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Deformation induced softening is an inelastic phenomenon frequently accompanying mechanical behav-
ior of soft biological tissues. This paper presents and compare continuous and discontinuous damage
approaches to model softening effects in fibered materials such as soft biological tissues. The structural
model is formulated using the concept of internal variables that provides a very general description of
materials involving irreversible effects. We consider the internal variables associated to damage to cor-
respond to separated contributions of the matrix and the fibers. Local damage accumulation is related
to two phenomenological variables, the maximum value and the arclength of the effective free energy
attained during the loading process, respectively. A local multiplicative decomposition of the deformation
gradient into volume-preserving and dilatational parts is used that permits to model the incompressibil-
ity property of most types of soft biological tissues. In this context, damage is related only to the isochoric
part of the deformation. Finally, simulations of biaxial and uniaxial tests in two directions are used to
compare the performance of both models. Numerical simulations indicate that only a mixed model that
consider both, continuous and discontinuous, damage models is able to capture the softening phenome-
non of soft biological tissues.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Constitutive modelling of soft biological tissues has been an
area of extensive research in the last few years (Fung, 1993; Hol-
zapfel, 2001; Humphrey, 2002). Accurate mechanical models of
soft tissue coupled with appropriate numerical approaches can
potentially aid in areas such as tissue engineering, in particular
in the study of cardiovascular or orthopaedic dysfunctions, and
the simulation of surgical interventions or accident trauma. When
modelling the mechanical behavior of soft tissue, particular diffi-
culties arise. Biological soft tissues are subjected to large deforma-
tions with negligible volume changes and show an anisotropic
mechanical response due to their internal structure.

The purely elastic response of soft tissues is often modelled
within the framework of hyperelasticity by means of the definition
of a strain energy function expressed in terms of kinematic invari-
ants, first developed by Spencer (1954). This approach was further
tuned and applied to finite element simulations of soft collagenous
ll rights reserved.
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biological tissues (see, for example, Weiss et al. (1996), Peña et al.
(2007) for ligaments, Holzapfel et al. (2000) for arteries and Lanch-
ares et al. (2008) for cornea). Even though different strain energy
density functions have proved to be successful for particular appli-
cations and for describing many of the mechanical properties of
the soft tissue, their use is limited, in most cases, to the range of
physiological loads (Martins et al., 1998).

However, there are three important softening phenomena asso-
ciated to biological tissues. First, the dependence of the mechanical
response on the previously attained maximum load level very sim-
ilar to the well-known Mullins effect in rubber materials (Mullins,
1947). The Mullins effect is characterized by the following fea-
tures: when a virgin material sample is stretched from the unde-
formed state to a certain deformation, the stress–stretch curve
follows the so called primary loading curve. The subsequent
unloading is characterized by a softened behavior. Subsequent
reloading follows the former unloading curve until the previous
maximum stretch is reached. At this position the loading path
swings up and traces the primary curve again up to a new maxi-
mum. Other typical phenomenon named as preconditioning is
characterized by continuous softening during the early cycles until
achieving a certain ‘‘saturated” state (Humphrey, 2002). The area
enclosed by the loading and unloading curves, which reflects the
dissipated energy, decreases with every cycle. Finally, in the steady
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state, the loading and unloading paths almost coincide. Finally, the
softening as a result of the bond rupture and complete damage has
to be mentioned (Volokh, 2007a).

Only a few constitutive models are able to describe the inelastic
behavior of soft tissues. Hurschler et al. (1997) and Liao and Belkoff
(1999) have proposed two different formulations to describe dam-
age in soft tissue; however, these models have been restricted to
the damage of the collagenous component. A pseudo-elastic model
early developed by Ogden and Roxburgh (1999) to model the Mul-
lins effect in particle-filled rubber was suggested to capture the
hysteretic behavior of brain tissue by Franceschini et al. (2006).
Natali et al. (2005) presented a transversely isotropic constitutive
model for tendons that included elasto-damage. Hokanson and
Yazdami (1997) included isotropic damage in a constitutive model
for arteries. Balzani et al. (2006) assumed that discontinuous dam-
age occurs in arterial walls and mainly along the fiber direction.
Thus, they provided scalar damage variables for the transversely
isotropic part of a polyconvex strain energy function. Rodríguez
et al. (2006, 2008) introduced a stochastic-structurally based dam-
age model for fibrous soft tissues. Calvo et al. (2007) proposed an
uncoupled directional damage model for fibered biological soft tis-
sues that considers different damage evolutions for the matrix and
for the different fiber families. A comparison between these two
models has recently been carried out by Alastrué et al. (2007).
Modelling the softening as a result of the bond rupture and com-
plete damage is usually accomplished by using the Continuum
Damage Mechanics (CDM) theory, although does not necessarily,
much simpler approaches can be used as recently proposed by Vol-
okh (2007b). Finally, Ehret and Itskov (2008) presented a model
where anisotropic softening is considered by means of monitoring
the evolution of internal variables governing the anisotropic prop-
erties of the material.

In the present work, continuous and discontinuous damage
models for biological tissues are presented and compared to
model softening effects in soft biological tissues such as precon-
ditioning and Mullins type behavior. The paper is organized as
follows. Section 2 gives a brief review of the constitutive equa-
tions for anisotropic hyperelastic materials. Section 3 describes
the continuous and discontinuous damage models for biological
soft tissues, whereas in Section 4 the weak form of the equilib-
rium equations and the associated linearization are presented. In
Section 5, typical evolution equations for the damage variables
proposed in the literature are summarized. Section 6 shows
some numerical examples of the application of both damage
models previously described. Finally, Section 7 closes with some
concluding remarks.
2. Constitutive modelling of hyperelastic fibrous materials

Fibrous soft tissues such as ligaments and tendons, skin, arter-
ies, and veins are materials composed primarily of connective
tissue proteins, elastin and collagen, and smooth muscle cells. Stiff
collagen fibers with a given orientation are the main responsible of
the tissue anisotropy. So, these materials are modelled as a matrix
material and several families of fibers. In addition, soft biological
tissues are subjected to large deformations with negligible
volume changes, that is, only quasi-isochoric (J � 1) motions are
possible.

Let x ¼ vðX; tÞ : X0 � R! R3 denote the motion mapping and
let F be the associated deformation gradient. Here, X and x define
the respective positions of a particle in the reference X0 and cur-
rent X configurations such as F ¼ dx

dX. Further, let J � detF be the
jacobian of the motion. To properly define volumetric and devia-
toric responses in the nonlinear range, we introduce the following
kinematic decomposition (Flory, 1961):
F ¼ J
1
3F; F ¼ J�

1
3F ð1Þ

C ¼ FT F; C ¼ J�
2
3C ¼ FT F ð2Þ

The term J
1
3I is associated with volume-changing deformations,

while F is associated with volume-preserving deformations. We
shall call F and C the modified deformation gradient and the mod-
ified right Cauchy–Green tensors, respectively.

A frequently used strategy to incorporate anisotropy in contin-
uum models is based on the explicit consideration of vectors, de-
fined in the reference configuration, characterizing each direction
of anisotropy at each material point (Spencer, 1954). For materials
with two directions of anisotropy, it is necessary to introduce two
unit vectors m and n describing the anisotropy directions, and the
concept of pseudo-invariants, that are used to define the strain en-
ergy function. The following invariants and pseudo-invariants are
defined

I1¼: tr½C� I2¼:
1
2
½½trðC�2 � trC2Þ�

I4¼: m � C �m ¼ C : M I5¼: m � C2 �m ¼ C2 : M

I6¼: n � C � n ¼ C : N I7¼: n � C2n ¼ C2 : N

I8¼: ½m � n�m � C � n I9¼: m � n½ �2 ð3Þ

with I1 and I2 the first two strain invariants of the symmetric mod-
ified Cauchy–Green tensor C (Note that I3 ¼ J2 and I3 ¼ 1 for incom-
pressible materials here considered), and M ¼m�m and
N ¼ n� n are structural tensors. While the pseudo-invariants I4

and I6 have a clear physical meaning, the square of the stretch
kðm;nÞ in the fibers directions, the influence of the rest of pseudo-
invariants I5, I7, and I8 is difficult to evaluate due to the high corre-
lation between them. For this reason and the lack of sufficient
experimental data, it is usual not to include these invariants in
the definition of the strain energy function W (Spencer, 1954). Final-
ly, the pseudo-invariant I9 does not depend on the deformation, so
it does not have any relations with the strain energy.

The associated strain energy function for anisotropic materials
is therefore written as

W ¼ WvolðJÞ þWichðC;M;NÞ ¼ WvolðJÞ þWichðI1; I2; I4; I6Þ ð4Þ

The second Piola–Kirchhoff stress tensor is obtained by derivation
of (4) with respect to the right Cauchy–Green tensor. Thus, the
stress tensor consists of a purely volumetric and a purely isochoric
contribution, i.e. Svol and Sich, so the total stress is

S¼ Svolþ Sich ¼ 2
@Wvol

@C
þ2

@Wich

@C
¼ JpC�1þ2

X
j¼1;2;4;6

@Wich

@Ij

@Ij

@C
:
@C
@C

ð5Þ

Note that it is possible to obtain the Cauchy stress tensor by apply-
ing the push-forward operation to (5) (Holzapfel, 2000).

Based on the kinematic decomposition of the deformation gra-
dient tensor, the tangent operator, also known as elasticity tensor
when dealing with elastic constitutive laws, is defined in the refer-
ence configuration as

C ¼ 2
@SðC;MÞ

@C
¼ Cvol þ Cich ¼ Cvol þ 4

@2WichðI1; I2; I4; I6Þ
@C2 ð6Þ

Note that the spatial counterpart is obtained from the application of
the push-forward operation to (6).

3. Continuous and discontinuous damage models for fibered
materials

In Continuum Damage Mechanics, the free energy for the fibers
is assumed to be of the form (Souza-Neto et al., 1998)
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WðC;M;N;DkÞ ¼ W0
volðJÞ þ

X
k¼m;f1 ;f2

WichðkÞ

¼ W0
volðJÞ þ

X
k¼m;f1 ;f2

½1� Dk�W0
ichðkÞ ð7Þ

where ð1� DkÞ are known as the reduction factors (Simo, 1987),
being the internal variables Dk 2 ½0;1� normalized scalars referred
to as the damage variables, for the matrix, Dm, and the two families
of fibers, Df 4 and Df 6, respectively (Calvo et al., 2007).

Using standard arguments based on the Clausius–Duhem
inequality (Marsden and Hughes, 1994)

Dint ¼ � _Wþ 1
2

S : _C P 0 ð8Þ

and Eqs. (7) to (8) gives (Calvo et al., 2007):

Dint ¼ S� J
dW0

volðJÞ
dJ

C�1 � 2J
�2
3
X

k¼m;f1 ;f2

P : ½1� Dk�
@W0

ichðkÞ

@C

" #
:

_C
2
þ

þ
X

k¼m;f1 ;f2

@WichðkÞ

@Dk

_Dk P 0 ð9Þ

where the fourth-order tensor P ¼ I� 1
3 C�1 � C�1 is the projection

tensor with respect to the reference configuration (Holzapfel,
2000) with W0

ichðkÞðk ¼ m; f1; f2Þ being the contributions of the matrix
and the two families of fibers, respectively. Eq. (9) leads to the
representation

S ¼ 2
@WðC;MÞ

@C
¼ Svol þ

X
k¼m;f1 ;f2

½1� Dk�S0
ich ð10Þ

where Svol and S0
ich denote a purely volumetric and a purely iso-

choric effective contribution of the stress tensor of the undamaged
material (5), whereas the principle of positive dissipation leads to

Dint ¼
X

k¼m;f1 ;f2

fk
_Dk P 0 ð11Þ

with fk conjugate state functions of the internal variables Dk defined
as

fm ¼ �
@WichðmÞ

@Dm
¼ W0

ichðmÞðCÞP 0

ff1
¼ � @Wichðf 1Þ

@Df1

¼ W0
ichðf 1ÞðC;MÞP 0

ff2 ¼ �
@Wichðf 2Þ

@Df2

¼ W0
ichðf 2ÞðC;NÞP 0 ð12Þ

In order to complete the constitutive model we have to determine
the evolution equation for the internal damage variables Dk. First,
a Mullins-type discontinuous damage evolution is assumed where
the damage accumulation occurs only within the first cycle of a
strain-controlled loading process. Further strain cycles below the
maximum effective strain energy reached will not contribute to this
type of damage. Second, we take into account independently of the
mechanism above, a continuous damage accumulation within the
whole strain history of the deformation process which is also gov-
erned by the local effective strain energy (Miehe and Keck, 2000).
The total damage is then described by the constitutive expression

Dk¼
: Da

kðaÞ þ Db
kðbÞ ð13Þ

where Da
k : Rþ ! Rþ and Db

k : Rþ ! Rþ are monotonically increasing
smooth functions with the following properties Da

kð0Þ ¼ 0, Db
kð0Þ ¼ 0

and Da
kðaÞ þ Db

kðbÞ 2 ½0;1� 8a;b. They can be considered as shape
functions which relate the damage variables Dk to the new variables
a and b which describe the discontinuous and the continuous dam-
age, respectively. These new variables are related to the evolution of
the damage driving forces fk as follows.
The discontinuous damage (Mullins-type) is assumed to be gov-
erned by the variable

akðtÞ¼
: max

s2ð�1;tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W0

ichðkÞðCðsÞÞ
q

ð14Þ

Thus, aðtÞ is simply the maximum thermodynamic force or effective
strain energy which has been achieved within the loading history
interval ½0; tÞ. We define a damage criterion in the strain space by
the condition that, at any time t of the loading process, the follow-
ing expression is fulfilled (Simo, 1987)

UkðCðtÞ;Nkt Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W0

ichðkÞðCðtÞÞ
q

� akðtÞ ¼ Nk � akðtÞ 6 0 ð15Þ

The equation UkðCðtÞ;Nkt Þ ¼ 0 defines a damage surface in the strain
space. Finally, the evolution of the damage parameters Dk is charac-
terized by an irreversible equation of evolution such as (Calvo et al.,
2007)

dDa
k

dt
¼

�hkðNk;akÞ _Nk if Uk ¼ 0 and Nk : _C > 0
0 otherwise

(
ð16Þ

This underlines the discontinuous character of this damage effect.
There is no damage accumulation if the thermodynamic force fk lies
inside an undamaged domain Da :¼ fNk 2 RþjNk � akðtÞ 6 0g. Here,
Nk :¼ @/k

@C is the normal to the damage surface in the strain space, Nk

are defined at the current time s and �hkðNk;akÞ are given functions
that characterize the damage evolution in the material.

Continuous damage is assumed to be governed by the arclength
of the respective driving damage force or effective strain energy.

bkðtÞ¼
:
Z t

0
j _f kðsÞjds ð17Þ

Thus, we have the simple evolution equation

_bk ¼ j _f kj ¼ signð _W0
ichðkÞÞ

with the initial condition bkð0Þ ¼ 0. Therefore bk monotically in-
crease within the deformation process.

The iterative Newton procedure to solve a nonlinear finite ele-
ment problem requires the determination of the consistent tangent
material operator. This can be derived analytically for the given
material Eq. (6). The symmetric algorithmic material tensor is ex-
pressed as (Simo, 1987)

C ¼ C0
vol þ

X
k¼m;f1 ;f2

½1� Dk�C0
ichðkÞ � �g0ðkÞS

0
ichðkÞ � S0

ichðkÞ

h i
ð18Þ

with the continuous tangent factor �g0ðkÞ defined as

�g0ðkÞ ¼
_Da

kðaÞ þ _Db
kðbÞsignð _f kÞ if Uk ¼ 0 and Nk : _C > 0

_Db
kðbÞsignð _f kÞ otherwise

(

ð19Þ

This completes the constitutive formulation of anisotropic finite
strain elasticity with damage-caused energy-based softening
effects. This results in a symmetric algorithmic tangent modulus,
essential for the solution of the implicit finite element equations.
4. Evolution equations for the internal damage variables

Typical evolution equations for the discontinuous damage vari-
ables, Da

k , proposed in the literature for fibered materials such as
soft biological tissues have been used. They correspond to the fol-
lowing expressions (Calvo et al., 2007; Peña et al., 2008a; Rodríguez
et al., 2008)
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Da
k ðNkt Þ¼

:

0 if Nkt <N0
mink

1� 1�expðlk½N
k
t �Nmaxk

�Þ
1�expðlk½Nmink

�Nmaxk
�Þ if N0

mink
6Nkt 6N0

maxk

1 if Nkt >N0
maxk

8>>>><
>>>>:

ð20Þ

Da
k ðNkt Þ¼

:
0 if Nkt <N0

mink

K2
k ½1�gk½K

2
k�1�� if N0

mink
6Nkt 6N0

maxk

1 if Nkt >N0
maxk

8>><
>>: ð21Þ

Da
k ðNkt Þ¼

: 1
2

1þ2nkNkt expð2nk½½2Nkt=qk��1�Þ�1
2nkNkt expð2nk½½2Nkt=qk��1�Þþ1

� �
ð22Þ

with 0 6 K ¼
Nkt
�N0

mink

N0
maxk

�N0
mink

6 1 a dimensionless variable and N0
mink

the

variables (14) associated to the strain energies at initial damage
for matrix and fibers, respectively, N0

maxk
the variables (14) associ-

ated to the strain energy at total damage for matrix and fibers,
and gk 2 ½�1:0;1:0�, lk P 0, nk P 0 and qk P 0 are model
parameters.

Some remarks are needed regarding the previous evolution
equations for the discontinuous damage variables, Da

k . When
Nkt ¼ N0

maxk
, Eq. (20) has not first continuous derivative, so some

numerical problems could appear. Eq. (21) is a non-monotonically
increasing function for the material parameter gk outside the inter-
val ½�1:0;1:0�. This implies that the quality of the fitting of exper-
imental data may be low when constants are restricted by stability
considerations. In addition, in Eq. (22), we can not control damage
initiation since the parameters N0

mink
and N0

maxk
are not considered.

With all this in the mind, we consider the new evolution equation

Da
kðNkt Þ¼

:

0 if Nkt <N0
mink

1
2 1þ2fkKk expð2fk½2Kk�1�Þ�1

2fkKk expð2fk½2Kk=qk�þ1Þ

� �
if N0

mink
6Nkt 6N0

maxk

1 if Nkt >N0
maxk

8>>>><
>>>>:

ð23Þ

that is convex for fk P 0 (Fig. 1).
Finally, the continuous damage Db

k is assumed to have the form

Db
k ¼ db

k1 1� exp � b

cb
k

 !" #

Note that the parameters db
k1 describe the maximum possible con-

tinuous damage. Thus we have the constraint db
k1 2 ½0;1�. We refer

to cb
k as the damage saturation parameters.
Fig. 1. Damage evolution for the modified sigmoidal function (23) with 0 6 K 6 1
and fk P 0.
5. Weak formulation

The spatial version of the principle of virtual work is written as:

dWðu; duÞ ¼ dWintðu; duÞ þ dWextðu; duÞ ð24Þ

where

dWintðu; duÞ ¼
Z

X
r : dedv ð25Þ

being e ¼ 1
2 ðI� F�T F�1Þ the Euler–Almansi strain tensor.

dWextðu; duÞ ¼
Z

X
q½b� €u� � dudv þ

Z
@Xr

�t � duds ð26Þ

and d the appropriate linearization of each quantity in the direction
of the admissible variation du, described below.

We shall consider a purely static problem, so that €u ¼ 0. In addi-
tion, we assume that the external loads (the body forces b and the
surface traction �t) are ‘dead’ (independent of the deformation), so
that the linearization of the external virtual work vanishes, i.e.
DMudWextðu; duÞ ¼ 0. Hence, the linearization of the variational
Eq. (24) only affects to the internal virtual work dWint , which will
be considered below. The idea is first to pull-back the spatial quan-
tities to the reference configuration (internal virtual work in the
material description), then to linearize and to push-forward again
(Lie linearization Marsden and Hughes, 1994). Starting with the
equivalent pull-back

dWintðu; duÞ ¼
Z

X
rðuÞ : deðuÞdv ¼

Z
X0

SðEðuÞÞ : dEðuÞdV ð27Þ

with E ¼ 1
2 ðF

T F� IÞ the Green–Lagrange strain tensor, we consider
now the linerization of the internal virtual work in the material
description

DMudWintðu; duÞ ¼
Z

X0

½dEðuÞ : DMuSðEðuÞÞ þ SðEðuÞÞ : DMudEðuÞ�dV

ð28Þ

The first term corresponds to the material stiffness matrix and the
second to the geometric part of the stiffness matrix. We can then
write

DMudWintðu; duÞ ¼
Z

iX0

½dEðuÞ : CðuÞ : DMuEðuÞ þ SðEðuÞÞ

: DMudEðuÞ�dV ð29Þ

Considering the push-forward operations already derived, from (29)
and taking into account the relation dv ¼ JdV , the linearized virtual
work in the spatial description may be written as (Holzapfel, 2000)

DMudWintððuÞ; duÞ

¼
Z

X

@dua

dxb
cabcd

@Muc

dxd
þ @dua

dxb

@Mua

dxd
rbd

� �
dv

¼
Z

X

@dua

dxb
½cabcd þ dacrbd�

@Muc

dxd
dv ð30Þ

where ðcþ d� rÞ represents the elasticity tensor that includes the
material and geometric parts of the consistent tangent stiffness
matrix.
6. Numerical examples

The continuous and discontinuous damage models here pre-
sented were implemented into the general-purpose finite element
software ABAQUS (Hibbit, Karlsson., Sorensen, Inc., 2006) by means
of a UMAT subroutine. The mechanical problem was solved using a
fully geometrically nonlinear formulation. In order to illustrate the
performance and the physical mechanisms involved in the consti-



Table 1
Material and damage parameters for biaxial simple tension. C1, C2, and C3 are in MPa,
N is in MPa1=2 and other parameter are dimensionless.

C1 C2 C3 C4 D
0.056 0.0 1.37 1.095 0.00001

Nm
min Nm

max fm db
m1 cb

m Nf
min Nf

max ff db
f1 cb

f
0.0 2.1 0.55 0.25 2.0 0.0 6.15 0.82 0.25 3.0
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tutive model presented herein, we analyzed several examples that
correspond to different tissues under some typical experimental
tests.

6.1. Influence of continuous and discontinuous damage: biaxial simple
tension

A biaxial test on a plane strain problem is presented in this
example. Some differences between continuous, discontinuous
and mixed (continuous and discontinuous) damage models are
shown herein. Only one family of fibers is defined along the X
direction. The particular form of the deviatoric function Wich is de-
fined in (31) (Natali et al., 2005) and the volumetric part of the
strain energy function is always stated as Wvol ¼ 1

D ln2ðJÞ (Holzapfel,
2000).

W0
ichðmÞ ¼ C1½I1 � 3� þ C2½I2 � 3�

W0
ichðf 1Þ ¼

C3

C4
½expðC4½I4 � 1�Þ � C4½I4 � 1� � 1� ð31Þ

The specimen is subjected to cyclic stretching at the same time in
both directions (X and Y) monitoring the stress response. Three cyc-
lic test with different mean stretches k1 ¼ 1:35, k2 ¼ 1:46, and
k3 ¼ 1:56 were analyzed. The results of a mixed continuous and dis-
continuous damage model, a purely continuous damage model and
a purely discontinuous damage model were all compared using the
material parameters shown in Table 1.

The obtained results from the finite element simulation are pre-
sented in Fig. 2 as nominal stress versus stretch along the loading
direction for the matrix and the fibers (ry and rx, respectively).
One can observe a strong anisotropy of the material with respect
to both the stress and the softening characteristics. In the purely
discontinuous damage case, it is easy to detect the characteristic
Mullins’s damage with damage only occurring during the loading
process. On the contrary, in the purely continuous damage case,
damage occurs in both loading and unloading that increases faster
in the initial loading history k1 ¼ 1:35 than at the end k3 ¼ 1:56.
Fig. 2. Biaxial stress response under cyclic biaxial tension for the mixed
Finally, in the mixed damage case under loading damage strongly
increases whereas during unloading damage is lower in special
when becomes close to the stabilized value as shown in Fig. 3. This
behavior is similar to the hysteretic effects in Mullins’s damage
(Mullins, 1947), so only the mixed damage model can reproduce
this phenomena since the purely continuous or discontinuous
models can not reproduce both effects separately.

6.2. A sensitivity analysis of the damage parameters

To gain a deeper insight into the effect of the different model
parameters on the predicted material response, a sensitivity anal-
ysis has been carried out. Due to the discontinuous damage model
was previously presented in Calvo et al. (2007), we only consider
here the sensitivity analysis for continuous damage model param-
eters. The study comprises the effect of the maximum possible
continuous damage, db

k1, and the damage saturation parameter, cb
k .

Fig. 4 depicts the sensitivity of the damage evolution and rx to
changes on the maximum possible continuous damage, db

k1, for
cb

k ¼ 3:0. The results show that continuous damage, as well as total
damage increases, as db

f1 increases. Also, the slope of the continu-
ous damage curve seems to increase as db

f1 increases. However, the
damage saturation region (stretch where saturation occurs) does
not appear to change significantly. On the other hand, larger values
of db

f1 lead to lower values of the deformation and stress at which
maximum damage occurs while the maximum stress in the stress–
strain curve decreases.

Fig. 5 depicts the sensitivity of the damage evolution and rx to
changes on the damage saturation parameter, cb

k , for db
k1 ¼ 0:25. A

remarkable influence of this parameter on the continuous damage
is obtained. A considerable decrement of the slope of the contin-
uous damage appears close to the value of the maximum contin-
uous damage reached. On the other hand, lower values of cb

k lead
to higher values of the deformation and stress at which maxi-
mum damage occurs while the maximum stress in the stress–
strain curve decreases. This result is expected since cb

k controls
the saturation and the rate increase of continuous damage.

6.3. Softening behavior of arteries

In this example, we compare the model presented here with
experimental stress–stretch data from uniaxial cyclic loading tests
on arterial tissue. These experiments were developed in our labo-
ratory in order to study the properties of the pig aorta tissue. Lon-
gitudinal strips, approximately 5 mm wide and 15 mm long, were
resected in the circumferential an longitudinal directions where
, continuous and discontinuous damage models (a) rx and (b) ry.



Fig. 3. Damage evolution for matrix and fibers for the mixed, continuous and discontinuous damage models.
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collagen and elastic fibers are predominately oriented. Two circular
black spots were painted on the surface of the strip to measure the
deformation. Due to stroke limitations of the issue, ‘‘dogbone”
specimens could not be used in the experiments. Instead, parallel
sided (prismatic) strip specimens are used. In all experiments,
the tags are placed at least 5 mm away from the grips to ensure
that a uniform uniaxial region exists between them.

Different loading and unloading cycles were applied (120, 240,
and 480 kPa) at 30%/min of strain rate in a high precision drive
system, adapted for biological specimens (Instron Microtester
5848). Force was measured with a 50 N load cell with minimal
resolution of 0.001 N. The axial stretch ratio of the specimen is
measured by a non-contacting laser video-extensometer Instron
2663-281, equipped with a high performance digital camera with
a megapixel sensor (0.5 ± 0.5% lm) and an IEEE 1394 (Firewire)
digital interface that provides both high resolution and high data
rates (50 Hz). All the tests were performed in a 100% humid atmo-
sphere to prevent specimen drying up. Some of them, both intact
and tested, were conserved after the test for histological purposes.
Room temperature (	25 �C) was controlled during the experi-
ments (Alastrué et al., 2008). The maximum load for each cycle
was progressively increased and then followed by an unloading cy-
cle with a force value close to zero. Three preliminary cycles at all
load levels were applied in order to precondition the sample.

An exponential behavior to represent the collagen fibers contri-
bution, only considered under tension, was chosen. This model,
including two directions of anisotropy, was specifically designed
for the arterial tissue (Holzapfel et al., 2000) and was subsequently
modified in Holzapfel et al. (2005).
WichðC;M;NÞ ¼ l½I1 � 3� þ k1

2k2

X
i¼4;6

½expðk2½Ii � 1�2Þ � 1� ð32Þ
Fig. 4. Damage evolution and rx for different values of db
f1 ¼ ½0:1; 0:2;0:3;0
Experimental and numerical results for loading, partial unload-
ing and reloading are shown in Fig. 6 for the mixed, continuous and
discontinuous damage models. The corresponding material param-
eters are summarized in Table 2. In the experimental results, in an
undeformed stress-free state, i.e. at k ¼ 1, the slope of the uniaxial
stress–stretch curve for the stress-softened material is lower than
that of the virgin material and also lower than that of any previ-
ously softened material. At the unloading point, that is, when
_k < 0 and U ¼ 0, the slope of the uniaxial stress–stretch curve for
the current stress-softened material will be greater than that of
the virgin material.

The comparison between experimental tests and simulation
shows a good agreement for the mixed model (see Fig. 6.a) where
hysteretic and Mullins behaviors can be reproduced. However,
continuous and discontinuous models are not able to reproduce
the inelastic response of the aorta. The discontinuous model repro-
duces the Mullins effect and not the hysteretic behavior Fig. 6b,
while the continuous model is able to model the hysteretic re-
sponse and not the Mullins effect Fig. 6c.

Some remarks are needed regarding the mixed model in Fig. 6a.
There is a very good agreement for the mixed model in the second
and third cycles and not so good for the first one. The results of the
simulation clearly show that the response to cyclic loading up to a
certain load limit stabilizes after a several cycles (second and third
cycle). Decreasing the initial damage limit however enables further
softening (first cycle of the experiment). It should be noted also
that the aorta, as several soft biological tissues, exhibited removal
of the stress. The worse fit in the first cycle with respect the second
and third ones could be explained by this phenomenon.

7. Discussion and conclusions

During the last decades a considerable growing interest has
raised in modelling mechanical response of rubbery polymers.
:5� at constant cb
f ¼ 3:0 (a) total damage; (b) continuous damage (a) rx .



Fig. 5. Damage evolution and rx for different values of cb
f ¼ ½1:0;5:0;15:0;50:0� at constant db

f1 ¼ 0:25 (a) total damage; (b) continuous damage; (c) rx .
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These models that initially were developed to model elastomers
have been extended to model soft biological tissues in the last
years. There are mainly three approach to model Mullins effect
and hysteric response of materials. The first approach is based on
Fig. 6. Stress response under cyclic uniaxial tension for aorta tissue for the mixed,
continuous and discontinuous damage models. Material and damage parameters
for biaxial simple tension. l and k1 are in MPa, N is in MPa1=2 and other parameter
are dimensionless (a) mixed model; (b) discontinuous model; (c) continuous model.
Continuum Damage Mechanics (Simo and Ju, 1987; Govindjee
and Simo, 1992; Souza-Neto et al., 1998; Kaliske et al., 2001) and
has been used to model soft biological tissues (Natali et al., 2005;
Calvo et al., 2007; Rodríguez et al., 2008). The second approach
uses the theory of pseudo-elasticity due to Ogden and Roxburgh
(1999) originally developed to model the Mullins effect and after
extended to model hysteretic response (Dorfmann and Ogden,
2003) and to model permanent deformation in rubbers (Dorfmann
and Ogden, 2004). Following a similar approach, Franceschini et al.
(2006) used the theory of pseudo-elasticity to model the hysteretic
behavior of brain tissue. And finally, the third approach is related
to the hard and soft phase microstructure of vulcanized rubbers
originally developed by Mullins and Tobin (1957) that was used
by Qi and Boyce (2007) to model stretch-induced softening of elas-
tomeric materials.

Nevertheless, all these models can not reproduce at the same
time the Mullins effect and the hysteric response of soft biological
tissues. For this reason, in this paper, a mixed (continuous and dis-
continuous) damage model, originally developed by Miehe (1995)
has been extended to provide a constitutive model for quasi-static
loading–unloading of soft biological tissues in order to include dif-
ferent softening phenomena for matrix and fibers. The model
adopts the Continuum Damage Mechanics concept based on two
internal variables that take into account the continuous and dis-
continuous evolutions, respectively. Following Miehe (1995), to
model the damage process in elastomers, the local damage accu-
mulation has been related to (i) the maximum value and (ii) the
arclength of effective free energy of the past deformation history.
This results in (i) a discontinuous and (ii) a continuous contribu-
tion to the damage evolution within a typical deformation-con-
trolled cyclic loading process. To simulate the damage properties
of biological soft tissues, we considered different damage evolu-
tions for the matrix and the different families of fibers.

By means of several examples the good performance and the
physical mechanisms inherent to the constitutive model presented
herein have been shown. Simple tests of biological tissues have
been carried out under cyclic loading conditions. These examples
show that the proposed material law is able to characterize the
constitutive responses of soft biological tissues effectively (precon-
ditioning at different upper limits including hysteresis, stabiliza-
tion, and Mullins’ type softening). In this sense, an accurate
agreement of the results of this model with the experimental data
on pig aorta tissue has been achieved.

The present study has, however, some important limitations.
The most remarkable is the need of a suitable experimental plan
to obtain the many parameters involved (continuous and discon-
tinuous parameters for matrix and fiber). Other limitation is that
the softening behavior of biological tissues is also related to visco-
elastic effects (Peña et al., 2008c). In special, in Fig. 6 the slightly



Table 2
Material and damage parameters for arterial tissue.

l k1 k2 D
0.036147 0.000582 3.675678 0.00006

Nm
min Nm

max fm db
m1 cb

m Nf
min Nf

max ff db
f1 cb

f
0.08 0.41 0.61 0.45 15.0 0.01 0.465 1.06 0.507 2.55
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hardened reloading behavior to the possible presence of viscoelas-
tic effects. Continuous damage only can model hysteresis and sta-
bilization in the first cycles of the loading path due to the fast
damage saturation. The experimental data presented seem to dem-
onstrate that the Mullins effect and hysteresis are minor tiny phe-
nomena in cyclic loading of the pig aorta. Probably, more complex
softening behavior that includes viscoelastic effects (Peña et al.,
2008a) and internal structural alterations of the material (taken
into account the evolution of material parameters (Ehret and Its-
kov, 2008) can help to complete this softening model. Finally,
one numerical problem concerning the finite element implementa-
tion should be addressed (Peña et al., 2008b). It is related with the
necessity to regularize the ill-posed numerical problem where the
loss of ellipticity/hyperbolicity of the governing equations with
softening can lead to pathological mesh-sensitivity (Bazant and Jir-
asek, 2002).

In spite of all these limitations, a good qualitative agreement
was found between numerical and experimental results, indicating
that the constitutive damage model can capture the typical stress–
strain behavior observed in fibrous soft tissue. Some possible appli-
cations may be mentioned such as sports (skiing, basketball, soc-
cer) and traffic accidents that are the most important causes of
ligament injury. Vascular surgery simulations (balloon angioplasty,
arterial clamping or stenting), corneal laser interventions or plastic
surgery are other interesting applications to be considered in the
near future.
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