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Abstract 
A critical level of synaptic perturbation within a trained, artificial neural system induces the nucleation 
of novel activation patterns, many of which could qualify as viable ideas or action plans. In building 
massively parallel connectionist architectures requiring myriad, coupled neural modules driven to ideate 
in this manner, the need has arisen to shift the attention of computational critics to only those portions 
of the neural “real estate” generating sufficiently novel activation patterns. The search for a suitable 
affordance to guide such attention has revealed that the rhythm of pattern generation by synaptically 
perturbed neural nets is a quantitative indicator of the novelty of their conceptual output, that cadence 
in turn characterized by a frequency and a corresponding temporal clustering that is discernible through 
fractal dimension. Anticipating that synaptic fluctuations are tantamount in effect to volume 
neurotransmitter release within cortex, a novel theory of both cognition and consciousness arises that is 
reliant upon the rate of transitions within cortical activation topologies. 
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1 Introduction 
A patented neural architecture called a “Creativity Machine” (Thaler, 1996a, 1997a, 1997b, 2013, 

2014) utilizes an artificial neural system (ANS) whose inputs are pinned within some environmental 
context as its connection weights stochastically fluctuate to produce a succession of output patterns 
(Thaler, 1995). A computational critic, typically taking the form of another neural system, associates 
each of these emerging patterns with an anticipated pattern-based consequence whose scalar distance, 
, from some goal pattern is used to modulate the amplitude of the aforesaid synaptic fluctuations. 

Allowed to run autonomously, such a neural system may eventually arrive at a solution pattern, at which 
time the  metric approaches zero and the synaptic perturbations proportional to it subside (Thaler, 
1998). 

After numerous engineering successes in applying this neural paradigm in the area of autonomous 
discovery and invention (Thaler, 1997b, 2013), research has focused on the statistical mechanics of such 
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systems, namely the relationship between synaptic fluctuation level and the novelty of the candidate 
patterns emerging from any connectively perturbed neural network, referred to herein as an “imagitron.” 
The mean level of ongoing synaptic fluctuations, < w>, among the net’s Ns connection weights governs 
its pattern evolution. At any moment, we may represent this perturbation level by 
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with the term wi - wi expressing the instantaneous difference between the perturbed and unperturbed 
values of the ith connection weight. Should all such terms be of the same sign (i.e., exclusively excitatory 
or inhibitory perturbations), the net’s pattern turnover as a function of mean synaptic perturbation, 
< w>, takes the form shown above in Figure 1, with the dotted curve reflecting overall pattern turnover 
(i.e., memories and confabulations combined) from the net. Memory turnover, shown via the solid curve, 
typically peaks at a critical level, < w>c, that separates regimes of intact memory output (U) and mild 
confabulation generation (V). Higher levels of fluctuation in synaptic integration in the W regime 
typically result in purely confabulatory output often amounting to nonsense.  

 
Figure 1. Pattern turnover of a synaptically perturbed ANS with pinned inputs. At the critical threshold, 

< w>c, novel patterns begin to dominate system output.

Important to note is that the rhythm of pattern generation varies during the progression from 
low to high fluctuation levels in synaptic perturbation.  Within the U regime, pattern turnover, consisting 
primarily of memories, increases in frequency from zero at < w> = 0, becoming less sporadic as 
perturbation level increases through the U regime. At < w>c, pattern turnover, still consisting largely of 
memories, becomes rapid and linear. Within the V regime, where confabulatory patterns begin to 
dominate network output, the rhythm of memory generation decreases and becomes more tentative. 
Thereafter, in the W regime, overall pattern turnover generally plateaus and then declines, becoming 
more sporadic with increasing synaptic fluctuation, until finally approaching zero at sufficient 
perturbation level when saturating synaptic integration pins all neurons at a fixed activation state.  
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 From the standpoint of implementing computational creativity within artificial neural systems, 
operation at or slightly above the steady-state perturbation level, < w>c, provides novel activation 
patterns that only slightly depart from memories stored within the neural system’s attractor landscape 
and as such constitute plausible notions that largely obey the learned constraints of the absorbed 
conceptual space. Accordingly, Creativity Machines (CM) operate at or near this synaptic fluctuation 
level either by design or through their own self-governance via feedback mechanisms between critics 
and imagitrons. Complex CMs incorporating multiple imagitrons manifest the same behavior as 
depicted in Figure 1, as these neural modules interconnect via fluctuating synaptic connections, such 
disturbances driving the formation of semi-plausible combinations of memories and confabulations into 
compound concepts (Thaler, 1996b). However, as these systems become more extensive, perceptrons 
or other critic algorithms must first locate such novel ideational juxtapositions prior to evaluating them, 
choosing then to either log the resulting discoveries, implement them as strategies, and/or reinforce them 
as memories. 
 Motivated by the need to locate such notions as they are forming within very large-scale neural 
systems, attention has centered on determining the optimal affordances to use in locating potential ideas 
as they activate. The experiment described below is both a summary of and an expansion upon prior 
work along these lines (Thaler, 2014), its conclusions forming the basis of a novel approach to both 
computational creativity and machine consciousness. 

2 Assessing Novelty from Neurodynamics 
The goal of this research was to determine the novelty of patterns emerging from a synaptically 

perturbed artificial neural net (ANN) based solely upon peripheral clues such as the time evolution of 
neural activation patterns. Finding such observables would fulfill the engineering objective of detecting 
idea formation among vast ensembles of chaotic neural nets. 

The parameters monitored in the course of these experiments included (1) the number of 
perturbations, Np, randomly hopping between the ANN’s connection weights, (2) the fixed or average 
magnitude of such synaptic perturbations, , (3) the total number of neurons in the network, Nn, and (4) 
the number of cycles, N, of random placements of such perturbations required to produce N0 output 
pattern transitions. Accordingly, the quantity Np /Nn represented the ensemble-averaged, perturbation-
induced bias in synaptic integration per neuron, that integration executing a random walk, in steps 
proportional to integer multiples of  at each individual processing unit to drive the net’s pattern 
turnover.  

In each of these computational 
experiments, the perturbed net took 
the form of a pre-trained, auto-
associative multilayer perceptron. 
The unperturbed twin of this chaotic 
net served to filter the stream of 
perturbation-driven output patterns 
for their novelty (Figure 2) based 
upon the root-mean-square error, 

act, between any of the perturbed 
net’s output patterns, act, and the 
quiescent net’s resulting output 
pattern, act . This reconstruction 
metric measured how closely any 
given noise-driven output pattern, 
act, came to any of either net’s stored memories. Allowed to pass only those perturbation-driven patterns 

 
Figure 2. Pattern turnover of synaptically perturbed ANN 
filtered by its quiescent twin.  Dashed connections represent 
transient synaptic perturbations.
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falling within some narrow range of reconstruction errors, the latter net could isolate pattern streams 
having constant novelty. Serving as a measure of rhythmic linearity, fractal dimension, D0, was 
analytically determined via Mandelbrot measures (Peitgen and Saupe, 1988) for each of these isolated 
“novelty bands.”  

Monitoring the perturbed net’s stream of output patterns using its quiescent clone, it was empirically 
established that for a given novelty band, act ± act), the relationship between fractal dimension 
D0 of the output stream (i.e., linearity), the required number of perturbation cycles, N to produce N0 
successively distinct patterns (i.e., frequency), and non-vanishing novelty, act, was given by 

with  constant (Thaler, 2014) for a given choice of Np, , and Nn. Confirmation of this equation came 
from the theory of fractional Brownian motion, fBm, (Mandelbrot and Van Ness, 1968). In addition to 
substantiating Equation 2, this random walk model served to identify the numerator on its right-hand 
side as the logarithm of the number of excursions, N0, of the perturbation-driven output pattern to the 
vicinity of what is at any moment its closest stored memory within the net.   

Noting that fractal dimension, D0, of a temporal stream may vary from 0, indicating an isolated 
event, to 1, representative of a linear sequence, the interpretation of Equation 2 becomes intuitively 
appealing. In essence, this relationship shows that there is an intrinsic tradeoff between the hesitancy of 
pattern delivery, reflected in D0, and the frequency inherent within the number of perturbation cycles, 
N, required to generate N0 = N/ act output patterns. Further analysis showed that  was the average 
step size in the random walk of synaptic integration at each neuron, approximately Np /Nn. From this 
perspective it was then determined that near the critical point < w>c,  

 
According to this relationship, fractal dimension of the pattern stream approaches a value of ½ when 
half the net’s neurons are populated on the average by a single synaptic perturbation (i.e., Np = Nn/2). 

The results of separate cognitive experiments obeyed the same relationship expressed by Equation 2 
for articulated stream of consciousness within a population of human volunteers engaged in divergent 
creative exercises requiring various degrees of originality (Thaler, 2014). Qualitatively, as the level of 
novelty required by the task increased, the lower were both the measured frequency (equivalent to 1/N) 
and fractal dimension (D0) of the ideational stream. More importantly, the value D0 = ½ appeared to be 
the boundary between rote memory recall and original thought, suggesting through Equation 3 that 
within the brain, it is possible that perturbative pinning of neurons begins as the number of synaptic 
perturbations, Np, begins to approach the number of neurons, Nn. Such synaptic saturation thusly 
impedes the internal pattern completion process that generates intact memories, leading instead to the 
nucleation of mild and potentially useful confabulations upon synaptic noise. 

3 Discussion 
Filtering the pattern turnover of a synaptically perturbed neural net on the basis of novelty reveals 

two readily observable metrics that are useful in determining how far output patterns are wandering 
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from the neural system’s direct experience, the first being the frequency of pattern output, and the 
second, the non-linearity of such pattern turnover. These affordances relate respectively to N, the 
number of perturbation cycles required to generate a targeted number of output pattern transitions, and 
the fractal dimension, D0, essentially a measure of the temporal clustering of these transitions. 

Therefore, in compound CMs consisting of multiple neural modules globally suffused with synaptic 
perturbations, an efficient way of detecting novel pattern formation is through a continuous anomaly 
scan of the neural environment in search of the more tentative (i.e., D0  ½) and lower frequency 
activation streams. With their attention thusly drawn to these novelties, critics may now assess their 
utility or value, choosing then to modulate synaptic perturbation level into either the U or W regimes 
where Hebbian learning within a quiescent environment may reinforce these notions into memories 
(Thaler, 2013, 2014).  

4 Connecting with Neurobiology 
The model yielding Equations 2 and 3 assumes only a system of switching elements, each 

functioning via weighted integration of input signals and threshold firing behavior, the entire system 
flooded by weight disturbances that drive an ongoing stream of activation patterns. Realizing that 
neurobiology fulfills these same minimal requirements, similar pattern delivery rhythms should be 
occurring within the brain, where the equivalent of random synaptic perturbation would be volume-
released neurotransmitters providing the necessary fluctuations to normal synaptic transmission, as well 
as fine control over whether cortex is in a rote or creative mode. Accordingly, the pace of human ideation 
has shown the same characteristic behaviors. It may be fast and linear during rote memory recall, or 
slow and tentative when creatively engaged, strongly suggesting that some form of novelty filter, similar 
to that shown in Figure 2, could be at work in the brain, constantly habituating to cortical state to reveal 
new or anomalous activation patterns forming therein. Temporal distribution algorithms could also be 
incorporated within the brain’s cognitive algorithms, being either explicit, estimating temporal 
distribution (e.g., fractal dimension) of pattern streams, or implicit, relying upon adaptive novelty 
detectors that would naturally react to the rarer and more sporadic neural activations related to idea 
formation. 

Whereas the theory of pattern turnover proposed herein serves as a first order approximation to 
human cognition, certain engineering challenges arise when attempting to extend the model to the 
hundreds of billions of neurons characteristic of the human cortex. There the novelty detection system 
would require a prohibitively large number of input nodes and an even larger number of connection 
weights to absorb the entire cortical status quo. In overcoming such scaling issues, a patent-pending 
methodology, based upon the rhythm of pattern delivery, has been developed to monitor the myriad 
pattern streams simultaneously emerging from very large cortical simulations.  This approach has in 
turn inspired a cognitive model (Figure 3) based upon the noise-driven formation of memory chains 
activating through momentary unions of multiple neural modules to create compound ideas that in turn 
recruit associative chains likewise composed of linked neural modules that collectively encode 
emotional response to freshly forming notions. These ideational chains (e.g. ABC), combined with 
affective responses (e.g., DEFG), would be observed via descending connections from cortex to 
thalamus within which a novelty-filtered and condensed version of the cortical chain A-G forms (e.g., 
abcdefg). Such a topologically faithful thalamic digest would synapse with neural modules such as H, 
specialized at flooding cortex with neurotransmitters that either excite or quench activation turnover. 

Crucial to both the proposed synthetic, cognitive architecture and biological consciousness would 
be the detection of idea formation among myriad neural modules transiently interconnecting into notions 
and the accompanying subjective responses to them. Fortunately, the same mathematical relationships 
governing pattern turnover hold in the topologically based system alluded to in Figure 3, since the 
affective responses are driven at the same characteristic rhythms as the ideations to which they are 
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transiently binding. Thus, such conceptual chains, now synchronized with their emotional responses, 
are detectable through their activation frequency or fractal dimension. Of course, such a filtering process 
would need to be sensitive to a specified frequency band in the V regime, so as not to capture memories 
or gibberish, but the mild confabulations we call ideas. 

 

 
 

Figure 3. Brain viewed as compound Creativity Machine. (Machine implementation patent pending.) 
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