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The well-known identity which determines the jumps of a function of bounded
variation by its Fourier series is extended to larger classes of functions, such as V8 ,
4BV, and V[v], under some conditions on the generalized variations. It is shown
as well that the conditions on the generalized variations are definitive in some sense.
Based on the above-mentioned results, an identity which determines the jumps of
a bounded function by its Fourier series with respect to the system of generalized
Jacobi polynomials is obtained for these function classes. � 1998 Academic Press

INTRODUCTION

1. Throughout this paper we use the following general notations: N,
Z+ , and Z are the sets of positive integers, nonnegative integers, and
integers, respectively. L[a, b] is the space of integrable functions on [a, b].
W[a, b] is the space of functions on [a, b] which may have discontinuities
only of the first kind and which are normalized by the condition f (x)=
( f (x+)+ f (x&))�2 (here and elsewhere f (x+) and f (x&) denote the
right- and left-hand-side limits of the function f at a point x). In addition,
we assume that f # W[a, b] is continuous at the end points of the interval
[a, b], i.e., f (a)= f (a+) and f (b)= f (b&), whenever f is not periodically
continued outside of the interval. C[a, b] is the space of continuous functions
on [a, b] with the uniform norm & }&C[a, b] and Hn is the set of algebraic
polynomials of degree at most n (n # Z+) with real coefficients.

|( f ; $ ; [a, b])=max[ | f (x)& f (t)| : x, t # [a, b] and |x&t|�$] (1)

is the modulus of continuity of f # C[a, b] on [a, b].
If g # L[&?, ?], g has a Fourier series with respect to the trigonometric

system [1, cos n%, sin n%]�
n=1, and we denote the nth partial sum of the
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Fourier series of g by Sn(g ; %). By S� n(g ; %) we denote the n th partial sum
of the conjugate series, i.e.,

S� n(g ; %)= :
n

k=1

(ak(g) sin k%&bk(g) cos k%),

where ak(g) and bk(g) are the Fourier coefficients of the function g.
We say that w is a generalized Jacobi weight, i.e., w # GJ, if

w(t)=h(t)(1&t): (1+t); |t&x1 |$1 } } } |t&xM | $M, (2)

h # C[&1, 1], h(t)>0 (|t|�1), |(h; t; [&1, 1]) t&1 # L[0, 1], (3)

&1<x1< } } } <xM<1, :, ;, $1 , ..., $M>&1. (4)

By _(w)=(Pn(w; x))�
n=0 we denote the system of algebraic polynomials

Pn(w; x)=#n(w) xn+ lower degree terms with positive leading coefficients
#n(w), which are orthonormal on [&1, 1] with respect to the weight
w # GJ, i.e.,

|
1

&1
Pn(w; t) Pm(w; t) w(t) dt=$nm .

Such polynomials are called the generalized Jacobi polynomials and
their properties are discussed, for example, in [2, 3, and 11].

If fw # L[&1, 1], w # GJ, then f has a Fourier series with respect to
the system _(w), and by Sn(w; f ; x) we denote the n th partial sum of the
Fourier series of f with respect to the system _(w), i.e.,

Sn(w; f ; x)= :
n&1

k=0

ak(w; f ) Pk(w; x)=|
1

&1
f (t) Kn(w; x; t) w(t) dt,

where

ak(w; f )=|
1

&1
f (t) Pk(w; t) w(t) dt

is the k th Fourier coefficient of the function f, and

Kn(w; x; t)= :
n&1

k=0

Pk(w; x) Pk(w; t)

is the Dirichlet kernel of the system _(w).
When h(t)#1, |t|�1, and M=0 (i.e., a weight does not have singularities

strictly inside of the segment (&1, 1)), w # GJ is called a Jacobi weight, and
in this case we use the commonly accepted notation ``(:, ;)'' instead of ``w''
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throughout. For example, we write S (:, ;)
n ( f ; x) instead of Sn(w; f ; x), and

so on.
By K we denote positive constants, possibly depending on some fixed

parameters, and in general distinct in different formulae. Sometimes the
important arguments of K will be written explicitly in the expressions for
it. For positive quantities An and Bn , possibly depending on some other
variables as well, we write An=o(Bn) and An=O(Bn), if limn � � An �Bn=0
and supn # N An �Bn<�, respectively.

The following are some generalizations of the notion of bounded variation
of a function.

Definition 1 [21]. Let 8 be a strictly increasing continuous function
on [0, �) and 8(0)=0. A function f is said to have 8-bounded variation
on [a, b], i.e., f # V8[a, b], if

v8( f ; [a, b])=sup
6

:
n

k=1

8( | f (xk)& f (xk&1)| )<�,

where 6=[a�x0<x1< } } } <xn�b] is an arbitrary partition of [a, b].

If 8(x)=x, then V8[a, b] coincides with the Jordan class V[a, b] of
functions of bounded variation, and if 8(x)=x p, p>1, it coincides with
the Wiener [20] class Vp[a, b].

Definition 2 [18]. Let 4=(*k)�
k=1 be a nondecreasing sequence of

positive numbers such that ��
k=1 1�*k=�. A function f is said to have

4-bounded variation on [a, b], i.e., f # 4BV[a, b], if

v4( f ; [a, b])=sup
6

:
n

k=0

| f (x2k+1)& f (x2k)|
*k

<�,

where 6 is an arbitrary system of disjoint intervals (x2k , x2k+1)/[a, b].

If *k=1, k # N, then obviously 4BV[a, b]=V[a, b].
We say that a function f is of harmonic bounded variation on [a, b], i.e.,

f # HBV[a, b], if *k=k, k # N.

Definition 3 [5]. Let f be a bounded function defined on [a, b]. The
modulus of variation of the function f is the function v(n; f ; [a, b]) defined
for n # Z+ as follows: v(0; f ; [a, b])=0, while for n�1,

v(n; f ; [a, b])=sup
6n

:
n&1

k=0

| f (x2k+1)& f (x2k)|,
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where 6n is an arbitrary system of n disjoint intervals (x2k , x2k+1)/[a, b],
k=0, 1, ..., n&1.

If v(n), n # N, is a nondecreasing upwards convex function and v(0)=0,
then we call v(n) a modulus of variation.

The class of functions which satisfy the relation v(n; f ; [a, b])=O(v(n))
will be denoted by V[v ; [a, b]].

In particular, V[1; [a, b]]=V[a, b].

Definition 4 (cf. [22, p. 16]). We say that a function 8 has the
complementary function 9 in the sense of W. H. Young, if

8(x)=|
x

0
,(t) dt and 9(x)=|

x

0
�(t) dt,

where , is a strictly increasing continuous function on [0, �), ,(0)=0,
and �(x)=,&1(x) for x # [0, �).

If there is no ambiguity, we shall usually omit the dependence on the
domain and simply refer to one of the introduced classes of functions or
the quantities as L, W, ..., or v8( f ), v4( f ), etc.

2. The identity determining the jumps of a function of bounded variation
by means of its differentiated Fourier partial sums has been known for a
long time:

Theorem FC ([4, 7]). Let g # V be a 2?-periodic function. Then the
following identity

lim
n � �

(Sn(g ; %))$
n

=
1
?

(g(%+)& g(%&)) (5)

is valid for every fixed % # [&?, ?].

Let us mention that the jumps of g # L can be determined directly from
its conjugate Fourier partial sums as well (cf. [22, Theorem (8.13), p. 60]).

Golubov [9] generalized identity (5) for Vp classes of functions and
higher derivatives of the Fourier partial sums.

Theorem G1 [9, Theorem 1, p. 444]. Let r # Z+ and suppose g # Vp for
some p�1. Then

(a) the identity

lim
n � �

(Sn(g ; %))(2r+1)

n2r+1 =
(&1)r

(2r+1) ?
(g(%+)& g(%&)) (6)

is valid for every fixed % # [&?, ?].
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(b) There is no way to determine the jump at the point % # [&?, ?] of
an arbitrary function g # Vp , p�1, by means of the sequence ((Sn(g; %))(2r))�

n=0.

Theorem G2 [9, Theorem 2, p. 445]. Let r # N and suppose g # Vp for
some p�1. Then

(a) the identity

lim
n � �

(S� n(g ; %))(2r)

n2r =
(&1)r+1

2r?
(g(%+)& g(%&)) (7)

is valid for every fixed % # [&?, ?].

(b) There is no way to determine the jump at the point % # [&?, ?]
of an arbitrary function g # Vp , p � 1, by means of the sequence
((S� n(g; %))(2r&1))�

n=1.

MAIN RESULTS

In the present paper we extend identities (6) and (7) to the larger classes
of functions such as V8 , 4BV, and V[v], under some conditions on the
generalized variations of a function. We investigate definitiveness of these
conditions as well.

Furthermore, we establish an identity which determines the jumps of a
bounded function by means of its differentiated Fourier partial sums with
respect to the system of generalized Jacobi polynomials. The identity is
studied for the same classes of functions of generalized bounded variation.

Theorem 1. Let r # Z+ and suppose 4BV is the class of functions of
4-bounded variation determined by the sequence 4=(*k)�

k=1. Then

(a) the identity

lim
n � �

(Sn(g; %))(2r+1)

n2r+1 =
(&1)r

(2r+1) ?
(g(%+)& g(%&)) (8)

is valid for every g # 4BV and each fixed % # [&?, ?] if and only if

4BV�HBV. (9)

(b) There is no way to determine the jump at the point % # [&?, ?] of
an arbitrary function g # 4BV by means of the sequence ((Sn(g; %))(2r))�

n=0 .
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Theorem 2. Let r # Z+ and suppose V[v] is the class of functions
determined by a given modulus of variation v(n). Then

(a) identity (8) is valid for every g # V[v] and each fixed % # [&?, ?]
if and only if

:
�

k=1

v(k)
k2 <�. (10)

(b) There is no way to determine the jump at the point % # [&?, ?] of
an arbitrary function g # V[v] by means of the sequence ((Sn(g; %))(2r))�

n=0.

Theorem 3. Let r # Z+ and suppose V8 is the class of functions of
8-bounded variation, where 8 has the complementary function 9 in the sense
of Young (see Definition 4). Then

(a) identity (8) is valid for every g # V8 and each fixed % # [&?, ?] if
and only if

:
�

k=1

9(1�k)<�, (11)

|
1

0
ln(1�8(x)) dx<�, (12)

or

:
�

k=1

1
k

8&1(1�k)<�, (13)

where 8&1 is inverse of 8.

(b) There is no way to determine the jump at the point % # [&?, ?] of
an arbitrary function g # V8 by means of the sequence ((Sn(g; %))(2r))�

n=0 .

The following three theorems are generalizations of Theorem G2.

Theorem 4. Let r # N and suppose 4BV is the class of functions of
4-bounded variation determined by the sequence 4=(*k)�

k=1. Then

(a) the identity

lim
n � �

(S� n(g; %))(2r)

n2r =
(&1)(r+1)

2r?
(g(%+)& g(%&)) (14)

is valid for every g # 4BV and each fixed % # [&?, ?] if and only if condition
(9) holds.
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(b) There is no way to determine the jump at the point % # [&?, ?] of
an arbitrary function g # 4BV by means of the sequence ((S� n(g; %))(2r&1))�

n=1.

Theorem 5. Let r # N and suppose V[v] is the class of functions
determined by a given modulus of variation v(n). Then

(a) the identity (14) is valid for every g # V[v] and each fixed
% # [&?, ?] if and only if condition (10) holds.

(b) There is no way to determine the jump at the point % # [&?, ?] of
an arbitrary function g # V[v] by means of the sequence ((S� n(g; %))(2r&1))�

n=1.

Theorem 6. Let r # N and suppose V8 is the class of functions of
8-bounded variation, where 8 has the complementary function 9 in the sense
of Young. Then

(a) identity (14) is valid for every g # V8 and each fixed % # [&?, ?]
if and only if condition (11), (12), or (13) holds.

(b) There is no way to determine the jump at the point % # [&?, ?] of
an arbitrary function g # V8 by means of the sequence ((S� n(g; %))(2r&1))�

n=1.

The following theorems establish an identity which determines the jumps
of a bounded function by means of its differentiated Fourier partial sums
with respect to the system of generalized Jacobi polynomials.

Theorem 7. Let r # Z+ , w # GJ, and suppose 4BV is the class of
functions of 4-bounded variation determined by the sequence 4=(*k)�

k=1.
Then the identity

lim
n � �

(Sn(w; f ; x))(2r+1)

n2r+1 =
(&1)r (1&x2)&r&1�2

(2r+1) ?
( f (x+)& f (x&)) (15)

is valid for every f # 4BV and each fixed x # (&1, 1), x{x1 , ..., xM , if
condition (9) holds.

If, in addition, the weight w # GJ satisfies the following conditions:

:�&1�2, ;�&1�2, $1�0, ..., $M�0, |(h ; t) t&1 ln t # L[0, 1],

(16)

then condition (9) is necessary for the validity of identity (15) for every
f # 4BV and each fixed x # (&1, 1), x{x1 , ..., xM , as well.

Theorem 8. Let r # Z+ , w # GJ, and suppose V[v] is the class of
functions determined by a modulus of variation v(n). Then identity (15) is
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valid for every f # V[v] and each fixed x # (&1, 1), x{x1 , ..., xM , if
condition (10) holds.

If, in addition, the weight w # GJ satisfies condition (16), then condition
(10) is necessary for the validity of identity (15) for every f # V[v] and each
fixed x # (&1, 1), x{x1 , ..., xM , as well.

Theorem 9. Let r # Z+ , w # GJ, and suppose V8 is the class of functions
of 8-bounded variation, where 8 has the complementary function 9 in the
sense of Young. Then identity (15) is valid for every f # V8 and each fixed
x # (&1, 1), x{x1 , ..., xM , if condition (11), (12), or (13) holds.

If, in addition, the weight w # GJ satisfies condition (16), then conditions
(11), (12), and (13) are necessary for the validity of identity (15) for every
f # V8 and each fixed x # (&1, 1), x{x1 , ..., xM , as well.

Theorems 7, 8, and 9 imply criteria for the continuity of a function of
V8 , 4BV, and V[v] classes analogous to the Wiener's criterion for the
continuity of a function of bounded variation (see [20, p. 81] or [22, Thm.
(9.6), p. 108]).

Corollary 1. Let w # GJ and suppose f # HBV. If the Fourier coef-
ficients of the function f with respect to the system _(w) for some r # Z+

satisfy the condition

:
n

k=1

k2r+1 |ak(w; f )|=o(n2r+1), (17)

then f is continuous at each point x # [&1, 1], x{x1 , ..., xM .
In particular, if a weight w # GJ is such that

M=0, (18)

then condition (17) implies that f # C.

Corollary 2. Let w # GJ and suppose f # V[v], where v(n) satisfies
condition (10). If the Fourier coefficients of f with respect to _(w) for some
r # Z+ satisfy condition (17), then f is continuous at each point x # [&1, 1],
x{x1 , ..., xM .

In particular, if a weight w # GJ satisfies condition (18), then condition
(17) implies that f # C.

Corollary 3. Let w # GJ and suppose f # V8 , where 8 satisfies
condition (11), (12), or (13). If the Fourier coefficients of f with respect to
_(w) for some r # Z+ satisfy condition (17), then f is continuous at each
point x # [&1, 1], x{x1 , ..., xM .
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In particular, if a weight w # GJ satisfies condition (18), then condition
(17) implies that f # C.

PRELIMINARIES

For a given weight w # GJ we always assume that x0=&1 and xM+1=1.
In addition, for a fixed = # (0, (x&+1&x&)�2), &=0, 1, ..., M, we set

2(&; =)=[x&+=; x&+1&=]. (19)

If Kn(w; x; t) is the Dirichlet kernel of the system _(w), then the Christoffel�
Darboux formula

(x&t) Kn(w; x; t)=(#n&1(w)�#n(w))(Pn(w; x) Pn&1(w; t)

&Pn&1(w; x) Pn(w; t)) (20)

holds for x, t # [&1, 1] and n # N, where #n&1(w)�#n(w)�2 for n # N
(cf. [8, formula (4.3), p. 24 and Lemma 7.2, p. 41]).

Let w # GJ. Then the inequality

|Pn&1(w; x)|<K(w) \- 1&x+
1
n+

&:&1�2

\- 1+x+
1
n+

&;&1�2

_ `
M

&=1
\ |x&x& |+

1
n+

&$&�2

(21)

holds for x # [&1, 1] and n # N [2, Coro. 2.1, p. 25].
Let the weight \ # GJ be such that h(t)#1, |t|�1. Then the asymptotic

formula [3, Coro. 12, p. 38]

Pn(\; cos %)=(2�[?.(%)])1�2 (cos[n%&#(%)]+o(1)) (22)

holds as n � �, uniformly for cos % # 2(&; =), = # (0, (x&+1&x&)�2), and
&=0, 1, ..., M, where #(%)=(:+;+$1+ } } } +$M+1) %�2&(:�2+1�4) ?
and .(%)=\(cos %) |sin %|.

Proposition. Let the weight \ # GJ be such that h(t)#1, |t|�1,
and suppose f # HBV. Then for a fixed &=0, 1, ..., M and a fixed = #
(0, (x&+1&x&)�2) there exists a constant K( f ; &; =) such that

sup
n # N

&Sn(\; f ; } )&C[2(&; =)]<K( f ; &; =). (23)
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Proof. We have

|Sn(\; f ; x)|�|Sn(\; f ; x)&S (&1�2, &1�2)
n ( f ; x)|

+|S (&1�2, &1�2)
n ( f ; x)& f (x)|+| f (x)|=J1+J2+J3 . (24)

Taking into account that f is bounded, the estimate

J3<K( f ) (25)

is obvious.
There are numerous results about estimates of the differences Sn(w; f ; x)

&S (&1�2, &1�2)
n ( f ; x) for w # GJ (see [2, Section 4, p. 42] and the indicated

references).
The estimate

J1=&Sn(\; f ; } )&S (&1�2, &1�2)
n ( f ; } )&C[2(&; =)]=o(1) (26)

can be easily deduced from a slight modification of the proof of Theorem 9.1.2
[17, p. 246], utilizing the asymptotic formula (22).

Further, we use the following estimate for a bounded integrable function
f [2, Lemma 3.1, p. 33]: Let x # [&1, 1] and y=arccos x. Then

|S (&1�2, &1�2)
n ( f ; x)& f (x)|�

n
?2 :

n

|k|=1

|Ak |
k

+K sup
x # [&1, 1]

| f (x)| (27)

for n # N, uniformly with respect to f and x, where

Ak=|
?�(2n+1)

0
(g( yk+{)& g( yk&{)) sin

2n+1
2

{ d{, (28)

yk=y+2?k�(2n+1) (k # Z), (29)

and the function g is defined by

g(%)= f (cos %). (30)

Hence by (27) and (28)

J2�
n
?2 :

n

|k|=1

1
k |

?�(2n+1)

0
| g( yk+{)& g( yk&{)| d{+K sup

x # [&1, 1]

| f (x)|

=J21+J22 . (31)
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Let

gk= sup
{ # [0, ?�(2n+1)]

| g( yk+{)& g( yk&{)|. (32)

Since for { # [0, ?�(2n+1)] and k, m=1, ..., n, k{m, we have

( y\2k?�(2n+1)&{, y\2k?�(2n+1)+{)

& ( y\2m?�(2n+1)&{, y\2m?�(2n+1)+{)=<,

it follows from (31), (32), and Definition 2 that

J21�
n

(2n+1) ?
:
n

|k|=1

gk

k
�KvH(g)=KvH( f )<�, (33)

since the variation of a function does not change under a monotonic
transformation of a variable.

Consequently, in view of (24�26), (31), and (33) we obtain the desired
inequality, and the proposition is proved. K

Lemma 1 [16, Theorem 2.5, pp. 429, 430]. The sets C[a, b] & V8[a, b],
C[a, b] & 4BV[a, b], and C[a, b] & V[v ; [a, b]] form Banach spaces with
norms

& f &8=inf ['>0: v8( f�' ; [a, b])�1]+| f (a)|, (34)

& f &4=v4( f ; [a, b])+| f (a)|, (35)

and

& f &V=sup
n # N

v(n; f ; [a, b])
v(n)

+| f (a)|, (36)

respectively.

Regarding (34) and (35) see also [10, p. 32] and [18, p. 108].

Definition 5 [19]. Let 4(e)=(*k+e)�
k=1, e # N, where the sequence

4=(*k)�
k=1 satisfies the conditions of Definition 2. A function f # 4BV is

said to be continuous in 4-variation, i.e, f # 4CBV, if v4(e)( f )=o(1) as
e � �.
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Lemma 2 [15, Theorem 1, p. 88]. Let a sequence 4=(*k)�
k=1 ,

satisfying the conditions of Definition 2, be such that limk � � *k�*2k exists.
Then 4C BV=4BV if and only if

lim
k � �

*k

*2k
<1.

PROOFS

Proof of Theorem 1(a): Sufficiency. Let us assume that % # [&?, ?] is
fixed and g # HBV. It is known [18, p. 108] that

4BV[a, b]/W[a, b]

for an arbitrary 4BV[a, b] class. So, the Fourier series of a function
g # HBV is defined.

Obviously, by means of a change of variables, the problem can always
be reduced to the case %=0.

As shown in [9, p. 447] for the saw tooth function G0(%)=(?&%)�2 # V,
0<%<2?, and G0(%)=G0(%+2?), which has the jump of ? at the point
%=0, the following identity holds:

lim
n � �

(Sn(G0 ; 0))(2r+1)

n2r+1 =
(&1)r

2r+1
.

Next, for a given function g # HBV with a jump at %=0, let us set

G(%)= g(%)&
g(%+)& g(%&)

?
G0(%).

Obviously G is continuous at %=0 and G # HBV. We can assume as well
that G(0)=0 since identity (8) is invariant with respect to subtraction
of a constant from a function. Hence, it is left to show that if g # HBV,
g(0)=0, and g is continuous at %=0, then

lim
n � �

(Sn(g; 0))(2r+1)

n2r+1 =0. (37)

If Dn({) is the Dirichlet kernel, i.e.,

Dn({)=
1
2

+ :
n

k=1

cos k{,
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then the following representation is valid [22, formula (5.2), p. 50]

Dn({)=
sin n{

{
+!({) sin n{+

1
2

cos n{ ( |{|�?), (38)

where !({)= 1
2cot({�2)&(1�{) for 0<|{|�? and !(0)=0. It is known that

! is analytic on the interval (&2?, 2?), so max|{|�? |(!({))(k)|<�, k # Z+.
From (38) follows (r # N)

(Dn({))(r)=nr sin(n{+r?�2)
{

+ :
r&1

i=0
\r

i+ ni sin(n{+i?�2)(&1)r&i (r&i)! {i&r&1

+ :
r

i=0
\r

i+ (!({))(r&i) ni sin(n{+i?�2)

+
1
2

nr cos(n{+r?�2). (39)

Furthermore,

(Sn(g ; 0))(2r+1)=&
1
? |

?

&?
g({)(Dn({))(2r+1) d{

=&
1
? \|

?�2n

&?�2n
+|

?

?�2n
+|

&?�2n

&? + g({)(Dn({))(2r+1) d{

=I1+I2+I3 . (40)

Let =>0 be an arbitrary fixed number. Then by virtue of Definition 5
and Lemma 2 there exists 0<=*<1 such that

&=* ln =*+vH([1�=*])(g)<=, (41)

where [a] means the integer part of a number a. Moreover, since g is
continuous at %=0 and g(0)=0, there exists 0<$<1 such that

| g({)|<=* (42)
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whenever |{|<$. Now, let us take N(=) # N so large that

2
=*n

sup
|{|�?

( | g({)|+?)<$ (43)

holds for n>N(=).
Consequently, if n>N(=), by (43) we have ?�2n<$. So then by (42)

|I1 |
n2r+1=

1
?n2r+1 } |

?�2n

&?�2n
g({)(Dn({))(2r+1) d{ }

�
1

?n2r+1 |
?�2n

&?�2n
| g({)| |(Dn({))(2r+1)| d{

�
1

?n2r+1 =*
?
n

max
|{|�?

|(Dn({))(2r+1)|

�
=*

n2r+2 :
n

k=1

k2r+1<=*. (44)

In addition, by (39) and (40), we have

&
?I2

n2r+1=
1

n2r+1 |
?

?�2n
g({)(Dn({))(2r+1) d{

=(&1)r |
?

?�2n
g({)

cos n{
{

d{+ :
2r

i=0 \
2r+1

i + ni&2r&1

_(&1)2r+1&i (2r+1&i)! |
?

?�2n
g({)

sin(n{+i?�2)
{2r+2&i d{

+ :
2r+1

i=0
\2r+1

i + ni&2r&1 |
?

?�2n
g({)(!({))(2r+1&i) sin(n{+i?�2) d{

+
(&1)r+1

2 |
?

?�2n
g({) sin n{ d{

=I21+I22+I23+I24 . (45)

Let us estimate I21 . If

%k, n=
?
2n

+
?(k&1)

n
(46)
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for k=1, 2, ..., n, %0, n=0, and %n+1, n=?, then by Abel's transformation we
get

(&1)r I21=|
?

?�2n
g({)

cos n{
{

d{

= :
n

k=1
|

%k+1, n

%k, n

g({)
cos n{

{
d{

= :
n

k=1
|

%k+1, n

%k, n

(g({)& g(%k, n))
cos n{

{
d{

+ :
n

k=1

g(%k, n) |
%k+1, n

%k, n

cos n{
{

d{

= :
n

k=1
|

%k+1, n

%k, n

(g({)& g(%k, n))
cos n{

{
d{

+ :
n&1

k=0

(g(%k+1, n)& g(%k, n)) |
?

%k+1, n

cos n{
{

d{. (47)

Since

} |
?

%k, n

cos n{
{

d{ }� } |
%k+1, n

%k, n

cos n{
{

d{ }
and

|
%k+1, n

%k, n
} cos n{

{ } d{�
2
k

for k=1, 2, ..., n, then by (42), (43), (46), and (47) we have

1
2

|I21 |� :
n

k=1

gk, n

k
+ :

n&1

k=0

| g(%k+1, n)& g(%k, n)|
k+1

�=*+2 :
n

k=1

gk, n

k

for n>N(=), where gk, n=sup{ # [%k, n , %k+1, n] | g({)& g(%k, n)|.
According to Definition 5 we have

1
4

|I21 |<=*+ :
m

k=1

gk, n

k
+ :

n&m

k=1

gk+m, n

k+m
�=*+ :

m

k=1

gk, n

k
+vH(m)(g)

for an arbitrary m=1, 2, ..., n&1.
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Let us set m=[1�=*]. Then %k, n=?�2n+?(k&1)�n�2?[1�=*]�n<$
for n>N(=) and k=1, 2, ..., m+1 (see (43)). So by (42) gk, n�2=*,
k=1, 2, ..., m+1, and taking into account (41) we obtain

|I21 |�K \=*+=* :
[1�=*]

k=1

1
k

+vH([1�=*])(g)+<K=. (48)

Now from (45) we have

|I22 |� :
2r

i=0
\2r+1

i + ni&2r&1(2r+1&i)! |
?

?�2n

| g({)|
{2r+2&i d{.

So for n>N(=) and i=0, 1, ..., 2r, by (42) and (43) we have

ni&2r&1 |
?

?�2n

| g({)|
{2r+2&i d{=ni&2r&1 \|

$

?�2n
+|

?

$ +
| g({)|

{2r+2&i d{

�Kni&2r&1 \=*n2r+1&i+
1

$2r+1&i sup
|{|�?

| g({)|+
<K \=*+

1
n$

sup
|{|�?

| g({)|+<K=*.

Hence

|I22 |<K=* :
2r

i=0
\2r+1

i + (2r+1&i)!<K(r) =*. (49)

It is obvious that by increasing N(=), if necessary, in view of (45) and the
Riemann�Lebesgue Theorem [14, Thm. (4.4), p. 45], we get

|I23 |+|I24 |< :
2r

i=0
\2r+1

i + ni&2r&1 |
?

?�2n
| g({)(!({))(2r+1&i)| d{

+ } |
?

?�2n
g({) !({) cos n{ d{ }

+
1
2 } |

?

?�2n
g({) sin n{ d{ }<= (50)

for n>N(=).
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Hence, by virtue of (45), (48), (49), and (50) we have |I2 |�n2r+1<K(r) =.
Then by symmetry we get |I3 |�n2r+1<K(r) = as well. So, taking into
account (40) and (44), we obtain

|(Sn(g; 0))(2r+1)|
n2r+1 <K(r) =

for n>N(=). Since = is arbitrary, (37) follows and sufficiency of assertion
(a) of Theorem 1 is proved.

Necessity. If condition (9) does not hold, then (see [13, Proof of
Thm. 3, p. 116]) there exists a decreasing sequence of positive numbers
(ck)�

k=1 , ck � 0 as k � �, such that

:
�

k=1

ck

*k
<� (51)

and

:
�

k=1

ck

k
=�. (52)

Let us, for a fixed r # Z+ , consider a sequence of linear functionals
Sn(g)=(Sn(g; 0))(2r+1)�n2r+1, n # N, defined on the Banach space C & 4BV
with norm (35). We shall show that the sequence of norms of functionals
(&Sn&)�

n=1 is not bounded. Then the existence of g0 # C & 4BV such that

lim sup
n � �

|(Sn(g0 ; 0))(2r+1)|
n2r+1 >0 (53)

immediately follows from Banach�Steinhaus Theorem. For this purpose let
us define functions gn as follows:

gn({)={ck cos n{
0

for { # [%k, n , %k+1, n], k=1, 2, ..., n&1,
for all other { # [&?, ?],

(54)

where %k, n is defined by (46) and n # N.
It follows from (51) and (54) that gn # C and &gn&4<K, n # N. Mean-

while, combining (39), (40), (44), (45), (49), and (50), we have

|Sn(g)|> }\|
&?�2n

&?
+|

?

?�2n+ g({)
cos n{

{
d{ }&K(r) &g&C[&?, ?] (55)
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for n # N. Hence, according to (54) we have

|Sn(gn)|> :
n&1

k=1
|

%k+1, n

%k, n

cos2 n{
{

d{&Kc1>K1 :
n&1

k=1

ck

k
&K2 . (56)

Then by (52) and (56) &Sn &�|Sn(gn)|�&gn&4 � � as n � �, and the
necessity of statement (a) of Theorem 1 is proved. K

Proof of Theorem 2(a): Sufficiency. If a modulus of variation v(n) satisfies
(10), then V[v]/HBV [1, Thm. 2, p. 232] (just set *k=k, k # N). Hence,
sufficiency of condition (10) immediately follows from Theorem 1.

Necessity. Suppose that condition (10) does not hold, i.e.,

:
�

k=1

v(k)
k2 =�. (57)

Applying Abel's transformation it is trivial to check that (57) implies

:
�

k=1

v(k)&v(k&1)
k

=�. (58)

Again we apply the idea of unboundedness of the sequence of linear
functionals (Sn)�

n=1 defined on the Banach space C & V[v] with norm (36).
Following the construction of the counterexample for Theorem 1, let us
consider the sequence of functions (54), where ck=v(k)&v(k&1), k # N.

Since gn # C and &gn&V<K for n # N, the rest of the proof follows from
(56) and (58). K

Proof of Theorem 3(a): Sufficiency. It is known (see [6, Proof of Coro. 3,
p. 479] and [12, p. 620]) that conditions (11), (12), and (13) are equivalent.
At the same time, condition (11) implies the following inclusion [18, Thm. 1,
p. 112]: V8 /HBV. The rest of the proof follows from Theorem 1.

Necessity. Let us assume that condition (11) does not hold, i.e.,

:
�

k=1

9(1�k)=�. (59)

As is obvious, we consider the same sequence of linear functionals Sn ,
but now on the Banach space C & V8 with norm (34). Again, we consider
the sequence of functions defined by (54), where now ck=�(1�k), k # N
(see Definition 4).
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Since the functions gn are continuous by construction, let us estimate
&gn&8 . Obviously, by the convexity of 8, we have

v8(gn)= :
n&2

k=1

8(�(1�k)&�(1�(k+1)))

< :
n&2

k=1

(8(�(1�k))&8(�(1�(k+1))))<8(�(1)),

and consequently &gn&8<K for n # N. To complete the proof it suffices to
estimate Sn(gn). From (56) we have

Sn(gn)>K1 :
n&1

k=1

�(1�k)
k

&K2 . (60)

But it is known [12, conditions (1) and (5), pp. 619, 620] that condition
(11) is also equivalent to the condition

:
�

k=1

�(1�k)
k

<�. (61)

Hence, (59) implies the divergence of series (61), and by (60), the
unboundedness of Sn(gn). The rest of the proof follows from the Banach�
Steinhaus Theorem. K

As to assertions (b) of Theorems 1�3, it was mentioned in [9, p. 448]
that for any odd function g # L, (Sn(g; 0))(2r)=0 (r, n # Z+), independent
of the existence of a jump of a function g at %=0.

Theorems 4�6 are proved virtually identically, and so we omit the
proofs.

Proof of Theorem 7. The following is an outline of the proof: First we
establish the uniform equiconvergence of Fourier�Tchebycheff series and
Fourier series with respect to the system of generalized Jacobi polynomials
for an arbitrary function f # HBV strictly inside of the interval [x& , x&+1],
&=0, 1, ..., M; then, applying Bernstein's inequality for polynomials, we
obtain:

&(Sn(w ; f ; } )&S (&1�2, &1�2)
n ( f ; } ))(r)&C[2(&; =)]=o(nr) (62)

for every f # HBV, fixed &=0, 1, ..., M, and r # Z+, where = # (0, (x&+1&x&)�2),
and 2(&; =) is defined by (19).

Finally, we shall prove identity (15) for the Fourier�Tchebycheff series of
a function f # HBV.
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Taking into account (26), for the first step it suffices to show the
following: Let w # GJ, w(t)�h(t)=\(t), and suppose f # HBV. Then

&Sn(w; f ; } )&Sn(\; f ; } )&C[2(&; =)]=o(1) (63)

for every fixed = # (0, (x&+1&x&)�2), &=0, 1, ..., M.
Indeed, since Sn(w; Qn ; x)=Qn(x) and the difference Rn(w; f ; x)= f (x)

&Sn(w ; f ; x) is orthogonal with respect to the weight \(t)=(1&t):

(1+t); |t&x1 | $
1 } } } |t&xM |$M to all Qn # Hn , we have

Sn(w; f ; x)&Sn(\; f ; x)

=|
1

&1
Rn(\; f ; t)[h(t)&h(x)] Kn(w ; x ; t) \(t) dt=J. (64)

Next, by the Christoffel�Darboux formula (20) and by virtue of (64) we
get

J<|
1

&1
|Rn(\; f ; t)|

|h(t)&h(x)|
|t&x|

( |Pn(w ; x)| |Pn&1(w ; t)|

+|Pn&1(w ; x)| |Pn(w; t)| ) \(t) dt

=J1+J2. (65)

Let = # (0, (x&+1&x&)�2) be fixed and

x # 2(&; =). (66)

Now, by (1), (21), (65), and (66), we have

J1<K(=) \|[&1, 1]"2(&; =�2)
+|

2(&; =�2) + |Rn(\; f ; t)|
|(h ; |t&x| )

|t&x|
\� (t) dt

=J11+J12, (67)

where the weight \� (t)=(1&t):� (1+t);� |t&x1 |$� 1 } } } |t&xM | $� M is defined as
follows:

:� ={:,
:�2&1�4,

if &1<:<&1�2,
if :�&1�2,

(68)

;� ={;,
;�2&1�4,

if &1<;< &1�2,
if ;� &1�2,

(69)

$� &={$&

$&�2,
if &1<$&<0,
if $&�0.

(70)
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By (66), |t&x|>=�2 for J11. Consequently, using Ho� lder's inequality, we
get

J 11<K(=) |
[&1, 1]"2(&; =�2)

|Rn(\; f ; t)| \� (t) dt

<K(=) |
1

&1
|Rn(\; f ; t)| (\(t))1�2 [\� (t)(\(t))&1�2] dt

<K(=) \|
1

&1
(Rn(\; f ; t))2 \(t) dt+

1�2

\|
1

&1
(\� (t))2 (\(t))&1 dt+

1�2

.

(71)

But (\� (t))2 (\(t))&1 # L (see (68)�(70)), and by the completeness of the
system _(\) [17, Thm. 3.1.5, p. 40], we obtain

J11=o(1). (72)

Regarding J12, by (21), (66), and (67) we have

J12<K(=) |
2(&; =�2)

|Rn(\; f ; t)|
|(h ; |t&x| )

|t&x|
dt. (73)

Since for f # HBV Rn(\; f ; x)=o(1) for x # (&1, 1), x{x1 , ..., xM , (this,
for example, follows from (26) and Theorem 2 [18, p. 112]), then in view
of (3), (23), and the Lebesgue Convergence Theorem [14, Thm. 15, p. 76],
we obtain

J12=o(1) (74)

uniformly with respect to (66). Hence, combining (67), (72), and (74), we
get J1=o(1). By an obvious similarity, J2=o(1) as well, and this in conjunction
with (64) and (65) proves (63).

To prove (62) we apply Bernstein's inequality (cf. [17, Thm. 1.22.3,
p. 5]): if Qn # Hn , then

|Q$n(x)|�
n

- 1&x2
&Qn&C[&1, 1] (75)

for x # [&1, 1] and n # N.
Indeed, for a fixed = # (0, (x&+1&x&)�2), &=0, 1, ..., M, by virtue of (26)

and (63) we have

=n=&Sn(w; f ; } )&S (&1�2, &1, 2)
n ( f ; } )&C[2(&; =�2)]=o(1) (76)

for an arbitrary f # HBV.
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Hence, applying (75) to the polynomial

Qn(x)=Sn(w; f ; x)&S (&1�2, &1�2)
n ( f ; x)

by (76) for r=1 we obtain

1
n

&(Sn(w; f ; } )&S (&1�2, &1�2)
n ( f ; } ))$&C[2(&; =)]�K(=) =n=o(1). (77)

The proof of (62) for r>1 is an obvious repetition of the above
procedure.

Thus, to complete the sufficiency part of the proof it is enough to show
that identity (15) for the Fourier�Tchebycheff series is correct.

Indeed, for a given f # HBV, let the function g be defined by (30).
Differentiating with respect to x the obvious identity S (&1�2, &1�2)

n ( f ; x)=
Sn(g; %), where x=cos %, we obtain by induction the following representation
(r # Z+):

(S (&1�2, &1�2)
n ( f ; x))(2r+1)

=&(1&x2)&r&1�2 (Sn(g; %))(2r+1)+ :
2r

i=1

di (x)(Sn(g; %))(i) (78)

for % # [0, ?], where di , i=1, 2, ..., 2r, are infinitely differentiable functions
on (&1, 1).

In addition,

&(Sn(g; } ))(i)&C[&?, ?]=o(n2r+1) (79)

for i=1, 2, ..., 2r, r # N, since g # W/L. Hence taking into account that
f (x\)= g(%� ), % # (0, ?), (15) immediately follows from (8) and (62).
Thus the sufficiency of Theorem 7 is proved.

As to the assertion of definitiveness of Theorem 7, let us suppose that a
sequence 4=(*k)�

k=1 is such that condition (9) does not hold. Then we
shall show the existence of a continuous function f� # 4BV such that

lim sup
n � �

|(Sn(w; f� ; x� ))(2r+1)|
n2r+1 >0 (80)

for some fixed x� # (&1, 1), x{x1 , ..., xM , and thus identity (15) will not
hold.

It is known [2, Coro. 4.2, p. 51] that if a weight w # GJ also satisfies
conditions (16), then

&Sn(w; f ; } )&S (&1�2, &1�2)
n ( f ; } )&C[2(&; =)]=o(1) (81)
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for every f # C and fixed = # (0, (x&+1&x&)�2), &=0, 1, ..., M. Hence the
combination of (81) and Bernstein's inequality (75) guarantees (62) for
every f # C, which in conjuncture with (78) and (79) implies

1
n2r+1 |(1&x2)r+1�2 (Sn(w; f ; x))(2r+1)+(Sn(g; %))(2r+1)|=o(1)

for any fixed x # (&1, 1), x{x1 , ..., xM , where the function g is related
to the function f via the formula (30). Then it suffices to consider the expression
above for x� =cos %� {x0 , x1 , ..., xM+1 and the function g0(%&%� ), where g0

is the function constructed for the counterexample of Theorem 1. K

Theorems 8 and 9 are proved similarly, and so we omit the details.

Remark. It is easy to check that a statement similar to the conclusion
(b) of Theorem 1 is correct for Fourier�Tchebycheff series. Indeed, for any
odd function (1&t2)&1�2 f # L, (S (&1�2, &1�2)

n ( f ; 0))(2r)=0 for n�2r, r # N,
independent of the existence of a jump of the function f at x=0. This
follows from the fact that a Tchebycheff polynomial P (&1�2, &1�2)

n (x) is an
even or odd function depending on whether its degree n # Z+ is even or
odd [17, formula (4.1.3), p. 59].

Proof of Corollary 1. Since

|(Sn(w; f ; x))(r)|� :
n

k=r

|ak(w; f )| |(Pk(w; x))(r)|

for r # Z+ , by virtue of Theorem 7 it is sufficient to show that

|(Pk(w; x))(r)|�K(x) kr (82)

for a fixed x # (&1, 1), x{x1 , ..., xM , and an arbitrary k # N. But (82) is an
easy consequence of (21) and Bernstein's inequality (75). In the case when
a weight w # GJ also satisfies condition (18), then inequality (82) holds for
all x # (&1, 1) and the last implies that f # C. K

Corollaries 2 and 3 are proved analogously.
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