcher
has the flexibility to conceptualize a measurement model based on the
construct definition the researcher specifies. As Baxter (2009, p. 1377)
notes, “there are often quite different possibilities for conceptualization
of what might at first sight appear to be the same construct and, most
importantly, there may be quite distinct lines of enquiry underlying
the multiple possible conceptualizations.” Consider, for example, the
concept of perceived switching costs. Jones, Mothersbaugh, and Beatty
(2000, p. 262) define perceived switching costs as “consumer percep-
tions of the time, money, and effort associated with changing service
providers.” Their measurement approach in the context of banking ser-
vices draws on three items, which constitute reflections or conse-
quences of perceived switching costs (“In general it would be a hassle
changing banks,” “It would take a lot of time and effort changing
banks,” and “For me, the costs in time, money, and effort to switch
banks are high”). Hence, the authors implicitly assume that there is a
concept of perceived switching costs, which can be manifested by que-
rying a set of (e.g., three) items. Barroso and Picón (2012, p. 532), on the
other hand, consider perceived switching costs as “a latent aggregate
construct that is expressed as an algebraic composition of its different
dimensions.” These authors identify a set of six dimensions (benefit
loss costs, personal relationship loss costs, economic risks costs, evalua-
tion costs, set-up costs, and monetary loss costs), which represent cer-
tain specific characteristics, each covering an independent part of the
perceived switching costs concept. As such, Barroso and Picón's
(2012) construct definition of perceived switching costs follows a for-
mative measurement model logic. Of course, the underlying items can
be empirically correlated, and perhaps causally related, but they are
not actually exchangeable in the way the reflective measurement
model conceptualization assumes they are (Rigdon et al., 2011).
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That is, their correlation is not because the construct of perceived
switching costs is assumed to be their common cause. There are many
more examples of constructs that carry the same label but which
rely on different (i.e., reflective vs. formative) measurement model
conceptualizations—see, for example, Albers (2010), Baxter (2009),
and Chang, Franke, and Lee (2016).

Further contributing to the difficulties of deciding on the measure-
ment perspective is the fact that there is not one type of formativemea-
surement model—as had been implied in the early works on formative
measurement (e.g., Diamantopoulos & Winklhofer, 2001) and the use
of formative measurement models in statistical analysis (e.g., Hair,
Ringle, & Sarstedt, 2011). Rather, two types of indicators exist in forma-
tive measurement models: causal indicators and composite indicators
(Bollen, 2011; Bollen & Bauldry, 2011). Models with causal indicators
follow a realist approach to measurement, which acknowledges that
under any definition of a conceptual variable, there is a true value but
this can never be measured with complete accuracy (e.g., Grace &
Bollen, 2008). Therefore, the indicators should have conceptual unity
in that all the indicators correspond to the researcher's definition of
the concept (Bollen & Diamantopoulos, 2016). Breadth of coverage of
the domain is extremely important to ensure that the domain of content
is adequately captured: Omitting important indicators implies omitting
a part of the conceptual variable that the construct represents
(e.g., Bollen & Lennox, 1991).

Since causal indicators are expected to cover all aspects of the con-
tent domain (Bollen & Bauldry, 2011), constructs measured with causal
indicators (Y2 in Fig. 1) have an error term (z in Fig. 1). This error term
captures all the other “causes” of the construct not included in the
model (Diamantopoulos, 2006). Or as Diamantopoulos, Riefler, and
Roth (2008, p. 1211–1212) note, “formative latent variables have a
number of proximal causes,which researchers try to identifywhen con-
ceptually specifying the construct. In many cases, however, researchers
will be unable to detect all possible causes, as theremay be some causes
that have neither been discussed in prior literature nor revealed by ex-
ploratory research. The construct-level error term represents these
missing causes.” Causal indicators themselves are, by definition, error
free—that is, they are not subject to any systematic or random error.
While this characteristic is fully comprehensible from a model estima-
tion perspective (see Diamantopoulos, 2006), from ameasurement per-
spective, there is no reason to assume that the sources of error that have
traditionally been associated with reflective indicators do not apply to
causal indicators. For example, why would the use of double-barreled
items or of suggestive itemwordings trigger error in a reflective indica-
tor but not in a causal indicator? The following equation represents a
measurementmodel comprised of causal indicators, wherewi indicates
the contribution of xi (i=1,…, I) to Y, and z is an error term associated
with Y:

Y ¼ ∑I
i¼1wi � xi þ z ð2Þ

The other type of indicators, referred to as composite indicators,
closely resembles that of causal indicators except for one aspect. In con-
trast to constructs measured with causal indicators, constructs mea-
sured with composite indicators do not have an error term (see
construct Y3 in Fig. 1). This distinction has an important implication
for the conceptualization of formative measurement models (Henseler
et al., 2014) because composite indicators operate as contributors to a
construct rather than truly “causing” it (Bollen, 2011; Bollen &
Bauldry, 2011). They form the composite representing the construct in
full by means of linear combinations. Therefore, a formative construct
measured with composite indicators does not have an error term
(i.e., the error term is set to zero). As with causal indicators, composite
indicators are assumed to be error free. The following equation illus-
trates ameasurementmodelwith composite indicators, where Y is a lin-
ear combination of indicators xi, each weighted by an indicator weight
wi (Bollen, 2011; McDonald, 1996):

Y ¼ ∑I
i¼1wi � xi ð3Þ

Although researchers have often used composite models and causal
indicator models synonymously (e.g., Bollen & Lennox, 1991), more re-
cently they have started distinguishing composite from causal indica-
tors (e.g., Bollen, 2011; Bollen & Diamantopoulos, 2016; Howell,
Breivik, & Wilcox, 2013). Thus, there is still some ambiguity regarding
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their nature and areas of application. For example, Bollen (2011, p. 366)
notes that “it seems unlikely that there are many situations where an
error term would be absent (…). This would mean that the latent vari-
able that represents the unidimensional concept is an exact linear func-
tion of its indicators, which would seem to be a rarity.” Bollen (2011)
therefore treats the latent variables as if theywere indeed the conceptu-
al variables from a theoretical model (also see Bollen & Bauldry, 2011;
Bollen & Diamantopoulos, 2016). However, viewing latent variables as
proxies for a conceptual variable seems more reasonable and realistic
(Rigdon, 2012), blurring the conceptual distinction between composite
and causal indicators.

Furthermore, Bollen (2011, p. 366) asserts that “composite indica-
tors need not share unidimensional conceptual unity. That is, composite
indicatorsmight be combined into a composite as away to conveniently
summarize the effect of several variables that do not tap the same con-
cept although they may share a similar ‘theme.’” Following this logic,
measurement models with composite indicators only offer a means to
model conceptual variables, for which elements are combined to form
a new entity (Henseler, Hubona et al., 2016). This is particularly the
casewhen analyzing secondary data, which typically lack a comprehen-
sive theoretical substantiation and are collected for a purpose other
than SEM (Rigdon, 2013). For example, a measurement model concep-
tualization of information search activities could be based on capturing
the sum of the activities that customers engage in when seeking infor-
mation from dealers, promotional materials, the Internet and other
sources. Another researcher might choose a different set of variables
to form a measure of information search activities. Thus, the items ulti-
mately determine the meaning of the construct, which implies that
adding or omitting an indicator potentially alters the nature of the con-
struct. While this interpretation of composite indicators may be conve-
nient for communication, it remains largely unclear where to draw a
line between items having “conceptual unity” and sharing “a similar
theme” (Bollen, 2011, p. 366).

In practice, researchers naturally choose items in operationalizing
measurement models that match their construct definition, regardless
of whether the actual measurement conceptualization draws on reflec-
tive, causal or composite indicators. That is, they treat the constructs in
their studies as unitary entities just like Barroso and Picón (2012) do
when offering an in-depth literature review of the nature and dimen-
sionality of the perceived switching costs concept prior to deriving indi-
cators in their operationalization of the construct's measurement
model. As such, they fully comply with Rönkkö et al. (2016) who note
that only a guiding conceptual framework and careful development of
the indicator content imbues theoretical meaning upon factors. In fact,
assuming that researchers usemeasures of composite indicatorsmerely
as convenient summaries of the data (Bollen, 2011) implies that the
common practice of aggregating items as composites to represent con-
structs, even though commonly done in practically all non-SEM studies
in every field of research, is without any theoretical justification and un-
dermines the fundamentals of appropriate measurement. However, the
very same measures in most instances have been carefully developed
and tested following conventional measurement model evaluation
guidelines—as extensively documented in standard measurement
scale handbooks (e.g., Bearden, Netemeyer, & Haws, 2011; Bruner,
James, & Hensel, 2001). Thus, the very activity of forming composites
from validated measurement scales interweaves composite and causal
indicators, casting doubt on the notion that the use of composites to
represent conceptual variables is an outright abandonment of measure-
ment theory as Rönkkö et al. (2016) imply.

Thus, composite indicators not only offer a way to conveniently sum-
marize the data but can be used tomeasure any type of property towhich
the focal concept refers, including attitudes, perceptions, and behavioral
intentions (e.g., Rigdon, 2012). Aswith any type ofmeasurement concep-
tualization, however, researchers need to offer a clear construct defini-
tion and specify items that closely match this definition—that is, they
must share conceptual unity.
Alternatively, measurement models with composite indicators can
be interpreted as a prescription for dimension reduction, where the
aim is to condense the measures so they adequately cover a conceptual
variable's salient features (Dijkstra &Henseler, 2011). For example, a re-
searcher may be interested in measuring the salient aspects of per-
ceived switching costs by means of three (composite) indicators,
which cover aspects particularly relevant to the study at hand
(e.g., evaluation costs, set-up costs, and monetary loss costs).

3. Model estimation

3.1. PLS and CBSEM

The previous sections described different routes to operationalize
constructs as proxies for conceptual variables. This measurement per-
spective needs to be complemented with the model estimation per-
spective, which explains how the different SEM techniques arrive at a
solution and which assumptions underlie them. Researchers typically
use two approaches to estimate structural equation models. One is the
more widely applied CBSEM approach (Bollen, 1989; Diamantopoulos,
1994; Jöreskog, 1978); the other is PLS (Hair, Hult, Ringle, & Sarstedt,
2017; Lohmöller, 1989; Wold, 1982). While both complementary
methods share the same basic aim, which is to estimate the relation-
ships among constructs and indicators, they differ fundamentally in
their statistical conceptions and particularly in the way they treat mea-
surement models of constructs (Jöreskog & Wold, 1982).

CBSEM initially divides the variance of each indicator into two parts:
(1) the common variance, which is estimated from the variance shared
with other indicators in the measurement model of a construct, and
(2) the unique variance, which consists of both specific and error vari-
ance (Bollen, 1989; Rigdon, 1998). The specific variance is assumed to
be systematic and reliablewhile the error variance is assumed to be ran-
dom and unreliable (i.e., measurement, sampling, and specification
error). CBSEM initially calculates the covariances of a set of variables
(common variance), and only that variance is included in any solutions
derived. CBSEM, therefore, follows a common factor model approach in
the estimation of the construct measures, which assumes that the vari-
ance of a set of indicators can be perfectly explained by the existence of
one unobserved variable (the common factor) and individual random
error (Spearman, 1927; Thurstone, 1947). The common factor model
estimation approach conforms to the measurement philosophy under-
lying reflective measurement models.

In principle, CBSEM can also accommodate formative measurement
models even though the method follows a common factor model esti-
mation approach (e.g., Temme, Diamantopoulos, & Pfegfeidel, 2014).
Analogous to the scientific realist perspective assumed in the method's
treatment of reflective measurement models, formative measurement
models in CBSEM typically assume causal indicators (Diamantopoulos,
2011). To estimate models with causal indicators, researchers must fol-
low rules that require specific constraints on themodel to ensuremodel
identification (Bollen & Davies, 2009; Diamantopoulos & Riefler, 2011).
AsHair et al. (2012, p. 420) note, “these constraints often contradict the-
oretical considerations, and the question arises whether model design
should guide theory or vice versa.”

As an alternative, CBSEM scholars have proposed themultiple indica-
tors and multiple causes (MIMIC) model (e.g., Bollen, 1989; Jöreskog &
Goldberger, 1975)—that includes both formative and reflective indicators
(e.g., Diamantopoulos & Riefler, 2011; Diamantopoulos et al., 2008).
While MIMIC models enable researchers to deal with the identification
problem, they do not overcome the problem that formative measure-
ment models with causal indicators invariably underrepresent the var-
iance in the construct, since correlated indicators are required by the
CBSEM common factor model to produce a valid proxy and thereby ad-
equately represent a conceptual variable. As Lee and Cadogan (2013,
p. 243) note, “researchers should not be misled into thinking that
achieving statistical identification allows one to obtain information
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about the variance of a formative latent variable.” Clearly, CBSEM at best
only allows for approximating formative measurement models with
causal indicators.

Similarly, CBSEM can accommodate formativemeasurementmodels
with composite indicators (e.g., Diamantopoulos, 2011). Since con-
structs measured with composite indicators are defined by having
zero variances, the identification of the construct's error variance is
not an issue. Problems arise, however, with regard to the identification
of all paths leading to as well as flowing out from the construct. Grace
and Bollen (2008) suggest solving this problemby specifying a single in-
coming or outgoing path relationship to 1.0. While such specifications
overcome parameter identification issues, they severely limit the inter-
pretability of the estimates of the magnitude and significance of the
fixed paths in the structural model (Grace & Bollen, 2008). Because of
these limitations, several researchers conclude that CBSEM is not well
suited for estimating formative measurement models (Hair et al.,
2012; Peng & Lai, 2012; Reinartz, Haenlein, & Henseler, 2009).

Different from CBSEM, PLS does not divide the variance into com-
mon and unique variance. More precisely, the objective of PLS is to ac-
count for the total variance in the observed indicators rather than to
explain only the correlations between the indicators (e.g., Tenenhaus,
Esposito Vinzi, Chatelin, & Lauro, 2005). The logic of the PLS approach
is, therefore, that in estimating the model relationships, all of the vari-
ance (common, unique and error) that the exogenous variables have
in common with the endogenous variables should be included
(e.g., McDonald, 1996). The underlying notion is that the indicators
can be (linearly) combined to form composite variables that are com-
prehensive representations of the latent variables, and that these linear
combinations are valid proxies of the conceptual variables under inves-
tigation (e.g., Henseler, Hubona et al., 2016). As such, PLS follows a com-
posite model approach in the estimation of the construct measures,
which generally conforms to the measurement philosophy underlying
formative measurement models.

PLS's designation as composite-based refers only to the method's
way to represent constructs that approximate the conceptual variables
in amodel. Although PLS draws on composites whose use has tradition-
ally been considered to be consistent with formative measurement
models but not reflective measurement models (e.g., Grace & Bollen,
2008), the method readily accommodates both measurement model
types without identification issues (Hair et al., 2011). In estimating the
model parameters, however, PLS always follows a composite model ap-
proach. That is, regardless of whether measurement models are reflec-
tive or formative, PLS always computes composite variables from sets
of indicator variables as representations of the conceptual variables in
the model. Three aspects are important in this regard.

First, in formative measurement models, PLS treats all indicators as
composite indicators. That is, themethod does not allow for the explicit
modeling of a construct's error term measured with causal indicators
(i.e., the error term z in Fig. 1 is constrained to zero). As a consequence
and analogous to CBSEM, PLS only allows for approximating formative
measurement models with causal indicators. Note, however, that actu-
ally no method can estimate formative measurement models unless re-
flective measures are simultaneously available.

Second, researchers have long noted that since PLS is based on the
composite model logic, the method only approximates common
factor-based reflective measurement models (Hui & Wold, 1982; also
see Rigdon, et al., 2014). That is, from a model estimation perspective,
PLS will produce “biased” estimates if the common factor model
holds—just like CBSEM will produce “biased” estimates when using
the method to estimate data generated from a composite model, as
this study will show. However, the deviations in parameter estimates
should not be considered a “bias” as both methods estimate different
things and therefore may yield different values.

Third, to estimate themodel parameters, PLS uses twomodes,which
relate to the way themethod estimates the indicators weights that rep-
resent each indicator's contribution to the composite. Mode A
corresponds to correlation weights derived from bivariate correlations
between each indicator and the construct; Mode B corresponds to re-
gressionweights, the standard in ordinary least squares regression anal-
ysis. Regression weights not only take the correlation between each
indicator and the construct into account but also the correlations be-
tween the indicators. No matter which mode for estimating the indica-
tor weights is used, the resulting latent variable is always modeled as a
composite (Henseler, Ringle, & Sarstedt, 2016). That is, since all multi-
item measures are converted into weighted components—even in
Mode A—PLS computes components by means of linear combinations
of indicators.

PLS by default uses Mode A for reflectively specified constructs and
Mode B for formatively specified constructs. Recent research, however,
suggests that selecting the appropriateweightingmode requires amore
thoughtful approach. Specifically, Becker, Rai, and Rigdon (2013) show
that for formatively specified constructs, Mode A estimation yields bet-
ter out-of-sample prediction for sample sizes larger than 100 and when
the R2 is moderate to large (i.e., R2 ≥ 0.30). For large sample sizes and
large R2 values, Mode A and Mode B perform equally well in terms of
out-of-sample prediction. In terms of parameter accuracy in the struc-
tural model, Mode A performs best when sample size or R2 values are
small to medium. For larger sample sizes or R2 values, Mode A and
Mode B estimations do not differ in terms of parameter accuracy.

From ameasurement perspective, PLS and CBSEM both share an ap-
proximation character as constructs do not necessarily fully correspond
to the conceptual variables they represent. As noted by Rigdon (2016,
p. 19), “common factor proxies cannot be generally assumed to carry
greater significance than composite proxies in regard to the existence
or nature of conceptual variables.” A similar view is echoed in the in-
tense debates on the relative advantages of component versus common
factor analysis in the 90s, which witnessed a series of articles and com-
mentaries on the conceptual and philosophical underpinnings of the
methods. Summarizing these debates, Bandalos and Boehm-Kaufman
(2009, p. 70) note that “although methodologists still disagree about
whichmodel ismost appropriate, component analysis and common fac-
tor analysis have different goals and are based on different philoso-
phies.” Rejecting the reflex-like adherence to the common factor
model, researchers have long warned that the common factor model
rarely holds in applied research (Schönemann & Wang, 1972). For ex-
ample, among 72 articles published during 2012 in what Atinc,
Simmering, and Kroll (2012) consider the four leading management
journals (Academy of Management Journal, Journal of Applied Psychology,
Journal of Management, and Strategic Management Journal) that tested
one ormore common factormodel(s), fewer than 10% contained a com-
mon factor model that did not have to be rejected. In light of these re-
sults, Henseler et al. (2014, p. 184) conclude “from a philosophical
standpoint, there is no need for modeling constructs as common factors
(…), and reducing SEM to common factor models is a very restrictive
(unnecessarily restrictive, we would argue) view about SEM.”
4. Using PLS to estimate common factor models vs. using CBSEM to
estimate composite models

4.1. The parameter estimation bias

The previous discussions showed that PLS and CBSEMassume differ-
ent ways of how the data represent measurement models that the
researcher—in line with a set of construct definitions—specifies in a re-
flective or formative way. CBSEM assumes the data follow a common
factor model in which the indicator covariances define the nature of
the data, whereas PLS adheres to a composite model approach in
which data are defined by means of linear combinations of indicators.
So while the measurement models may follow a reflective (or forma-
tive) specification, the underlying data model may be composite-
based (or common factor-based).
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Numerous studies have explored PLS's performance in terms of pa-
rameter accuracy when data are assumed to follow a common factor
model approach (e.g., Barroso, Cepeda Carrión, & Roldán, 2010;
Hwang, Malhotra, Kim, Tomiuk, & Hong, 2010; Marcoulides, Chin, &
Saunders, 2012; Reinartz et al., 2009). Overall, these studies suggest
that the bias that PLS produces when estimating common factormodels
is comparably small provided that themeasurementmodels meet min-
imum recommended standards in terms of the number of indicators
and indicator loadings. Recent efforts to dramatize the differences be-
tween CBSEM and PLS estimates (Rönkkö et al., 2016) in, for example,
Reinartz et al.'s (2009) study focused on descriptive differences be-
tween population values and parameter estimates only, disregarding
the concept of statistical inference. As Reinartz et al. (2009, p. 338;
emphasis added by the authors) note in their results description of all
simulation conditions, “parameter estimates do not differ significantly
from their theoretical values for either ML-based CBSEM (p-values be-
tween 0.3963 and 0.5621) or PLS (p-values between 0.1906 and
0.3449).”Onlywhen themodel estimationdraws on a very large sample
size (N = 10,000) and includes measurement models with many indi-
cators with high loadings, did statistically significant differences occur.
Correspondingly, empirical studies using both methods suggest that
the divergence between PLS and CBSEM results when estimating com-
mon factor models is of little practical relevance for the results' implica-
tions (e.g., Astrachan, Patel, & Wanzenried, 2014).

The question, however, is whether the bias identified in prior studies
results from using composite-based PLS on common factor model data
or if the method is inherently biased, including when estimating com-
posite models. Similarly, while the (supposed) PLS bias has been exten-
sively debated in the literature, the bias that CBSEM produces when
mistakenly estimating composite models has not yet been explored.
For this reason, the following simulation studies focus on revealing the
biases that occurwhen using (1) composite-based PLS to estimate com-
mon factor models, and (2) common factor-based CBSEM to estimate
composite models. Furthermore, both studies consider PLSc.

4.2. Simulation studies

Our studies replicate Reinartz et al.'s (2009) simulation study on the
comparative performance of PLS and CBSEM, which in its original form
assumed a common factormodel.We extended the original study, how-
ever, by additionally generating composite model-based data. Further-
more, our studies also consider PLSc, which follows a composite
modeling logic but mimics a common factor model (Sarstedt, Ringle, &
Hair, 2014). To do so, the method first estimates the model parameters
using the standard PLS algorithmand corrects these estimates for atten-
uation using the consistent reliability coefficient ρA. This correction only
Fig. 2. Simulati
applies to reflective measurement models, while formative measure-
ment models remain unchanged.

The pathmodel and path coefficient specifications used in the simu-
lations (Fig. 2) are identical to Reinartz et al. (2009) with low (i.e., 0.15;
p1, p2, p12), medium (i.e., 0.30; p5), and high (i.e., 0.50; p3, p4, p6, p9, p10,
p11) pre-specified path coefficients. Accounting for corresponding calls
in the literature (Marcoulides et al., 2012), we extended the original
model by adding a construct (Y5) with two null paths (p7 and p8). Also
analogous to Reinartz et al. (2009), all measurement models are reflec-
tive. Table 1 illustrates the design factors and their levelsmanipulated in
the simulation study. The simulation study uses a factorial design. We
conducted 300 replications of each factor-level combination to obtain
stable average outcomes for our analysis. In summary, the analysis in-
cludes 4 ∙ 4 ∙ 3 ∙ 5 ∙ 300 = 72,000 datasets for Study I (i.e., the common
factor-based simulation) and 8 ∙ 3 ∙ 5 ∙ 300 = 36,000 datasets for
Study II (i.e., the composite-based simulation), which results in a total
number of 324,000 computations for the threemethods under research.

In line with related research in the field (e.g., Becker, Rai, Ringle, &
Völckner, 2013; Reinartz et al., 2009), common factor model-based data
generation was performed by means of Mattson's (1997) method (also
see Reinartz, Echambadi, & Chin, 2002), where univariate random vari-
ables initially serve the generation of the latent variables in the structural
model, followed by the computation of the observed variables. The com-
posite model-based data generation used in this study draws on a proce-
dure similar to the one that Schlittgen (2015) presents in his SEGIRLS
package for the statistical R software (R Core Team, 2014).Wefirst gener-
ate the model-implied covariance matrix of the indicators, followed by a
Cholesky decomposition, and finally extract the indicator data for a pre-
specified number of observations and the sought data distribution. For
model estimation based on PLS, PLSc, and CBSEM, we use the semPLS
(Monecke & Leisch, 2012), matrixpls R (Rönkkö, 2016), and sem (Fox
et al., 2015) packages of the R software. As in Reinartz et al. (2009),
CBSEMestimation draws on the standardmaximum likelihood approach;
PLS uses Mode A estimationwhile PLSc uses Mode A estimation followed
by the correction for attenuation in both studies.

5. Results

The assessment of the methods' parameter accuracy occurs on the
grounds of the mean absolute error MAE, which is defined as

MAE ¼ 1
t
∑t

j¼1 θ̂ j−θ j

�
�
�

�
�
�; ð4Þ

where t equals the number of parameters, θj is the prespecified param-

eter and θ̂ j is the parameter estimate in any replication. Tables 2 and 3
on model.



Table 1
Simulation design.

Design factors Study

Study I: Common factor-based simulation Study II: Composite-based simulation

Representation of the constructs and data generation Common factor model Composite model
Structural model Reinartz et al. (2009), extended by null paths Reinartz et al. (2009), extended by null paths
Loadings/weights and number of indicators All possible combinations of number of indicators (2, 4, 6, 8)

and indicator loadings (equal: 0.50, 0.70 or 0.90; and unequal:
half of the indicators 0.50, the other half 0.90)

Eight combinations of number of indicators and
indicator weights:
Unequal weights
• 0.30/0.90;
• 0.10/0.30/0.50/0.70;
• 0.10/0.175/0.25/0.325/0.40/0.475; and
• 0.075/0.125/0.175/0.225/0.275/0.325/
0.375/0.425

Equal weights
• 0.625/0.625;
• 0.40/0.40/0.40/0.40;
• 0.30/0.30/0.30/0.30/0.30/0.30; and
• 0.25/0.25/0.25/0.25/0.25/0.25/0.25/0.25

Data distribution Three variations of skewness/kurtosis: none, moderate, and high Three variations of the normal distribution:
symmetric normal, log-normal, and diff-normal

Sample size 100, 250, 500, 1000, and 10,000 100, 250, 500, 1000, and 10,000

Notes: In compositemodels, the indicators fully explain the latent variable, which imposes some restrictions on the possibilities of cases that can be drawn; log-normal= randomvariable
which has a standard normally distributed logarithm; diff-normal = difference of two log-normal distributions.
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illustrate the results of the simulation studies. Our illustration focuses
on the case of normally distributed data as the analysis of non-normal
data yields highly similar results.

Our results confirm the well-known PLS bias when using the meth-
od to estimate the path model with common factor model-based data.
PLS produces biased estimates with average MAE values of around
0.10 when the measurement models only have two indicators or
when the loadings are low (i.e., 0.50). Confirming PLS's consistency at
large (Hui & Wold, 1982), PLS's MAE values decrease for greater num-
bers of indicators permeasurementmodel or higher sample sizes. Com-
pared to PLS, CBSEM achieves lower MAE values across all conditions
except for small sample sizes of 100. In this condition, PLSc shows pro-
nouncedMAE values of up to 0.34 and also performsweak at 250 obser-
vations when measurement models have only two indicators or low
loadings. However, PLSc's performance increases considerably with
more indicators and higher sample sizes. On average across all simula-
tion conditions, PLS and PLSc have a higher MAE (0.07) compared to
CBSEM (0.05). Clearly, the differences between the three methods
when used on common factor model-based data are overall only mar-
ginal, however.

A different picture emerges when estimating data from a composite
model population. Whereas PLS has an overall MAE value of 0.04, the
parameter biases of CBSEM (0.76) and particularly PLSc (3.70) are
muchmore pronounced. PLSc shows a bewildering performance across
the simulation conditions with MAE values ranging from 0.64 to 17.89.
Specifically, in conditions with four indicators, equal weights and 500,
and 10,000 observations, respectively, MAE values bounce up to values
higher than 10. To rule out potential problems resulting from the PLSc
implementation of the matrixpls package, we re-ran the simulation
study using our PLSc extension of the semPLS package (Monecke &
Leisch, 2012). Results from this additional analysis provided support
for the extent and variation of PLSc's bias with MAE values well above
10 for several simulation conditions. Similar to PLSc, CBSEM shows pro-
nounced parameter estimation biases across all simulation conditions
but at a much lower level with MAE values ranging from 0.51 to 1.72.
Nevertheless, CBSEM's bias when estimating composite models is on
average 11 times higher than PLS's bias when estimating common fac-
tor models. Clearly, the use of PLS to estimate common factor models
is much less of an issue than using CBSEM on data consistent with the
composite model. Finally, while PLS's MAE values decrease when sam-
ple sizes increase, this is not the case with CBSEM and PLSc. For these
two methods, the MAE values show no clear pattern. For example, for
measurement models with 2 indicators and unequal weights, PLSc's
MAE values decrease from100 to 500 observations, increase at 1000 ob-
servations, and finally decrease at 10,000 observations. Overall our sim-
ulation study results suggest that when the underlying model type is
unknown, researchers are well advised to draw on PLS in order to
avoid substantial parameter biases that result from using PLSc or
CBSEM in case the composite model holds.

In summary, we find that the methods' parameter bias depends on
the underlying model and data. If one assumes a common factor
model and draws on data of such a nature, CBSEM generally
performs—as expected—very well. The same generally holds for PLSc,
except when the sample size is small. The PLS method offers a very
good approximation in this case. At the same time, PLS performs—as
expected—very well for composite models, if one draws on data of
such a nature. In this case, however, CBSEM and PLSc perform very
poorly.

Table 4 summarizes the results of prior research on the methods'
performance in terms of parameter bias when estimating common fac-
tor models with effect, causal, and composite indicators. Furthermore,
the table summarizes the results of this paper's simulation studies re-
garding themethods' performanceswhen estimating compositemodels
with effect indicators. In linewith the nature of each data generation ap-
proach and the methods' way of treating construct measures
(e.g., Diamantopoulos, 2011; Henseler, Hubona et al., 2016), we differ-
entiate between (1) effect indicatormodels and causal indicatormodels
when the underlying population is common factor-based, and (2) be-
tween effect indicator models and composite indicator models when
the underlying population is composite-based.

6. Conclusion

“Professional statisticians tend to know little about factor analysis
and seldom practice it. Indeed, statisticians mostly have a cool negative
attitude towards the subject. They hardly ever write about it. […] I can
see nothing advantageous in factor analytic methods. Factor analysis is
technically under-developed and at times appears almost cretinous. Its
practitioners seem to be largely unaware of the technical andmethodo-
logical problems, which they let themselves in for.” This text, which is
more than fifty years old and taken from Ehrenberg's (1962, p. 191
andp. 206) article “SomeQuestions About Factor Analysis”, appears sur-
prising considering that today factor analysis is one of the success
stories of statistical analysis (Cudeck & MacCallum, 2007). This



Table 2
Coefficients' mean absolute error (MAE) in the common factor model situation.

Design factor Mean absolute error
(MAE)

Observations Group Loadings PLS PLSc CBSEM

100 2 indicators Mixed 0.11 0.30 0.13
4 indicators 0.09 0.13 0.10
6 indicators 0.08 0.09 0.08
8 indicators 0.08 0.12 0.08
Loadings: 0.5 Equala 0.13 0.34 0.16
Loadings: 0.7 0.09 0.10 0.10
Loadings: 0.9 0.06 0.07 0.07
Loadings: 0.5/0.9 Unequala 0.08 0.10 0.08

250 2 indicators Mixed 0.10 0.13 0.09
4 indicators 0.08 0.07 0.06
6 indicators 0.06 0.05 0.05
8 indicators 0.06 0.06 0.05
Loadings: 0.5 Equala 0.12 0.14 0.10
Loadings: 0.7 0.07 0.06 0.06
Loadings: 0.9 0.04 0.04 0.04
Loadings: 0.5/0.9 Unequala 0.06 0.05 0.05

500 2 indicators Mixed 0.10 0.07 0.06
4 indicators 0.07 0.05 0.04
6 indicators 0.06 0.04 0.04
8 indicators 0.05 0.04 0.04
Loadings: 0.5 Equala 0.12 0.08 0.07
Loadings: 0.7 0.07 0.04 0.04
Loadings: 0.9 0.03 0.03 0.03
Loadings: 0.5/0.9 Unequala 0.05 0.04 0.03

1000 2 indicators Mixed 0.09 0.05 0.04
4 indicators 0.06 0.03 0.03
6 indicators 0.05 0.03 0.03
8 indicators 0.05 0.03 0.03
Loadings: 0.5 Equala 0.12 0.05 0.05
Loadings: 0.7 0.06 0.03 0.03
Loadings: 0.9 0.03 0.02 0.02
Loadings: 0.5/0.9 Unequala 0.05 0.03 0.02

10,000 2 indicators Mixed 0.09 0.01 0.01
4 indicators 0.06 0.01 0.01
6 indicators 0.04 0.01 0.01
8 indicators 0.04 0.01 0.01
Loadings: 0.5 Equala 0.11 0.02 0.01
Loadings: 0.7 0.06 0.01 0.01
Loadings: 0.9 0.02 0.01 0.01
Loadings: 0.5/0.9 Unequala 0.04 0.01 0.01

Total 0.07 0.07 0.05

a Across all numbers of indicators.

Table 3
Coefficients' mean absolute error (MAE) in the composite model situation.

Design factor Mean absolute error (MAE)

Observations Indicators Weights PLS PLSc CBSEM

100 2 Equal 0.07 2.90 0.84
4a 0.07 4.42 0.74
6a 0.07 3.57 0.63
8a 0.07 2.05 0.52
2 Unequal 0.07 5.05 0.61
4a 0.08 3.03 0.92
6a 0.07 5.83 0.54
8a 0.07 2.89 0.48

250 2 Equal 0.05 5.33 0.81
4a 0.04 5.56 0.81
6a 0.05 3.22 0.73
8a 0.04 3.71 0.57
2 Unequal 0.05 2.94 0.54
4a 0.05 4.06 0.82
6a 0.05 2.76 0.58
8a 0.05 4.20 0.59

500 2 Equal 0.03 5.21 0.90
4a 0.03 11.55 0.81
6a 0.03 2.87 0.82
8a 0.03 2.89 0.75
2a Unequal 0.03 2.29 0.55
4a 0.03 1.17 0.62
6a 0.03 2.52 0.60
8a 0.03 4.96 0.56

1000 2 Equal 0.02 2.28 0.98
4a 0.02 5.52 0.80
6a 0.02 1.38 0.95
8a 0.02 2.74 0.88
2a Unequal 0.03 4.39 0.55
4a 0.02 0.81 0.65
6a 0.02 2.29 0.65
8a 0.02 6.88 0.65

10,000 2 Equal 0.01 1.00 1.34
4 0.01 17.89 0.74
6a 0.01 0.85 1.72
8a 0.01 1.06 1.22
2a Unequal 0.01 2.44 0.66
4a 0.01 0.64 0.51
6a 0.01 1.04 1.02
8a 0.01 1.59 0.58

Total 0.04 3.70 0.76

a Instances in which CBSEM converged in b50% of the simulation runs.
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assessment sounds familiar to everyone who has been exposed to re-
cent papers critically referring to the PLS method. Authors have repeat-
edly suggested that PLS has “largely been ignored in research methods
journals” (Rönkkö & Evermann, 2013, p. 426), that its use is restricted
to few domains (Rönkkö et al., 2016; Rönkkö et al., 2015) and that
“PLS is not useful for statistical estimation and testing” (Rönkkö et al.,
2015, p. 76).Whilewe do not suggest that PLSwill undergo a similar de-
velopment as factor analysis, the statements about the limitations of
factor analysis and PLS nicely showhowunsubstantiated somemethod-
ological discussions can become. As noted elsewhere, “any extreme po-
sition that (oftentimes systematically) neglects the beneficial features of
the other technique, and may result in prejudiced boycott calls, is not
good research practice and does not help to truly advance our under-
standing of methods and any other research subject” (Sarstedt, Ringle,
Henseler et al., 2014, p. 158).

Our discussions show that researchers need to clearly distinguish
between (conceptual) measurement approaches and the (statistical)
estimation perspectives when judging the appropriateness of or choos-
ing a specific SEMmethod. Model estimation does not occur in a meth-
odological vacuum detached from measurement considerations but
rests on specific assumptions, which need to be considered when con-
ceptualizing and operationalizing models and vice versa. Despite fre-
quent warnings (Chin, 2010; Henseler et al., 2014; Marcoulides et al.,
2012), research on the performance of PLS has repeatedly ignored the
implications of using a composite-based method for estimating com-
mon factor models (Becker, Rai, & Rigdon, 2013). Recent efforts to
align reflective measurement and composite-based modeling (Dijkstra
& Henseler, 2015; Henseler, Hubona et al., 2016)—while commendable
from a methodological viewpoint—have instead contributed to the
confusion, leaving researchers with little guidance regarding when to
apply each method and how to align their use with measurement
considerations.

The framework in Fig. 3 merges our theoretical discussions and sim-
ulation results. Whereas the theoretical layer serves to define the
conceptual variable, the conceptual layer delivers the operational defi-
nition of the conceptual variables, which then serves as the basis for
the measurement operationalization using effect, causal, or composite
indicators on the operational layer. This conceptualization and
operationalization of construct measures represents the measurement
perspective. This perspective needs to be complemented with the
model estimation perspective. The estimation layer intertwines with
the measurement model layer that expresses how the data represent
reflectively or formatively specified measurement models.

By exploring the performance of CBSEM, PLS, and PLSc when esti-
mating composite models, the simulation studies overcome a crucial
limitation of prior studies, which univocally relied on data from com-
mon factor model populations to judge their universal efficacy (Chin,
2010; Marcoulides & Chin, 2013). Therefore, our studies address



Table 4
Efficacy of PLS, PLSc, and CBSEM for estimating common factor and composite models.

Method Data type Measurement
model
operationalization

Performance Description Sample references

PLS Common
factor

Effect indicators (+) Small bias Reinartz et al. (2009), this
study

Causal indicators − PLS cannot model the construct-level error term Diamantopoulos (2011)
Composite Effect indicators + Very small bias This study

Composite
indicators

+ Small bias for small sample sizes, which approaches zero for
increasing sample sizes

Becker, Rai, Rigdon (2013)

PLSc Common
factor

Effect indicators (+) Small bias, which is however higher than that of CBSEM for
small sample sizes

Dijkstra and Henseler (2015),
this study

Causal indicators − PLSc cannot model the construct-level error term Diamantopoulos (2011)
Composite Effect indicators − Pronounced bias This study

Composite
indicators

+ Results parallel those from PLS as no correction for
attenuation occurs

Becker, Rai, Rigdon (2013)

CBSEM Common
factor

Effect indicators + Very small bias except for small sample sizes of 100 Reinartz et al. (2009), this
study

Causal indicators (+) Model identification via MIMIC models or by specification
of select parameters

Diamantopoulos and Riefler
(2011)

Composite Effect indicators − Increased bias This study
Composite
indicators

− Model identification by specification of select parameters but strong limitations in
terms of inference

Grace and Bollen (2008)

Notes: − not recommended/possible, (+) acceptable, + recommended.
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corresponding calls for future research, such as expressed by Hwang
et al. (2010, p. 710) in their comparative study on parameter recovery
of common factor-based SEM, PLS, and generalized structured compo-
nent analysis: “We generated simulated data on the basis of covariance
structure analysis. This data generation procedure may have had an un-
favorable effect on the performance of partial least squares and
Fig. 3.Measurement and mod
generalized structured component analysis. We adopted the procedure
because it was rather difficult to arrive at an impartialway of generating
synthetic data for all three different approaches. Nevertheless, the same
procedure has been used in other studies that compared the perfor-
mance of covariance structure analysis with that of partial least squares
(…). In any case, it appears necessary in future studies to investigate
el estimation framework.
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whether a particular data generation procedure may influence the rela-
tive performance of the different approaches.” Our results show that
Hwang et al.'s (2010) notion can be answered with a resounding "yes."

The results outlined in this paper show that PLS entails practically no
bias when estimating data from a composite model population, regard-
less of whether the measurement models are reflective or formative
(Table 3). Biases are somewhat higher for common factor model popu-
lations (Table 2), but low in absolute terms. Clearly, PLS is optimal for
estimating composite models while simultaneously allowing the ap-
proximation of common factor models involving effect indicators with
practically no limitations (see the solid lines between composite indica-
tors/effect indicators and compositemodel and thedashed line between
effect indicators and common factormodel in Fig. 3; also see Table 4). In
contrast, CBSEM and PLSc estimation of reflectively measured con-
structs when the data stem from a composite population entails severe
biases in parameter estimates, rendering their use inappropriate in
these instances (no line between effect indicators and composite
model in Fig. 3; also see Table 4). Particularly PLSc shows a bewildering
behavior with strong biases across practically all conditions, which do
not diminish as sample size increases. When using PLSc to estimate
measurement models with composite indicators using data that stem
from a composite model population, the PLSc results parallel those
from PLS as no correction for attenuation occurs (see the solid line be-
tween composite indicators and composite model in Fig. 3; also see
Table 4).

When estimating data from common factor populations, CBSEM's
parameter bias is small for a sample size of 250 and quickly diminishes
for higher sample sizes (see solid line between effect indicators and
common factor model in Fig. 3; also see Table 4). PLSc shows a similar
patternwhen estimating data fromcommon factor populations but per-
forms less well for small sample sizes of 100, whereMAE values peak at
0.34 (see dashed line between effect indicators and common factor
model in Fig. 3; also see Table 4). In this situation, PLS outperforms
the other methods but overall, the differences are marginal (Chin,
1998; Fornell & Bookstein, 1982; also see Goodhue et al., 2012). Note
that other CBSEM estimators than ML (e.g., GLS, ULS, and ADF) entail
further biaseswhen estimating common factormodels; see for example
Boomsma and Hoogland (2001) and Dijkstra and Henseler (2015).

The obvious problemwith these observations is that researchers can
hardly know whether the data's nature is common factor- or
composite-based. Fit measures such as the standardized root mean
square residual (SRMR) may provide an indication of whether the
data follow a common factor model. If the specific measurement
model does not meet the required level (e.g., 0.08 and smaller for the
SRMR; Hu & Bentler, 1998), this result suggests that the data follow a
composite model. Alternatively, an improper CBSEM solution may
point to an underlying composite model population. Our results show
that CBSEM produces improper solutions in up to 99% of cases when
the composite model holds. In consideration that in practical applica-
tions improper solutions often occur in CBSEM use (Rigdon, 2012;
Sarstedt, Ringle, Henseler et al., 2014), these results offer a potential ex-
planation why, more often than not, the common factor model cannot
be supported in practice (Atinc et al., 2012). At the same time, howev-
er, reasons for improper solutions are manifold and not restricted to
the misspecification of the model type. Therefore, interpreting im-
proper solutions as clear evidence for an underlying composite
model is not reasonable. As an alternative, researchers can follow a
multi-methods approach, in which they combine CBSEM with PLS
to see whether the results align in that specific research situation.
Substantial differences between the methods indicate that the un-
derlying population is composite-based, supporting the use of
composite-based SEM methods. Nevertheless, in light of the biases
that come with a CBSEM and PLSc-based estimations of composite
model data, PLS is certainly the safer option when estimating data
from an unknown population until research has proposed clear
guidelines on how to identify the population type.
Our findings suggest that composite-based methods are going to
play a greater role in future SEM applications. To date our understand-
ing of this strand of methods is incomplete, however, as prior assess-
ments universally drew on common factor model-based data and
thereby relied on misspecified populations (Rigdon, 2016). Therefore,
future research should aim at broadening our knowledge of the relative
performance of the different approaches on the grounds of composite
model-based data. For example, studies should contrast PLS's perfor-
mancewith other composite-based SEM techniques such as generalized
structured components analysis (Hwang et al., 2010) or regularized
generalized canonical correlation analysis (Tenenhaus & Tenenhaus,
2011).

In doing so, future research should consider a broader range of
model constellations and more complex model structures such as hier-
archical component models, moderating effects, or nonlinear effects.
Such assessments would help disclose the different methods' efficacy
for different situations that researcher encounter in their studies. By ex-
amining CBSEM's performance on composite model data, this study
complements prior research, which univocally examined PLS's perfor-
mance on common factor model data. However, future research should
compare PLS, PLSc, and CBSEM on data where both models fit in the
population. Such a design would provide supplementary insights, be-
cause CBSEM may work well on some composite measures but not
others. In addition, with regards to PLS, future research should explore
the interplay between measurement specifications, population type,
and PLS's estimation modes (i.e., Mode A and B). These results would
help clarifying the estimation modes' efficacy for out-of-sample predic-
tion, in-sample-prediction, and parameter bias under different model
specification and data conditions.
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