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Abstract In this paper a hydrodynamic journal sliding bearing, forming with two nonparallel
surfaces that the lower surface moves with a unidirectional velocity and the upper surface is
stationary shaped with exponential geometry is verified mathematically. The values of
volumetric flow rate and distribution of pressure for incompressible lubricant flow between
two supports in several conditions of velocity with different variables are determined. The
results indicate that by increasing the amount of constant (m), the maximum oil pressure in the
bearing will face an extreme decrease, and also by increasing the α coefficient, the rate of
volumetric flow rate will decrease.
& 2015 National Laboratory for Aeronautics and Astronautics. Production and hosting by Elsevier B.V.
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1. Introduction

Bearings allow smooth and low friction motion between
two surfaces loaded against each other. The motion can be
either rotary (such as a shaft turning within housing) or
r Aeronautics and Astronautics. Produ
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linear (one machine element moving back and forth across
another). The most basic bearing is the plain type that has
no moving parts and it supports loads through sliding
motion. Conversely, rolling-element bearings are subjected
to very little sliding and the load is supported by numerous
rolling members inside the bearing. In either situation,
proper lubrication is essential to long bearing life. Plain
bearings generally cost less than similarly sized rolling-
element bearings, but rolling-element bearings generally
can tolerate heavier loads and higher speeds. Bearings that
support loads perpendicular to their axis of rotation are
ction and hosting by Elsevier B.V. This is an open access article under the
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Nomenclature

u x velocity (unit: m/s)
v y velocity (unit: m/s)
w z velocity (unit: m/s)
b width of bearing (unit: m)
D shaft diameter of rolling bearing (unit: m)
L length of bearing (unit: m)
U circumferential velocity (unit: m/s)
Q volumetric flow (unit: m3/s)
P film pressure (unit: N/m2)

h1 minimum gap between the surfaces (unit: m)
F external load (unit: N)
h gap between the surfaces (unit: m)
Patm atmospheric pressure (unit: Pa)

Greek letters

ρ fluid density (unit: kg/m3)
α,β,m constant
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called radial-type whereas bearings supporting loads paral-
lel to their axis of rotation are termed thrust bearings. Thrust
bearing, used to support thrust load in rotating machinery
consist of multiple pads, either fixed or pivoted. Research
on oil flow through a lubricating groove carried out by
Ettles [1] showed that about 85% of hot oil leaving the gap
enters the next oil gap in the case of laminar flow. Later in
his subsequent papers [2,3], Ettles proposed an idea of the
“hot oil carry-over factor”. Values for this factor were
assessed on an experimental basis as a function of the
sliding speed and size of the gap between the bearing pads.
Some principles of lubrication are presented in [4].

Other models of oil flow in the bearing groove were
proposed by Vohr [5], who presented a model including a
variety of heat exchange phenomena in the groove, and
Heshmat and Pinkus [6] and Kicinski [7], who calculated
both the flow of oil and heat balance. Some phenomena in
the oil gap are described with increasing accuracy by these
derived models. Various arrangements aimed at improving
the scoring of hot oil layer moving with the runner have
been proposed [8–16]. In this paper volumetric flow rate
and distribution of pressure are presented for several
conditions. The sliding bearing is presently widely used
by industry in the form of thrust bearing [17]. Hydrody-
namic thrust bearings are used mainly in large and heavy
equipment such as: ships propeller shafts (tail shafts), fans
and pumps, large steam and gas turbines engines [14],
vertical axis machines such as coal crushers [15] and finally
heat exchanger [16,18].
Figure 1 Geometry of physical model.
2. Hydrodynamic theory of lubrication

The hydrodynamic theory of lubrication of journal bearings
is older than a century. In his famous experiment, Tower has
shown the pressure distribution in the lubricating oil film in the
clearance of journal bearings [15,19]. Also in this year Petroff
measured the friction torque of oil lubricated sliding bearings
and created a formula to calculate it. Knowing the results of
experiments made by Tower and Petroff, Reynolds evolved the
basic equation of hydrodynamic theory of lubrication of journal
bearings from the Navier-Stokes equations using many assump-
tions. The Reynolds equation cannot be solved in full form
therefore it is necessary to make some simplifications to get a
simple solution. There are two general simplifications: the
infinitely long bearing (b/d¼1, b: width of the bearing and d:
shaft diameter of rolling bearing) and the short bearing
assumption (∂p/∂zc∂p/∂z) [1]. In 1902 Sommerfeld solved
the Reynolds equation making special boundary conditions for
pressure distribution in tangential direction which according to
him is called Sommerfeld conditions resulting in a central
symmetric solution. In the practice the often used boundary
conditions are the following: the Sommerfeld conditions

pφ ¼ π ¼ 0 and the Reynolds conditions ∂2p
∂φ2

� �
φ ¼ π

¼ 0 [15].

Using these assumptions many solutions were achieved during
the last century for static and also dynamic operating conditions.
Nowadays, numerical methods are often used for solving the
Reynolds equation and can be seen in Kozma [20–28].
3. Description of the optimization problem

The sliding bearings consist of at least two contact surfaces.
One of the surfaces is moving with a relative velocity U as it
can be seen in Figure 1 gap between the sliding surfaces is
filled with incompressible lubricant. Concerning the friction
state in the sliding bearing, three cases are possible:

3.1. Dry friction

Where the surfaces are in full contact. Failure danger of
the sliding surfaces is large, because of the roughness of the
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surfaces. During the operation and maintenance of the
bearing this case should be avoided if possible.
3.2. Mixed friction

States between the fluid friction and dry friction. This is
possible during the running - in period or in the starting and
stopping process, because the velocity is not enough to
maintain the necessary lubricant flow in the gap.
Table 1 Physical parameters.

μ/(Pa � s) h1/m ρ/(kg/m3) L/cm U/(m/s)

0.1 0.0001 889 5 1

Figure 2 Volumetric flow rate vs. m when U¼1 m/s.

Figure 3 Pressure distribution against position, U¼ l m/s and
m¼0.5.
3.3. Fluid friction

In this case the surfaces are not in contact, the pressure in
the lubrication film is in equilibrium with the external load
F. The sliding bearings are supposed to operate in these
conditions; therefore this is the most important case for the
user and for the designer [29].
In this paper two nonparallel surfaces that the lower

surface moves with a unidirectional velocity U as shown in
Figure 1 and the upper surface is stationary and supposed
with Exponential geometry as shown in Eq. (2) are
considered.
The gap between the sliding surfaces is filled with

incompressible lubricant. About geometry of sliding as
shown in Eq. (1) this sets named hydrodynamic journal
sliding bearing. The sliding direction is such that a
convergent fluid film is formed between the surfaces to
produce hydrodynamic pressure.
It is assumed that the width of the bearing, b, is much

greater than its length, l, therefore most of the flow through
the gap between the two surfaces occurs in the direction of
the x axis. The governing equations are as follow:

h¼ h1e
� x
mlð Þ ð1Þ

U ¼ βxa ð2Þ
where h1¼hmin is the minimum gap between the surfaces
and α; β are variable parameters that we produced for
commercial bearing as special data to compare in useful
curve to understanding optimum value.
From the Navier-Stokes equation we have [30]

ρ
∂u
∂t

þ u
∂u
∂x

þ v
∂u
∂y

� �
þ ∂p

∂x
¼ μ

∂2u
∂x2

þ ∂2u
∂y2

� �
ð3Þ

And the boundary conditions are:

@y¼ 0-u¼U

@y¼ h-u¼ 0 ð4Þ

Solving this equation in a special condition we obtain
[30]

u¼ 1
2μ

∂P
∂x

ðy2�yhÞ þ U 1� y

h

� �
ð5Þ
Q¼
Z h

0
udy-Q¼ 3

4
Uh1

e
2
m�1

e
3
m�1

ð6Þ

In case of fluid friction the pressure distribution in the
lubricant film can be determined from Eqs. (5) and (6).
According to the above equations, the pressure distribution
depends on the gap form function h(x,z), the viscosity of the
lubricant μ, the relative velocity U and the parameter of m.

P¼ Patm þ 3μUlm

h1
2 ðe2x

ml�1Þ� e
2
m�1

e
3
m�1

ðe3x
ml�1Þ

" #
ð7Þ
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For drawing these equations we must introduce physical
parameters then with refer to industries fluid lubricant,
ordinary oil is supposed, therefore as shown Table 1.

For more consideration, one must care to these following
diagrams (Figure 2 and Figure 3).

This part presents the differences between the profiles of
relative velocities with reference to Eq. (2).

After solving the Navier-Stokes equations for this model
for obtaining volumetric flow and film pressure, we have
the following equations whereas the properties are shown in
the Figures 4–7.
Figure 4 Volumetric flow rate against m when (a) α¼ 0; β¼
1; 2; 2:5, (b) α¼ 1; β¼ 1; 2; 2:5, and (c) α¼ 2; β¼ 1; 2; 2:5.
Q¼ 1
12μ

� 18μβh1
R l
0 x

αe
2x
mldx� 3ρβ2

2 l2αh1
3

mlðe3
m�1Þ

( )
ð8Þ

P¼ Patm þ 6μβ
h1

2 ml2e
2
m� m2l2

4 e
2
m þ m2l2

4

� �

� 1�3
e
3x
ml�1

e
3
m�1

 !
þ 1:5ρβ2l2

e
3x
ml�1

e
3
m�1

�0:5ρβ2x2 ð9Þ
Figure 5 Pressure disturbance vs. x when (a) α¼ 0;m¼ 0:5; β¼ 1;
2; 2:5, (b) α¼ 1;m¼ 0:5; β¼ 1; 2; 2:5, and (c) α¼ 2;m¼ 0:5; β¼
1; 2; 2:5.



Figure 6 Volumetric flow rate against m when β¼2.

Figure 7 Pressure disturbances vs. x when β¼2.
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In the following steps these equations are solved and the
results are presented by different curves with different

pressure and the parameters of α, m and β as follows;

α¼ 0; 1; 2

m¼ 0:5; 1; 5

β¼ 1; 2; 2:5
Step 1:
For α¼0 the following equations is obtained;

Q¼ 0:25�
3βh1ðe2

m�1Þ� ρβ2

2μml h1
3

e
3
m�1

ð10Þ

P¼ Patm þ 3μβml
h1

2 ðe2
m�1Þ � 1�3 e

3x
ml�1
e
3
m�1

� �n o

� ρβ2

2
1�3

e
3x
ml�1
3
m

 !
ð11Þ
e �1
Step 2:
For α¼1;
Q¼
3
16 βh1ml

2
m e

2
m�e

2
m þ 1

� �
� ρβ2

8μm lh1
3

ðe3
m�1Þ ð12Þ

P¼ Patm þ 6μβ
h1

2 ml2e
2
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2
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4
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e
3
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e
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e
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Step 3:
For α¼2;

Q¼ 1
ðe3m �1Þ

1:5βh1

(
l2

2 e
2
m� ml2

2 e
2
m

0
@

þm2l2

4
e
2
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4
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4. Result and discussion

4.1. Volumetric flow rate against m

Figure 4 presents the rate of volumetric flow in three
different bettacoefficient with change of m. It reveals the rate
of Q is increase when the β increase and also with decreasing
the α.
4.2. Pressure disturbance vs. x

Figure 5 presents the rate of pressure in three different β
coefficient with change of x. It show, by increasing α,
where the relative pressure is zero, it will occur in shorter
lengths and with increase in β, alteration in pressure
quantities will increase.

According to Figure 6 and Figure 7, understand that by
increasing α coefficient, the rate of Q and P decrease.
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5. Conclusions and recommendations

In this paper the values of volumetric flow rate and
distribution of pressure for incompressible lubricant flow
between two supports in several conditions of velocity with
different variables are determined. The results of this study
can be summarized as follows:
(1)
 By increasing the β coefficient, the rate of volumetric
flow rate will increase.
(2)
 By increasing the α coefficient, the rate of volumetric
flow rate will decrease.
(3)
 With attention to practical issues we know that the
more m decreases, it is better considering its func-
tioning, and it will have a higher capacity of yield
endurance, but due to structure problems an optimum
amount is satisfactory.
(4)
 The more m increases the amount of volumetric flow
rate will also increase.
(5)
 In cases of high m quantities, the manners of changes in
volumetric flow rate are independent of m.
(6)
 As m increases, the maximum oil pressure in the
bearing will face an extreme decrease.
(7)
 When α is stable, interchange for alterations in β,
with decrease in spatial m in which comes to zero, it
will tend towards higher points.
(8)
 As the amount of m increases the maximum pressure
distribution curve will tend towards shorter lengths.
(9)
 By increasing α, where the relative pressure is zero, it
will occur in shorter lengths.
(10)
 With increase in β, alteration in pressure quantities
will increase.
(11)
 In exchange for α equal to β alterations in the
pressure distribution diagram, there will be no
changes where relative pressure is zero and it will
be stable.
(12)
 With decrease in β alterations in pressure distribution
diagrams will curve towards higher m ratios.
(13)
 With increase in m, quantities and pressure changes
will decrease.
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