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We present an explicit computation of the CP asymmetry in scattering processes involving the heavy
right-handed neutrinos of the type I seesaw framework and the Standard Model gauge bosons. Compared
to CP violation in two-body decays and in scatterings with top quarks there are new contributions at
one loop in the form of new type of vertex corrections as well as of box diagrams. We show that their
presence implies that, unlike the CP asymmetry in scatterings with top quarks, the CP asymmetry in
scatterings with gauge bosons is different from the two-body decay asymmetry even for hierarchical
right-handed neutrinos. This also holds for the L-conserving CP asymmetry in scatterings with U(1)Y

gauge bosons. Quantitatively however, the effects are not very different in size from those of scatterings
with top quarks: the CP asymmetry per scattering is O(0.5–2)× the CP asymmetry per decay in all the
relevant temperature range for leptogenesis and the generated baryon asymmetry can only be sizeably
affected in leptogenesis models that are sensible to the T � M epoch.

© 2011 Elsevier B.V.

The discovery of neutrino oscillations makes leptogenesis a very attractive solution to the baryon asymmetry problem [1,2]. In the
standard framework the tiny neutrino masses are generated via the (type I) seesaw mechanism [3–6] and since the new singlet neutral
leptons (Ni) have heavy lepton number (L) violating Majorana masses they can produce dynamically a lepton asymmetry through out of
equilibrium processes. Eventually, this lepton asymmetry is partially converted into a baryon asymmetry due to fast sphaleron processes.

In this framework the CP asymmetry can be generated in the Ni decays [7], i.e. Ni → l j H [8] as well as in scattering processes of
the Ni with particles in the plasma. In perturbation theory, to lowest order, the CP asymmetry in any of these processes arises from
the interference between the tree level and one-loop amplitudes. The CP violating asymmetry in scatterings with top quarks has been
considered in Refs. [9–12]. In Refs. [9–11] it was argued that an approximate equality between the scattering and decay asymmetries
should hold for hierarchical right-handed neutrinos (RHNs). Ref. [12] presented an explicit computation of the CP asymmetry in top
quarks scatterings (TQS) and directly showed that this was correct. It is important to note that there is a one to one correspondence
between one-loop diagrams in decays and TQS. Then, as discussed in Ref. [11], the “factorization” of a common CP asymmetry can be
easily understood in terms of an effective field theory in which all but the lightest of the RHNs have been integrated out and their effect
appears in a dim-5 operator (H�)(H�). In this approximation only “bubble-like” diagrams contribute to the one-loop amplitudes of both
decays and TQS.

As for the CP asymmetry in scatterings with gauge bosons, its effect was estimated in Ref. [12] under the assumption that it also
factorizes in terms of the decay CP asymmetry. However, the same argument that leads to the understanding of the equality between the
CP asymmetries in decay and TQS does not hold for gauge boson scatterings (GBS) due to the presence of additional contributions to the
amplitude at one loop (which in the effective field theory approximation contain three rather than two particles in the loop). With this
motivation in this note we carry out an explicit calculation of the CP asymmetry in GBS.1

For a given heavy neutrino species (called here Ni ) there are three different types of GBS, namely

Ni A → � j H, Ni� j → H A, � j A → Ni H, (1)

* Corresponding author.
E-mail address: concha@max2.physics.sunysb.edu (M.C. Gonzalez-Garcia).

1 In principle one must consider all processes at a given order in the coupling constants. In particular the three body decays Ni → � j H A should be included together
with the GBS. However the three body decay rate is phase space suppressed, thus the processes Ni → � j H A and their CP asymmetries can be safely neglected (see e.g. the
appendix of [12]).
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Fig. 1. Tree diagrams for the three scattering processes in (1).

and each one has an associated CP conjugate process. Here A = Wa or BY for SU(2)L and U(1)Y gauge bosons, respectively. The Lagrangian
for the Yukawa and gauge interactions relevant for the computation of these processes reads

LY +A = −Y Nij � j P R Ni H̃ − ig2

2
(∂μH)†W μ

a σa H − ig1

2
(∂μH)† Bμ

Y H + h.c. +
∑

j

[
g2

2
� jγμW μ

a σa P L� j − g1

2
� jγμBμ

Y P L� j

]
, (2)

where i, j are generation indices of RHNs and lepton doublets �T
j = (ν j, �

−
j ) respectively, P L,R = 1

2 (1 ∓ γ5), and H̃ = iτ2 H∗ with H T =
(h+,h0) being the Higgs doublet.

We denote by γ A
B ≡ γ (A → B) the thermally averaged density rate for a state A to go into the state B (summed over initial and final

spin and gauge degrees of freedom), and by �γ A
B ≡ γ A

B − γ Ā
B̄

the CP difference between the rates for particle and antiparticle processes.
Neglecting the thermal motion with respect to the plasma, the relevant thermal average rates for 12 → 34 processes can be written as

γ 12
34 = T

64π4

∞∫
s−

ds
√

s ŝ12
34(s)K1

(√
s

T

)
= T

29π5

∞∫
s−

ds

t+∫
t−

dt
|M12

34|2√
s

K1

(√
s

T

)
,

where ŝ12
34(s) is the reduced cross section, K1(x) is the modified Bessel function of second kind of order 1, and T is the temperature.

We have also introduced the Mandelstam variables in terms of the momenta pi of the four particles in the process, s = (p1 + p2)
2,

t = (p1 − p3)
2, and u = (p1 − p4)

2, with p2
i = m2

i . Thus for each process s− = Max[(m1 + m2)
2, (m3 + m4)

2] and

t∓ = (m2
1 − m2

2 − m2
3 + m2

4)
2

4s
−

[√
(s + m2

1 − m2
2)

2

4s
− m2

1 ±
√

(s + m2
3 − m2

4)
2

4s
− m2

3

]2

.

For the sake of simplicity in our evaluation of the CP asymmetries we neglect the thermal mass of the gauge bosons, and we include
the thermal masses of leptons m� and the Higgs boson mH only in the propagators (but not in the loops), in order to regularize the
infrared divergences that appear when these states are exchanged in a t- or u-channel.

In this approximation the tree level amplitudes for the three processes in (1) are related by crossing symmetry and are given by∣∣M(Ni A → � j H)
∣∣2 = ∣∣M(Ni A → �̄ j H̄)

∣∣2 = 2G A |Y Nij |2 I0(s, t, u), (3)∣∣M(Ni� j → H A)
∣∣2 = ∣∣M(Ni� j → H̄ A)

∣∣2 = −2G A |Y Nij |2 I0(u, s, t), (4)∣∣M(� j A → Ni H)
∣∣2 = ∣∣M(� j A → Ni H̄)

∣∣2 = 2G A |Y Nij |2 I0(u, t, s), (5)

where G A = 3g2
2/2 or g2

1/2 for SU(2)L and U(1)Y GBS, respectively.
I0(s, t, u) = 2Dt H Du�sM2

i + D2
u�u(M2

i − s), and D X P comes from the propagator of particle P in the X-channel, D X P = (X − m2
P )−1.

The CP asymmetry in GBS arises from the interference between the tree-level and one-loop amplitudes in Figs. 1 and 2, respectively. In
Fig. 2 we show as a “waving” line labeled C1, C ′

1 or C2 the possible branch cuts in which the particles in the propagators can be on-shell
and therefore give a contribution to the imaginary part of the corresponding amplitude. As seen in Fig. 2 besides the Ni self-energy (wave)
corrections (diagrams (a) and (b)), and the vertex corrections (diagrams (c) and (d)), which are also present at one loop in two-body Ni
decays and in TQS, there are new type of vertex diagrams (labeled (e) and (f)), as well as contributions from boxes (diagrams (g) and (h)).
Furthermore for process � j A → Ni H additional imaginary parts appear from the last two diagrams 3.(i) and 3.(j).

For each process the sum of amplitudes of wave diagrams (a) and (b) is gauge invariant. The sum of amplitudes for vertex diagrams
(e) and (f) is also gauge invariant, while the amplitudes of vertices (c), (d) and boxes (g), (h) are not separately gauge invariant but the
sum of the four amplitudes is. Finally for process � j A → Ni H the sum of amplitudes 3.(i) and 3.(j) is gauge invariant.
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Fig. 2. One-loop diagrams contributing to the CP asymmetry for the scattering processes in (1). We mark with a waving line the possible branch cuts which contribute to the
imaginary part of the corresponding amplitude. Additional diagrams which do not contribute to the CP asymmetry include those similar to 3.(i) and 3.(j) for the scatterings
Ni �̄ j → H A and Ni A → � j H for which no branch cut is kinematically allowed, and the corresponding ones with � ↔ H whose coupling with respect to the tree amplitude
one is relatively real.

Thus generically the CP asymmetry from any of the three processes in (1) can be written as

ε12
34 ≡ γ 12

34 − γ 1̄2̄
3̄4̄∑

(γ 12 + γ 1̄2̄)
≡ ε

12(w)
34 + ε

12(v1)
34 + ε

12(v2)
34 + ε

12(b)
34 + �ε

�̄ j A
Ni H , (6)
j 34 3̄4̄
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where ε
A(w,v1,v2,b)
B is generated by the interference between the tree-level amplitudes and the self-energy amplitudes (a) and (b), the

vertex amplitudes (c) and (d), the vertex amplitudes (e) and (f), and the box amplitudes (g) and (h), respectively. We denote by �ε
�̄ j A
Ni H

the extra asymmetry for the process � j A → Ni H from the diagrams 3.(i) and 3.(j). Notice that each of the diagrams (a), (b), (e) and (f)
represents two amplitudes depending on whether the internal lepton line is a lepton or an anti-lepton, which leads respectively to total
L-conserving or L-violating contributions.

It is straightforward to show that for any of the processes in (1) we have

ε
Ni A(w)
� j H = ε

Ni �̄ j(w)

H A = ε
�̄ j A
Ni H

(w) = ε
Ni
� jH

(w) =
∑

k 
=i

[
C jk

√
ak

ak−1 + C̃ jk
1

ak−1

]
8π

(
Y N Y †

N

)
ii

,

ak = M2
k

M2
i

, C jk = − Im
[
Y ∗

Nij
Y Nkj

(
Y N Y †

N

)
ki

]
, C̃ jk = − Im

[
Y ∗

Nij
Y Nkj

(
Y N Y †

N

)
ik

]
. (7)

In the above, ε
Ni
� jH

(w) is the contribution to the CP asymmetry in Ni → � j H from the Ni self-energy diagrams [8] and the first (second)
term arises from the L-violating (L-conserving) diagrams.

The contributions to the CP asymmetries from the vertex (labeled with superscripts (v1), (v2)), box (superscript (b)), and the extra
piece from diagrams 3.(i) and 3.(j) (superscript (�)) read2,3

[∣∣M(12 → 34)
∣∣2 − ∣∣M(1̄2̄ → 3̄4̄)

∣∣2](v1),(v2),(b),(�)

= −
∑
k 
=i

{ G A C jk Mk Mi

2π

[
I12(v1),(b)
34 (s, t, u) + I ′12(b)

34 (s, t, u) + θ
(
s − M2

k

)
J 12(v1),(b)

34 (s, t, u)
]

+ F A C jk Mk Mi

2π

[
K 12(v2)

34 (s, t, u) + K ′12(v2)
34 (s, t, u)

]
+ C̃ jk M2

i

2π

[
F A

(
K̃ 12(v2)

34 (s, t, u) + K̃ ′12(v2)
34 (s, t, u)

) + G Aθ
(
s − M2

k

)
J 12(�)

34 (s, t, u)
]}

, (8)

where I12(v1),(b)
34 (s, t, u) ≡ I12(v1)

34 (s, t, u) + I12(b)
34 (s, t, u) comprises the contribution from the C1 cuts of the vertex diagrams (c) and (d)

(given by I12(v1)
34 (s, t, u)), and box diagrams (g) and (h) (given by I12(b)

34 (s, t, u)). I ′12(b)
34 (s, t, u) contains the contribution from the C ′

1 cuts

present only in the box diagrams of Ni A → � j H . J 12(v1),(b)
34 (s, t, u) ≡ J 12(v1)

34 (s, t, u) + J 12(b)
34 (s, t, u) has the contribution from the C2 cuts,

which are kinematically allowed when s > M2
k and they are possible only in the processes Ni� j → H A and � j A → Ni H . All these contri-

butions are L-violating and they are present for both SU(2)L and U(1)Y GBS. J 12(�)
34 (s, t, u) has the – L-conserving – contribution from the

C2 cuts in the diagrams 3.(i) and 3.(j) present only for � j A → Ni H .

K 12(v2)
34 (s, t, u) (K̃ 12(v2)

34 (s, t, u)) contains the contribution from the C1 cuts of the L-violating (L-conserving) vertex diagrams in graphs

(e) and (f). Similarly, K ′12(v2)
34 (s, t, u) (K̃ ′12(v2)

34 (s, t, u)) involves the contribution from the C ′
1 cuts of the L-violating (L-conserving) diagrams

in the graphs (e) and (f) of process Ni A → � j H . Notice that the diagrams (e) and (f) correspond to amplitudes where the gauge boson is
coupled to the one-loop self energy Ni − Nk . Since the RHNs are SU(2)L singlets, the sum over the SU(2)L degrees of freedom cancel in
each of these graphs. This, however, is not the case for the U(1)Y gauge boson. Correspondingly the coupling factors F A = 0 for A = Wa

while F A = G A = g2
1/2 for A = BY .

The C1 cuts are kinematically allowed for all processes and their corresponding contributions to the amplitudes are related by cross-

ing symmetry. For the amplitudes of diagrams (c) and (d) this reads I Ni A(v1)
� j H (s, t, u) = I(v1)(s, t, u), I

Ni �̄ j(v1)

H A (s, t, u) = −I(v1)(u, s, t), and

I
�̄ j A
Ni H

(v1)
(s, t, u) = I(v1)(u, t, s), with

I(v1)(s, t, u) = D2
u�M2

i

[
s̃ũ2

(1 − ũ)2

(
−1 + ak

1 − ũ
L2(ũ)

)
+ t̃ũ

(1 − ũ)2

(
1 − ak + 1 − ũ

1 − ũ
L2(ũ)

)]

+ Dt H Du�M2
i

[
s̃

1 − t̃

(
1 − ak + 1 − t̃

1 − t̃
L2(t̃)

)
+ s̃

1 − ũ

(
1 − ak + 1 − ũ

1 − ũ
L2(ũ)

)]
. (9)

The C2 contributions to the vertex asymmetry from diagrams (c) and (d) are

J
Ni �̄ j(v1)

H A (s, t, u) = DsH Dt�M2
i

ũ

1 − s̃

[
1 − ak

s̃
− ak + 1 − s̃

1 − s̃
L4(s̃)

]
,

J
�̄ j A
Ni H

(v1)
(s, t, u) = Dt H Ds�M2

i
ũ

1 − s̃

[
ak − s̃ + ak + 1 − s̃

1 − s̃
L4(s̃)

]
+ D2

s�M2
i

s̃

(1 − s̃)2

[
(t̃ − ũ)(ak − s̃) + t̃(ak + 1 − s̃) − aks̃ũ

1 − s̃
L4(s̃)

]
,

(10)

2 When evaluating ε12
34

(v1)
and ε12

34
(b)

one must specify a gauge since, as mentioned above, the one-loop vertex (v1) and box amplitudes are not separately gauge-invariant.
In what follows we will work in the unitary gauge.

3 Since the resulting expressions are somewhat cumbersome, to double check our results we have computed the asymmetries both by explicit evaluation of the corre-
sponding loop integrals as well as by using the Cutkosky rules that give directly the absorptive part of the Feynman diagrams.
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and J Ni A(v1)
� j H (s, t, u) = 0. In Eqs. (9)–(10) and the following we define s̃ = s

M2
i

, t̃ = t
M2

i
, ũ = u

M2
i

, and

L1(x) ≡ ln
ak + x

x
, L2(x) ≡ ln

ak + 1 − x

ak
, L4(x) ≡ ln

x(ak + 1 − x)

ak
,

L3(x, y) ≡ ln
xy + ak(1 − x)

ak(1 − x)
, L5(x, y) ≡ ln

xy + ak(1 − x)

ak
. (11)

For the C1 contributions to the asymmetry from diagrams (e) and (f) the crossing symmetry reads K Ni A(v2)
� j H (s, t, u) = K (v2)(s, t, u),

K
Ni �̄ j(v2)

H A (s, t, u) = −K (v2)(u, s, t), K
�̄ j A
Ni H

(v2)
(s, t, u) = K (v2)(u, t, s), and equivalently for the K̃ functions, with

K (v2)(s, t, u) = 2s̃{Dt H t̃[(t̃ − 2ũ) + ũ(1 − s̃)] − Du�ũ[3t̃ + ũ(1 − s̃)]}
(s̃ − ak)(t̃ + ũ)3

,

K̃ (v2)(s, t, u) = 2s̃ũ{Dt H t̃[3 − 2(t̃ + ũ)] + Du�[(2t̃ − ũ) − t̃2 + ũ2]}
(s̃ − ak)(t̃ + ũ)3

. (12)

The contribution from the C ′
1 cuts in diagrams (e) and (f) (which are only present for Ni A → � j H) is

K ′Ni A(v2)
� j H (s, t, u) = −K (v2)(s, t, u), K̃ ′Ni A(v2)

� j H (s, t, u) = −K̃ (v2)(s, t, u), (13)

and hence the contributions from vertices (e) and (f) to Ni A → � j H cancel exactly.

For the box diagrams I Ni A(b)
� j H (s, t, u) = I(b)(s, t, u) ≡ Ib1(s, t, u) + Ib2(s, t, u), I

Ni �̄ j(b)

H A (s, t, u) = −I(b)(u, s, t), and I
�̄ j A
Ni H

(b)
(s, t, u) =

I(b)(u, t, s), with

Ib1(s, t, u) = Dt H

{
s̃ũ

(1 − s̃)2
− s̃(ak + 1 − ũ)

ũ(1 − t̃)
L2(t̃) +

[
ak + s̃

ũ
+ ak(ak + 1 − t̃)

s̃t̃ + ak(1 − s̃)

]
L3(s̃, t̃)

}

+ Du�

[
−1 − s̃t̃

(1 − s̃)2
+ ak + s̃

1 − t̃
L2(t̃) + (ak + s̃)(ak + 1 − t̃)

s̃t̃ + ak(1 − s̃)
L3(s̃, t̃)

]
, (14)

Ib2(s, t, u) = Dt H

{
s̃t̃

(1 − s̃)2
+ ak + 1 − ũ

t̃

[
− s̃L2(ũ)

1 − ũ
+ (1 − s̃)(ak + s̃) + akt̃

s̃ũ + ak(1 − s̃)
L3(s̃, ũ)

]}

+ Du�

{
s̃t̃

(1 − s̃)2
− ũ

t̃(1 − s̃)
− (ak + 1 − ũ)[s̃t̃ − ũ(1 − ũ)]

t̃2(1 − ũ)
L2(ũ)

−
[

1 − 3s̃ − 2ak

t̃
+ (1 − s̃)(ak + s̃)

t̃2
+ ak − s̃

s̃
− ak(ak + s̃)

s̃2ũ + aks̃(1 − s̃)

]
L3(s̃, ũ)

}
. (15)

The corresponding contributions from C ′
1 cuts read I ′Ni �̄ j(b)

H A (s, t, u) = I ′ �̄ j A(b)

Ni H (s, t, u) = 0 and I ′Ni A(b)
� j H (s, t, u) = I ′ (b)(s, t, u) ≡ I ′b1(s, t, u)+

I ′b2(s, t, u), with

I ′b1(s, t, u) = Dt H

{
− s̃ũ

(1 − s̃)2
+ ak + s̃

ũ
L1(s̃) −

[
ak + s̃

ũ
+ ak(ak + 1 − t̃)

s̃t̃ + ak(1 − s̃)

]
L3(s̃, t̃)

}

+ Du�

[
1 + s̃t̃

(1 − s̃)2
− ak + s̃

s̃
L1(s̃) − (ak + s̃)(ak + 1 − t̃)

s̃t̃ + ak(1 − s̃)
L3(s̃, t̃)

]
, (16)

I ′b2(s, t, u) = Dt H

{
− s̃t̃

(1 − s̃)2
+ ak + 1 − ũ

t̃

[
L1(s̃) − (1 − s̃)(ak + s̃) + akt̃

[s̃ũ + ak(1 − s̃)] L3(s̃, ũ)

]}

+ Du�

{
s̃

t̃
− 1 − s̃ + s̃t̃

(1 − s̃)2
+

[
(1 − ũ)2(ak + s̃)

s̃t̃2
+ 1 − ũ

t̃
− ak + 1 − ũ

t̃2

]
L1(s̃)

+
[

1 − 3s̃ − 2ak

t̃
+ (1 − s̃)(ak + s̃)

t̃2
+ ak − s̃

s̃
− ak(ak + s̃)

s̃2ũ + aks̃(1 − s̃)

]
L3(s̃, ũ)

}
. (17)

From Eqs. (14)–(17) we see that for the scattering process Ni A → � j H the contributions from C1 and C ′
1 partially cancel each other.4

4 By definition I12(b)
34 , I ′12(b)

34 , and J 12(b)
34 must be real. It can be easily verified that in their expressions the imaginary contributions from negative arguments in the

logarithms of Eq. (11) always cancel out.
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The C2 contributions to the box asymmetry are J Ni A(b)
� j H (s, t, u) = 0 and

J
Ni �̄ j(b)

H A (s, t, u) = DsH

{
ũ(ak + 1 − s̃)

t̃(s̃ − 1)
L4(s̃) +

[
ak + ũ

t̃
+ ak(ak + 1 − s̃)

s̃ũ + ak(1 − ũ)

]
L5(ũ, s̃)

}

+ Dt�

{
(1 − t̃)(ak − s̃)

s̃2
− (ak + ũ)

s̃ − 1
L4(s̃) + (ak + 1 − s̃)(ak + ũ)

s̃ũ + ak(1 − ũ)
L5(ũ, s̃)

}
, (18)

J
�̄ j A
Ni H

(b)
(s, t, u) = Ds�

{
s̃ − ak

t̃
− (ak − s̃)(ak + ũ)

s̃ũ + ak(1 − ũ)
L5(ũ, s̃) + ak + 1 − s̃

t̃2

[
t̃ũ − s̃(1 − s̃)

1 − s̃
L4(s̃) + (s̃ − t̃)L5(ũ, s̃)

]}

+ Dt H

{
ũ(ak + 1 − s̃)

t̃(1 − s̃)
L4(s̃) − (ak + 1 − s̃)[(ak + ũ)(1 − ũ) + akt̃]

t̃[s̃ũ + ak(1 − ũ)] L4(s̃)

}
. (19)

Finally the C2 contributions from diagrams 3.(i) and 3.(j) read

J
�̄ j A
Ni H

(�)
(s, t, u) = −Ds�

M2
i (s̃ − ak)

2s̃

[
s̃ − ak

s̃
+ Ds�M2

i (s̃ + ak)

][
Dt H ũ + Ds� s̃(1 − ũ)

]
. (20)

The ratios between the L-violating asymmetries in GBS and the L-violating asymmetry in decays are shown in Fig. 3 as a func-
tion of T /M1 (left panels) and of M2/M1 (right panels). For simplicity we have considered the virtual effects of only one neutrino
species Nk = N2 different from Ni = N1. It is apparent that for N1� j → H A and � j A → N1 H this ratio deviates from unity even for
hierarchical neutrinos.5 In the relevant temperature range for leptogenesis 0.1 � T /M1 � 10 the deviation can be of several tens of
percent, e.g. 50% for � j BY → Ni H at T = M1. Conversely for N1 A → � j H the ratio tends to one for hierarchical neutrinos, hence the
asymmetry can be well approximated by the decay one if M2/M1 � 10, but corrections appear at high temperatures for milder hierar-
chies.

These results can be easily understood analytically by expanding to lowest order in Mi/Mk the expressions in Eqs. (9), (12), and
(14)–(17) which gives

I(v1)(s, t, u) = −1

2

I0(s, t, u)

M2
k

, (21)

I(b)(s, t, u) = M2
i

M2
k

s̃{Du�ũ[3t̃ + ũ(1 − s̃)] − Dt H t̃[(t̃ − 2ũ) + ũ(1 − s̃)]}
(t̃ + ũ)3

, (22)

I ′ (b)(s, t, u) = −I(b)(s, t, u), (23)

K (v2)(s, t, u) = 2I(b)(s, t, u) = −K ′ (v2)(s, t, u), (24)

K̃ (v2)(s, t, u) = − M2
i

M2
k

2s̃ũ{Dt H t̃[3 − 2(t̃ + ũ)] + Du�[(2t̃ − ũ) − t̃2 + ũ2]}
(t̃ + ũ)3

. (25)

Including these results in Eq. (8) and using Eqs. (3)–(5) one finds that

ε
Ni A(v1)
� j H = ε

Ni �̄ j(v1)

H A = ε
�̄ j A
Ni H

(v1) =
∑

k 
=i C jk

16π(Y N Y †
N)ii

Mi

Mk
= ε

Ni
� jH

(v)
. (26)

In the last equality we have used that the vertex CP asymmetry from the decay Ni → � j H

ε
Ni
� jH

(v) = −
∑

k 
=i C jk

8π(Y N Y †
N)ii

√
ak

[
1 − (1 + ak) ln

1 + ak

ak

]
�

∑
k 
=i C jk

Mi
Mk

16π(Y N Y †
N)ii

, (27)

where the last approximation holds for Mk/Mi � 1. So, as in the case of TQS, both wave and vertex contributions to the CP asymmetry
in scatterings with SU(2)L gauge bosons are equal to the corresponding contributions to the decay CP asymmetry in the hierarchical limit
(Mk/Mi � 1).

For the process Ni A → � j H Eqs. (22)–(24) imply that in the hierarchical limit the CP symmetries from vertices (e) and (f) with U(1)Y

gauge bosons, and from boxes with either SU(2)L or U(1)Y gauge bosons vanish,

ε
Ni Wa(b)
� j H = ε

Ni BY (b)
� j H = ε

Ni BY (v2)
� j H = 0. (28)

However for the other two processes we find that the L-violating contributions to the CP asymmetries satisfy

ε
Ni �̄ j(b)

H Wa

= 0, ε

�̄ j Wa(b)

Ni H 
= 0, ε
Ni �̄ j(b)

H BY
= 1

2
ε

Ni �̄ j(v2)

H BY

= 0, ε

�̄ j BY (b)

Ni H = 1

2
ε

�̄ j BY (v2)

Ni H 
= 0. (29)

5 Unlike the CP asymmetry in decays, the CP asymmetry in scatterings depends on the temperature, thus when comparing both types of asymmetries at a given T , the
RHNs are considered to be hierarchical enough if Mk 
=1 � M1, T .
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Fig. 3. Ratio between the L-violating asymmetry in scatterings εscat ≡ ε12
34 for the different processes as labeled in the figure and the corresponding quantity for decays

εD ≡ ε
Ni
� j H . To illustrate we have used m� = 0.18T and mH = 0.34T . The left panels show the ratio as a function of T /M1 for three different hierarchies M2/M1 = 2,10,100.

The right panels show the ratio as a function of M2/M1 for two values of T /M1 = 1,5.

We note that the vanishing of ε
Ni A(b)
� j H and ε

Ni BY (v2)
� j H at leading order in Mi/Mk is due to the presence of the additional C ′

1 cuts, which,

as mentioned above, results in a partial or total cancellation of the contributions from the C1 cuts so that only terms of higher order in
Mi/Mk remain.

We have mentioned before that for each process the sum of amplitudes of wave diagrams is independently gauge invariant, as it is
the sum of the amplitudes for the vertex (v2) diagrams, but the amplitudes of vertex (v1) and box diagrams are not separately gauge
invariant. However at the leading order in Mi/Mk , the box and vertex (v1) diagrams are independently gauge invariant, thus the results
in Eqs. (26), (28), and (29) are also gauge independent.

Summarizing, we find that even for very hierarchical heavy RHNs

ε
Ni A = ε

Ni 
= ε
Ni �̄ j 
= ε

�̄ j A
, (30)
� j H � jH H A Ni H
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where ε
Ni
� jH = ε

Ni
� jH

(w) + ε
Ni
� jH

(w) . Hence, we conclude that the CP asymmetry in the scattering Ni A → � j H factorizes in the hierarchical

limit. However, this is not the case for the scatterings Ni� j → H A and � j A → Ni H .
Also, as mentioned above, in the processes Ni� j → H BY and � j BY → Ni H there are new L-conserving vertex contributions to the CP

asymmetry. They imply that in the hierarchical limit the L-conserving CP asymmetry in these scatterings is not equal to the L-conserving
CP asymmetry in decays. Note that although the L-conserving asymmetries are always suppressed by a higher power of Mi/Mk compared
to the L-violating ones, they are the only source of CP violation in models with conservation of L [13–15].

Finally, a few comments about the impact of our results for the determination of the baryon asymmetry are in order. Although the CP
asymmetry in GBS has more interesting features compared to the one in TQS, we have found that still the CP asymmetry per scattering is
(0.5–2) × the CP asymmetry per decay. Therefore the generation of CP asymmetry through GBS is relevant at high temperatures (T � Mi )
when the scattering rates are larger than the decay rates. Hence it can have effects in models for leptogenesis that are sensible to the
high temperature regime. This includes standard type I leptogenesis in the weak washout regime and low energy models in which the
sphaleron processes freeze out before the RHNs have decayed [14,16]. Quantitatively including the GBS can result into an increase of the
final baryon asymmetry by more than a factor ∼2 for standard type I leptogenesis in the weak washout regime for zero initial abundances
of the heavy neutrinos, i.e., when they are produced only by the CP-violating Yukawa interactions. For the low energy models, the effects
can be larger than even one order of magnitude if the sphalerons freeze out when the scattering rates are much larger than the decay
rates.
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