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Abstract

Median graphs are a natural generalisation of trees and hypercubes that are closely related to distributive
lattices and graph retracts. In the past decade, they have become of increasing interest to the biological
community, where, amongst other things, they are applied to the study of evolutionary relationships within
populations.

Two simple measures of complexity for a median graph are the number of vertices and the number
of maximal induced subcubes. These numbers can be useful in biological applications, and they are also
of purely mathematical interest. However, they can be hard to compute in general. Here we present some
special families of median graphs where it is possible to find formulae and recursions for these numbers.
c© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Let N and N0 denote the set of positive and non-negative integers, respectively, and, for n ∈ N,
let [n] denote the set {1, 2, . . . , n}. We call a bipartition of [n] a split, and in case S is a split
consisting of parts A, B, we put S = {A, B}. Given a set of splits or split system S on [n], the
median graph associated to S (sometimes also called the Buneman graph [9]) is the subgraph
of the |S|-dimensional hypercube with vertex set consisting of those maps φ mapping S to the
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power-set of [n] which, for S, S′
∈ S, satisfy

φ(S) ∈ S and φ(S) ∩ φ(S′) 6= ∅,

and edge set consisting of those pairs of vertices {φ, φ′
} with

|{S ∈ S : φ(S) 6= φ′(S)}| = 1.

Median graphs are a natural generalisation of trees and hypercubes. They are closely related to
distributive lattices and graph retracts [1,2,14], and have been characterised in various ways (see
e.g. [18] for a survey). Moreover, in the past decade, they have become of increasing interest
to the biological community, where, amongst other things, they are applied to the study of
evolutionary relationships within populations [4].

Two simple measures of the complexity of a median graph are the number of vertices and the
number of maximal induced subcubes. These numbers can be useful to compute for biological
applications [16], and they are also of purely mathematical interest — see e.g., [6,9,18] and [5],
respectively. However, in general these numbers can be hard to compute — see e.g. [5,20] where
the number of vertices of the median graph associated to the system of all possible splits of [n]

is presented for n ≤ 7.
Here we will consider split systems where it is possible to provide formulae and recursions

for the number of vertices and maximal subcubes in the associated median graph. In particular,
for n ≥ 3, let Cn be the n-cycle with vertex set [n], and edge set consisting of those pairs
{i, j} ( [n] with i − j ≡ ±1 (mod n). Then, for n ≥ 2, define the full circular split system
S(n) on [n] by letting S(2) consist of the split {{1}, {2}} and, for n ≥ 3, letting S(n) consist
of all splits of [n] that are induced by removing two edges from Cn and taking the split of [n]

corresponding to the two connected components. In addition, for 1 ≤ m ≤ bn/2c, we define the
split subsystem S(n,m) of S(n) to be the split system consisting of the splits S = {A, B} in
S(n) with min{|A|, |B|} = m.

The split systems S(n) and S(n,m) are both special examples of circular split systems [3].
Besides median graphs, the closely related split networks are commonly associated to circular
split systems in biological applications [7], and formulae have been derived for the number of
vertices and edges of such networks [12]. In this paper, we present formulae and recursions for
the number of vertices and maximal induced subcubes in the median graphs associated to S(n)
and S(n,m).

We now present a brief summary of our main results. In Section 2, we show that the number
of vertices in the median graph of S(n) equals 2n−1 (see Eq. (2)). In addition, we show for
1 ≤ p ≤ b

n
2 c that the number of maximal induced p-dimensional subcubes in this graph is

n

n − 2p

p−1∑
j=0

2 j
(

p − 1
j

)(
n − 2p

j + 1

)
in case p 6=

n
2 and 1 in case p =

n
2 (see Eq. (4)) from which the total number of maximal induced

subcubes can easily be computed. In Section 3, we show that the number vq
m of vertices and the

number cq
m of maximal induced subcubes in the median network associated to S(2m + q,m),

q ∈ N0 and m ≥ 1 is

v
q
m = 1 +

∑
i≥0

2m + q

2i + 1

(
m − qi − 1

2i

)
2m−2i−qi−1
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and

cq
m =

∑
i≥0

2m + q

2i + 1

(
m − qi − 1

2i

)
,

respectively (see Eqs. (6) and (7)). Then, in Section 4, we provide recursive formulae for these
numbers. In particular, we show that vq

m can be computed recursively using

v
q
m =


1 if m = 0,
1 + (2m + q)2m−1 for all 1 ≤ m ≤ q + 1,

3vq
m−1 −

q∑
i=1

v
q
m−i−1 for all m > q + 1

(1)

(see Corollary 4.2), and the number cq
m can be computed using

cq
m =


0 for m = 0,
2m + q for all 1 ≤ m ≤ q + 1,
2cq

m−1 − cq
m−2 + cq

m−2−q for all m ≥ q + 2,

(Eq. (11)).
Intriguingly, in case q = 1, putting wm := v1

m , the recurrence relation in (1) becomes

wm = 3wm−1 − wm−2, m ≥ 2, (w0 = 1 and w1 = 4).

In Section 5 we give a combinatorial proof for this formula, from which it will immediately
follow that the sequence {wm}m≥0 is the bisection of the sequence of Lucas numbers {ln}n≥0. As
an immediate consequence of this fact we obtain an affirmative answer to a question posed by
B. Sturmfels concerning tight-spans.

2. The median graph associated to S(n)

In this section we provide formulae for the number of vertices and maximal subcubes in the
median graph associated to S(n), n ≥ 2.

To do this, we will use the following key observations, that will be of use later on as well. Two
splits {A, B} and {C, D} of [n] are said to be incompatible if all of the intersections A∩C , A∩ D,
B ∩ C , and B ∩ D are non-empty. In addition, a split system on [n] is said to be incompatible
if every pair of splits in this set is incompatible. For notational purposes, we also define split
systems with cardinality 0 and 1 as being incompatible. From results presented in [9,17] it follows
that if S is a split system on [n], then

• the incompatible split subsystems of S are in one-to-one correspondence with the vertices of
the median graph associated to S.

• The maximal q-dimensional induced subcubes of the median graph associated to S are in
one-to-one correspondence with the maximal incompatible subsystems in S with cardinality
q , where 1 ≤ q ≤ |S|.

Therefore, in order to count vertices and maximal induced subcubes of the median graph
associated to a given split system S ⊆ S(n), we will count the incompatible and maximal
incompatible subsystems of S, respectively.

With these observations in hand it is now fairly routine to find a formula for the number of
vertices in the median graph associated to S(n), or equivalently, for the number of incompatible
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Fig. 1. An incompatible split subsystem of S(9) with cardinality 4, consisting of the splits S1, S2, S3 and S9. The cycle
C9 is depicted in bold lines, and the splits are depicted by dashed lines. The elements of the part A1 of S1, as defined in
the next section, are highlighted by dashed circles.

split subsystems of S(n). Clearly, if n = 2 then S(n) contains two incompatible split subsystems,
namely ∅ and S(2). So assume n ≥ 3. By definition, each split in S(n) corresponds to choosing
two distinct edges of the n-cycle Cn (which, by the way, implies that the cardinality of S(n)
is
( n

2

)
). Therefore, as can be easily verified, the incompatible split subsystems of S(n) with

cardinality m, 1 ≤ m ≤ b
n
2 c, are in one-to-one correspondence with the subsets of the edge set

of Cn with cardinality 2m. Hence, adding 1 to take into account the empty split subsystem, the
number of incompatible split subsystems of S(n) equals

1 +

b
n
2 c∑

m=1

( n

2m

)
= 2n−1, (2)

as stated in the introduction.
Deriving a formula for the number of maximal incompatible split subsystems of S(n) is more

complicated. Assume n ≥ 3, noting that S(2) has one maximal incompatible split subsystem.
For all p ∈ N with p ≤ b

n
2 c, let In,p denote the set of maximal incompatible subsets of S(n)

with cardinality p. For example, in Fig. 1 we depict a maximal incompatible split system in I9,4.
Clearly, the number of maximal incompatible split subsystems of S(n) equals

∑
p≥1 |In,p|, and

therefore from now on we will concentrate on finding a formula for |In,p|.
We begin by translating the problem of finding the cardinality of In,p into that of finding the

cardinality of another set defined as follows. For i ∈ N0, with 0 ≤ i < p, let Z i
n,p denote the

set of pairs (z, k) with z a string of length 2p (having terms z j ∈ N) and k ∈ [n] that satisfy the
following conditions:

(Z1) z1 = 1 and z p+1 > 1;
(Z2) min(z j , z j+p) = 1, for all 1 ≤ j ≤ p;
(Z3) |{ j ∈ [p] : z j = 1 = z j+p}| = i ;

(Z4)
∑2p

j=1 z j = n.

Proposition 2.1. Suppose 1 ≤ p ≤ b
n
2 c. If p =

n
2 , then |In,p| = 1, else

|In,p| =

p−1∑
i=0

|Z i
n,p|

p − i
.
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Proof. Let p be as in the statement of the proposition. Clearly |In,p| = 1 if n = 2p. So suppose
from now on that n > 2p.

For 0 ≤ i ≤ p − 1, define a map γ that takes each element (z, k) in Z i
n,p to the split system

S(z, k) of cardinality p consisting of the splits

S j = {X j ∪̇X j+1∪̇ · · · ∪̇X j+p−1, X j+p∪̇ · · · ∪̇X j+2p−1}, 1 ≤ j ≤ p,

(with addition of indices taken modulo 2p) where, for 1 ≤ j ≤ 2p,

X j :=

{
k +

j−1∑
`=1

z`, k +

j−1∑
`=1

z` + 1, . . . , k +

j−1∑
`=1

z` + z j − 1

}
,

(where addition is modulo n). By (Z4) it follows that S j ∈ S(n), for all 1 ≤ j ≤ p.
Now, observe that for all 1 ≤ j ≤ 2p, by (Z2) and (Z1), we have |X j | = z j ≥ 1. Hence,

X j 6= ∅, for all 1 ≤ j ≤ 2p. It follows that the split system S(z, k) is incompatible. Moreover,
since a split S ∈ S(n) \ S(z, k) can only be incompatible with every element of S(z, k) if there
exists some 1 ≤ j ≤ 2p and non-empty disjoint subsets Ak, Bk ∈ Xk with Ak∪̇Bk = Xk ,
k ∈ { j, j + p}, such that

S = {A j ∪̇X j+1∪̇ · · · ∪̇X j+p−1∪̇B j+p, A j+p∪̇X j+p∪̇ · · · ∪̇X j+2p−1∪̇B j },

(Z2) implies that S(z, k) is maximal incompatible.
In summary, the above observations imply that γ is a well-defined map from Z i

n,p to In,p.
Moreover, by the characterisation of maximal incompatible split subsystems of S(n) given on
[10, page 2], it follows that every element of In,p equals S(z, k) for some (z, k) ∈ Z i

n,p.
Therefore, γ is a surjection. Thus, to complete the proof of the proposition it suffices to show
that γ is p − i to 1.

To see why this is the case, suppose (z, k) ∈ Z i
n,p. Taking sums of string indices modulo

2p and using (Z3) and (Z2) let z j1 = z1, z j2 , . . . , z jp−i denote the p − i terms of z for
which z j` = 1 6= z j`+p. Then, for all 1 ≤ ` ≤ p − i , the pair (z j` , j`) with z j` :=

z j` z j`+1 . . . z2pz1 . . . z j`−1 is clearly contained in Z i
n,p. It is straightforward to check that

S(z, k) = S(z j` , k + z1 + z2 + · · · + z j`−1), ` = 1, 2, . . . , p − i . Therefore γ is p − i to
1, as required. �

For 0 ≤ i ≤ p, we now give a formula for the cardinality of Z i
n,p.

Lemma 2.2. For 0 ≤ i < p ≤ b
n
2 c and p 6=

n
2

|Z i
n,p| = n

(
p − 1

i

)
2p−i−1

(
n − 2p − 1
p − i − 1

)
. (3)

Proof. Suppose that (z, k) is some element of Z i
n,p. By definition k can clearly be chosen in n

ways, and, for any fixed choice of k, by (Z3) there are
(

p−1
i

)
ways to choose pairs of terms

z j , z j+p with z j = z j+p = 1. Moreover, for any fixed choice of such a pair z j , z j+p, by (Z2)
it follows that for all other pairs of terms z`, z`+p with ` ∈ [p] \ { j ∈ [p] : z j = z j+p = 1}

precisely one of z` and z`+p equals 1, and so there are 2p−i−1 ways in which to choose either z`
or z`+p to equal 1.

Now, suppose that all of the above choices have been made. Then, z has p − i terms z j
with z j ≥ 2 and the rest of the terms of z are all equal to 1. Therefore, by (Z4) the number
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of choices for the terms z j of z with z j ≥ 2 equals the number of solutions to the equation
y1 + y2 + · · · + yp−i = n − p − i , where y j ∈ N, y j ≥ 2. Using standard counting arguments,

it is straightforward to see that there are
(

n−2p−1
p−i−1

)
such solutions. The lemma now follows

immediately. �

As an immediate consequence of the last lemma and Proposition 2.1, for 1 ≤ p ≤ b
n
2 c,

p 6=
n
2 , by replacing the exponent p − i − 1 by j in (3), we obtain

|In,p| =
n

n − 2p

p−1∑
j=0

2 j
(

p − 1
j

)(
n − 2p

j + 1

)
, (4)

noting also that, in case p =
n
2 , |In,p| = 1.

Note that we can use this expression to derive a recurrence relation for computing |In,p| as
follows. For p and n as above, put ιn,p := |In,p|, and let bn,p :=

n−2p
n ιn,p. Then,

bn,p =

p−1∑
j=0

(
p − 1

j

)
2 j
(

n − 2p

j + 1

)
=

p−1∑
j=0

((
p − 2

j

)
+

(
p − 2
j − 1

))
2 j
(

n − 2p

j + 1

)

=

p−2∑
j=0

(
p − 2

j

)
2 j
(

n − 2 − 2(p − 1)
j + 1

)
+ 2

p−2∑
j=0

(
p − 2

j

)
2 j
(

n − 2p

j + 2

)

= bn−2,p−1 + 2
p−2∑
j=0

(
p − 2

j

)
2 j
((

n − 2p − 1
j + 1

)
+

(
n − 2p − 1

j + 2

))

= bn−2,p−1 + 2bn−3,p−1 + 2
p−2∑
j=0

(
p − 2

j

)
2 j
((

n − 2p − 2
j + 1

)
+

(
n − 2p − 2

j + 2

))
= · · · = bn−2,p−1 + 2(bn−3,p−1 + bn−4,p−1 + · · · + b2p−1,p−1),

as
(

n−(n−2p+1)−2(p−1)
j+2

)
= 0. Therefore, for all 1 ≤ p ≤ b

n
2 c but p 6=

n
2 , we have

bn,p − bn−1,p = bn−2,p−1 + bn−3,p−1 where bn,1 = n − 2 for n ≥ 3 and bn,2 = (n − 4)2

for n ≥ 5. Since, for all n ≥ 4, ιn,p = 1 if p =
n
2 , it follows that

n − 2p

n
ιn,p =

n − 2p − 1
n − 1

ιn−1,p +
n − 2p

n − 2
ιn−2,p−1 +

n − 2p − 1
n − 3

ιn−3,p−1,

with ιn,1 = n for n ≥ 3 and ιn,2 = n(n − 4) for n ≥ 5 can be used to recursively compute the
sequence {ιn,p}n≥4.

3. The median graph associated to S(n, m)

In this section we find formulae for the number of vertices and the number of maximal
induced subcubes in the median graph associated to S(n,m), n ≥ 2, that is, the number of
incompatible split subsystems and the number of maximal incompatible split subsystems of
S(n,m), respectively.

To compute these numbers, it is convenient to re-parametrise by putting n := 2m + q, for
q ∈ N0, and considering the split system S(2m + q,m). We will also employ the following
explicit description of S(2m + q,m): It consists of those splits Si := {Ai , Bi }, 1 ≤ i ≤ 2m + q
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of [n] with Ai := {i, i + 1, . . . , i + m − 1} and Bi := [n] \ Ai (where addition is taken modulo
2m + q).

Denote the set of non-empty incompatible split subsystems of S(2m + q,m) by Iq
m , and

put vq
m = |Iq

m | + 1 (for example, the split system depicted in Fig. 1 is an element of I1
4 ). The

aim of the following collection of results is to determine a formula for vq
m , m ≥ 2 (noting that

v
q
1 = |Iq

1 | + 1 = 3 + q).
Let

I := {(S, Sk) : S ∈ Iq
m and Sk ∈ S}

and let Tm denote the set of ternary strings with length m and T = Tm × [2m + q]. Define a map
φ : I → T which takes an element (S, Sk) ∈ I to the pair (v, k) = φ(S, Sk), where the string v
has terms v j , j = 1, . . . ,m, given by

v j =

1 if ` := j + k − 1 ∈ {k, k + 1, . . . , k + m − 1} and S` ∈ S,
2 if ` := j + k − 1 ∈ {k, k + 1, . . . , k + m − 1} and S`+m+q ∈ S,
0 else,

where addition is taken modulo 2m + q . Note that, by definition, for any (S, Sk) ∈ I the
first digit of v in φ(S, Sk) = (v, k) always equals 1. To illustrate this definition, note that for
the incompatible split system S ∈ I1

4 depicted in Fig. 1, we have φ(S, S1) = (1112, 1) and
φ(S, S3) = (1222, 3).

We begin by giving a characterisation of the pairs that are contained in φ(I). For (v, k) ∈ T ,
define the set S(v,k) to be the split system⋃

i∈[m],vi =1

{S ∈ S(2m + q,m) : S = S`(i)}

∪

⋃
i∈[m],vi =2

{S ∈ S(2m + q,m) : S = S`(i)+m+q}, (5)

where `(i) := i + k − 1, for all i ∈ [m], and addition in the split indices is taken modulo 2m + q.
For example, S(1222,3) is the split system depicted in Fig. 1.

Lemma 3.1. A pair (v, k) ∈ T is contained in φ(I) if and only if v starts with 1 and any
substring of v of the form 200 · · · 01 contains q or more zeros.

Proof. Let (v, k) = φ(S, S), for (S, S) ∈ I. Suppose there is a substring a of v of the form
200 · · · 01 containing p zeros, with p < q . Then there exists some j ∈ [m] with v j = a1 = 2,
v j+p+1 = 1 and v j+i = ai+1 = 0, for all 1 ≤ i ≤ p. Hence, S j+m+q , S j+p+1 ∈ S, and therefore
S j+m+q and S j+p+1 are incompatible. But this is a contradiction since A j+p+1 ( B j+m+q .

Conversely, suppose that (v, k) ∈ T , that the first term of v is 1, and that any substring of v of
the form 200 · · · 01 contains q or more zeros. Put S = S(v,k). We claim (S, Sk) ∈ I which, since
it is straightforward to verify that (v, k) = φ(S, Sk), will complete the proof of the lemma.

Since the first term of v is 1 it immediately follows that Sk ∈ S. We now show that S ∈ Iq
m ,

from which it follows that (S, Sk) ∈ I, as claimed. If |S| = 1, then S is incompatible by
definition. Now suppose that |S| ≥ 2 and that S and S′ are distinct splits in S. We prove that S
and S′ are incompatible.

Since S 6= S′, there exist i, j ∈ [m] distinct such that S = Sĩ and S′
= S j̃ where either (a)

vi = 1 = v j , in which case ĩ := i + k − 1 and j̃ := j + k − 1, (b) vi = 2 = v j , in which
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case ĩ := i + k + m + q − 1 and j̃ := j + k + m + q − 1, (c) vi = 1 and v j = 2, in which
case ĩ := i + k − 1 and j̃ := j + k + m + q − 1, or (d) vi = 2 and v j = 1, in which case
ĩ := i + k + m + q − 1 and j̃ := j + k − 1. For each of these 4 cases it is straight forward to
show that S and S′ are incompatible. Thus, S ∈ Iq

m , as required. �

Now, for S ∈ Iq
m , let IS denote the subset {(S, S) ∈ I : S ∈ S} of I. Clearly, I =

∐
S∈Iq

m
IS .

Moreover, if S,S ′
∈ Iq

m distinct, then it immediately follows by the definition of φ that
φ(IS) ∩ φ(IS ′) = ∅. We now show that for any S ∈ Iq

m there are some elements in φ(IS)
with a particularly special form.

Lemma 3.2. For all (S, S) ∈ I, there is some (v, k) ∈ φ(IS) with v` = 1 for
` := max{ j ∈ [m] : v j 6= 0}.

Proof. Suppose (S, Sk) ∈ I and put (v, k) := φ(S, Sk) and ` = max{ j ∈ [m] : v j 6= 0}. If
v` = 1 then (v, k) is of the required form. If v` 6= 1 then (v, k) can be transformed iteratively into
an element of φ(IS) having the required form by successively removing the last t := m − `+ 1
digits from v and concatenating the length t string 100 · · · 0 onto the beginning of the resulting
new string v′

∈ Tm . Note that in each iteration (v′, k−t) = φ(S, Sk−t ) and so (v′, k−t) ∈ φ(IS).
Also note that this process must clearly terminate since v1 = 1 and m is finite. �

Before continuing, we define a useful map τ : Tm → N0 as follows. For v ∈ Tm , let v∗ denote
the string obtained by deleting all 0’s from v. In particular, v∗ is a concatenation of blocks of 1’s
and 2’s. We define τ(v) to be the number of occurrences of the string 21 in v∗.

Now, let P ⊆ φ(I) denote the set of pairs (v, k) where v satisfies the property given in
Lemma 3.2, that is, v` = 1 for ` := max{ j ∈ [m] : v j 6= 0}. Note that P ∩ φ(IS) 6= ∅ for all
S ∈ Iq

m , and that if (v, k) ∈ P then v1 = 1 = v` where ` = max{ j : v j 6= 0}, and so there are
2τ(v)+ 1 blocks of 1’s and 2’s in v∗.

Theorem 3.3. Suppose S ∈ Iq
m . Then

(i) For all (v, k), (w, r) ∈ P ∩ φ(IS), we have τ(v) = τ(w).
(ii) If (v, k) ∈ P ∩ φ(IS), then |P ∩ φ(IS)| = 2τ(v)+ 1.

Proof. Let S ∈ Iq
m . Fix (v, k) ∈ P ∩ φ(IS). Without loss of generality assume k = 1. Suppose

(w, r) ∈ P ∩ φ(IS) with (v, k) 6= (w, r). Note that we cannot have m + 1 ≤ r ≤ m + q + 1
since in this case

Ar = {r, r + 1, . . . , r + m − 1} ( {m + 1,m + 2, . . . , 2m + q} = B1

which implies that S1 and Sr are not compatible. But since S1 and Sr are both splits in S(w,r) (as
defined in (5)) and S(w,r) = S ∈ Iq

m , this is impossible.
Now, suppose v∗

= a1a2 . . . at and w∗
= b1b2 . . . bt with t = |S|. We claim that if 1 ≤ r ≤ m

and 1 ≤ r ′
≤ t is such that ar ′ corresponds to vr = 1, then

w∗
= ar ′ar ′+1 · · · at a1 a2 · · · ar ′−1,

and if m + q + 2 ≤ r ≤ 2m + q and 1 ≤ r ′
≤ t is such that ar ′ corresponds to vr−m−q = 2, then

w∗
= ar ′ ar ′+1 · · · at a1a2 · · · ar ′−1,

where for x = 1, 2, we define x := 3 − x . Suppose 1 ≤ r ≤ m. Then for all r ≤ ` ≤ m,
w`−r+1 = v`. In addition, for all 1 ≤ ` ≤ r −1, if v` = 1 thenw`+m−r+1 = 2, and if v` = 2 then
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w`+m+q−r+1 = 1. Note thatwl = 0 for all other values of l. Similarly, if m+2+q ≤ r ≤ 2m+q
then vr−m−q = 2. For all r − m − q ≤ ` ≤ m, if v` = 2 then w`+m+q−r+1 = 1, and if v` = 1
then w`+m−r+1 = 2, and w`+2m+q−r+1 = v`, for all 1 ≤ ` ≤ r − m − q − 1. As before, wl = 0
for all other values of l. This establishes the claim.

Now, note that (w, r) ∈ P ∩ φ(IS) if and only if b1 = bt = 1. Thus, in view of the above
claim it follows that ar ′ = 1 and ar ′−1 = 2 in case 1 ≤ r ≤ m, and ar ′ = 2 and ar ′−1 = 1 in case
m + q + 2 ≤ r ≤ 2m + q . Since a1 = at = 1, it is now straightforward to see that τ(v) = τ(w)
and that P ∩ φ(IS) contains 2τ(v) distinct elements that are not equal to (v, k). Therefore, (i)
and (ii) hold. �

For i ∈ N0, define Pi to be the subset of P consisting of those pairs (v, k) with τ(v) = i .
Clearly, P =

∐
i≥0 Pi . The following corollary is a straightforward consequence of the previous

theorem.

Corollary 3.4. For m ≥ 2, and q ∈ N0,

|Iq
m | =

∑
i≥0

1
2i + 1

|Pi |.

Hence, to find a formula for vq
m , m ≥ 2, it suffices to find one for |Pi |, i ≥ 0. To this end, for

all t ≥ 2, put

Pi,t := {(k, v) ∈ Pi : |v∗
| = t},

noting that Pi = ∪̇t≥1Pi,t .

Lemma 3.5. For all i ∈ N0 and all t ≥ 2,

|Pi,t | = (2m + q)

(
m − qi − 1

2i

)(
m − qi − 2i − 1

t − 2i − 1

)
.

Proof. Suppose i ≥ 0, t ≥ 2 and (v, k) ∈ Pi,t . Then, since v∗ is the concatenation of 2i + 1

blocks of 1’s and 2’s, v∗

1 = 1 (as v1 = 1), and |v∗
| = t , there are

(
t−1
2i

)
ways in which v∗ could

be made up from these blocks.
We now count the number of elements (w, k) in Pi,t with w∗

= v∗ by constructing all
w satisfying this equality starting from the string v∗. In view of Lemma 3.1, we first place q
consecutive 0’s in front of each block of 1’s in v∗ that is preceded by a 2. In the resulting ternary

string v′, consider the substrings of the form 00 · · · 01 as one digit. Then there are
(

m−qi−1
t−1

)
possible ways to add further 0’s to v′ to obtain a length m ternary string starting with 1, that is, a
string w as required.

Now, since(
t − 1

2i

)(
m − qi − 1

t − 1

)
=

(
m − qi − 1

2i

)(
m − qi − 2i − 1

t − 2i − 1

)
,

and there are 2m+q possible choices for k in the pair (v, k), the lemma now follows immediately.
�

The last lemma and the Binomial Theorem imply

|Pi | =

∑
t≥1

|Pi,t | = (2m + q)

(
m − qi − 1

2i

)
2m−2i−qi−1,
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for all i ≥ 0, and so by Corollary 3.4 and the fact that vq
1 = 3 + q (see above)

v
q
m = 1 + |Iq

m | = 1 +

∑
i≥0

1
2i + 1

|Pi | = 1 +

∑
i≥0

2m + q

2i + 1

(
m − qi − 1

2i

)
2m−2i−qi−1 (6)

where 1 in the sum counts the empty split subsystem of S(2m + q,m), m ≥ 1.
We conclude this section by deriving a formula for the number cq

m of maximal incompatible
subsystems of Iq

m , m ≥ 2, q ∈ N0 (noting that cq
1 = |S(2 + q, 1)| = 2 + q). First note that

Lemma 3.1 immediately implies that S is a maximal incompatible subsystem of S(2m +q,m) if
and only if for every (v, k) ∈ P ∩ φ(IS) every 0 in the string v is contained in a substring of the
form 20 · · · 01, and every such substring contains precisely q zeros. Therefore, for i ≥ 0 fixed, S
is a maximal incompatible subsystem of S(2m+q,m) if and only if for every (v, k) ∈ Pi ∩φ(IS)
the associated string v∗ has i occurrences of 21 and i occurrences of 12 in m − qi − 1 possible
positions. Therefore, since k can take on 2m + q possible values, by Theorem 3.3(ii), for m ≥ 1
we have

cq
m =

∑
i≥0

2m + q

2i + 1

(
m − qi − 1

2i

)
. (7)

4. Recurrence relations for v
q
m and cq

m

In this section we use generating functions to obtain recurrence relations for the sequences
{v

q
m}m≥1 and {cq

m}m≥1, q ∈ N0.
Let

Fq(y) :=

∑
m≥1

v
q
m ym

be the generating function associated to the sequence {v
q
m}m≥1. To obtain a formula for Fq(y),

we put

fq(x, y) :=

∑
m≥1

[
1 +

∑
i≥0

2m + q

2i + 1

(
m − qi − 1

2i

)
2m−2i−qi−1x2i+1

]
ym−1,

noting that, by (6), we have

Fq(y) = y fq(1, y). (8)

Theorem 4.1. For q ∈ N0, we have

fq(x, y) =
(q + 2 − 2qy)x

1 − 4y + 4y2 − x2 yq+2 +
1

1 − y
.

Proof. Put q = 2q ′. Then, with m replaced by m + 1,

fq(x, y) =

∑
m≥0

(
1 + (2m + 2 + 2q ′)

∑
i≥0

1
2i + 1

(
m − 2q ′i

2i

)
x2i+1

2(2q ′+2)i

)
(2y)m . (9)
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Differentiating fq(x, y) with respect to x yields

∂

∂x
fq(x, y) =

∑
m≥0

(
(2m + 2 + 2q ′)

∑
i≥0

(
m − q ′2i

2i

)
x2i

2(q ′+1)(2i)

)
(2y)m .

Now, consider the polynomials A(x, y) and B(x, y) defined by

A(x, y) =

∑
m≥0

(∑
i≥0

(
m − q ′2i

2i

)( x

2(q ′+1)

)2i
)
(2y)m and

B(x, y) =

∑
m≥0

(∑
i≥0

(
m − q ′i

i

)( x

2(q ′+1)

)i
)
(2y)m .

Then since for all j ≥ 0 the terms of the form ax2 j+1 cancel and those of the form ax2 j get
duplicated, it follows that

A(x, y) =
1
2
(B(x, y)+ B(−x, y)).

We claim that (1 − 2y − xyq ′
+1)B(x, y) = 1. To see this, note that it suffices to show that the

coefficients of x i ym in the product (1 − 2y − xyq ′
+1)B(x, y) cancel whenever (i,m) 6= (0, 0).

But this follows by using the identity
(

a+1
b

)
=
( a

b

)
+

(
a

b−1

)
to replace

(
m−q ′i

i

)
in the product

1 · B(x, y). Consequently, we also have (1 − 2y + xyq ′
+1)B(−x, y) = 1, and so

B(x, y) =
1

1 − 2y − xyq ′+1
and B(−x, y) =

1

1 − 2y + xyq ′+1
.

A straightforward check shows that

∂

∂x
fq(x, y) =

∂

∂y
A(x, y) · (2y)+ (2 + 2q ′)A(x, y)

= y
∂

∂y
(B(x, y)+ B(−x, y))+ (1 + q)(B(x, y)+ B(−x, y))

=
q ′

+ 1 − 2q ′y

(1 − 2y − xyq ′+1)2
+

q ′
+ 1 − 2q ′y

(1 − 2y + xyq ′+1)2
.

Hence,

fq(x, y) =

∫
∂

∂x
fq(x, y)dx =

(q ′
+ 1 − 2q ′y)2x

1 − 4y + 4y2 − x2 y2q ′+2
+ h(y), (10)

for some function h(y). Since fq(0, y) = h(y), we obtain h(y) =
1

1−y . The formula stated in
the theorem follows. �

Corollary 4.2. Let q ∈ N0. Then the sequence {v
q
m}m≥1 can be obtained by using

v
q
m =


1 if m = 0,
1 + (2m + q)2m−1 for all 1 ≤ m ≤ q + 1,
4vq

m−1 − 4vq
m−2 + v

q
m−q−2 for all m > q + 1;
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or,

v
q
m =


1 if m = 0,
1 + (2m + q)2m−1 for all 1 ≤ m ≤ q + 1,

3vq
m−1 −

q∑
i=1

v
q
m−i−1 for all m > q + 1.

Proof. The fact that vq
0 = 1 and that vq

m = 1 + (2m + q)2m−1 for all 1 ≤ m ≤ q + 1 both
hold follows from (6). Now, in view of (8), Theorem 4.1 and the fact that 1 is a zero of both the
numerator and the denominator of y fq(1, y), we have

Fq(y) = y fq(1, y)

=
(q + 1)y − (2q + 3)y2

+ y3
+ y4

+ · · · + yq+2

1 − 4y + 4y2 − yq+2

=
(q + 1)y − qy2

− (q − 1)y3
− (q − 2)y4

− · · · − (q − (q − 2))yq
− yq+1

1 − 3y + y2 + y3 + · · · + yq+1 .

The corollary now follows immediately. �

A recurrence relation can be obtained in a similar way for the sequence {cq
m}m≥1 as follows.

Let

Gq(z) :=

∑
m≥1

cq
m zm

be the associated generating function, and put

gq(x, z) =

∑
m≥1

∑
i≥0

[
2m + q

2i + 1

(
m − 1 − qi

2i

)
xm−qi

]
zm−1,

noting that by (7), we have Gq(z) = zgq(1, z). Using similar arguments to those used in the
proof of Theorem 4.1, it can be shown that

gq(x, z) =
(q + 2)x − qx2z

1 − 2xz + x2z2 − x2zq+2 ,

and, therefore, that

Gq(z) = zgq(1, z) =
(q + 2)z − qz2

1 − 2z + z2 − zq+2

is a formula for Gq(z). Combined with (7), it immediately follows, that

cq
m =


0 for m = 0,
2m + q for all 1 ≤ m ≤ q + 1,
2cq

m−1 − cq
m−2 + cq

m−2−q for all m ≥ q + 2,
(11)

can be used to recursively compute the terms of the sequence {cq
m}m≥1 as stated in the

introduction.

Remark 4.3. The recurrence relations in Corollary 4.2 and, (11) can also be obtained using
Zeilberger’s Algorithm (Section 5.8 in [15]). However, our proof provides recurrence relations
for general q ∈ N0, whereas Zeilberger’s algorithm only gives recurrence relations for q fixed.
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Fig. 2. For m = 2 the cycle C5 is depicted in (a). For each i ∈ {1, . . . , 5}, the edge {i, i + 1} of C5 is labelled by i ′.
The split S2 is depicted by a bold straight line. The graph C ′

5 associated to C5 is depicted in (b). The edge ψ(S2) of G is
pictured in bold.

5. The sequence {wm}m≥0

As in Section 3, for q ∈ N0 and m ≥ 1, let Iq
m denote the set of non-empty incompatible split

subsystems of S(2m + q,m). In this section, we provide a combinatorial proof that recurrence
relation in (1) given in Section 1 holds in case q = 1, i.e. putting wm := 1 + |I1

m |, we show that

wm = 3wm−1 − wm−2, m ≥ 2, (w0 = 1 and w1 = 4).

Suppose m ≥ 1. In C2m+1, label each edge {i, i + 1}, 1 ≤ i ≤ 2m + 1 (mod 2m + 1), by
i ′. We next associate a graph C ′

2m+1 to C2m+1 as follows. The vertex set V (C ′

2m+1) of C ′

2m+1
comprises of the labels i ′, 1 ≤ i ≤ 2m + 1, and any two vertices i ′, j ′ ∈ V (C ′

2m+1) are joined
by an edge if i − j ≡ ±m (mod 2m + 1) (see Fig. 2 for an example for the case m = 2). It is
straightforward to see that C ′

2m+1 is connected and that the degree of every vertex in C ′

2m+1 is 2.
Since |V (C ′

2m+1)| = 2m + 1, it follows that C ′

2m+1 is a (2m + 1)-cycle. Now the map

ψ : S(2m + 1,m) → E(C ′

2m+1) : Si+1 7→ {i ′, (i + m)′}

is clearly a bijection. Since any two distinct splits S, S′
∈ S(2m + 1,m) are incompatible if and

only if ψ(S) and ψ(S′) do not have a vertex in common, it follows that wm equals the number
of matchings in C ′

2m+1. Since C ′

2m+1 is a (2m + 1)-cycle and the Lucas number ln , n ≥ 1, is the
number of matchings in Cn [19, sequence id: A000204] it follows thatwm = l2m+1. In particular,
{wm}m≥1 is the bisection of {lm}m≥1.

Defining a maximal matching in the obvious way, similar arguments can be applied to show
that, for all m ≥ 1, c1

m equals the number of maximal matchings in C2m+1.
We conclude by answering a question concerning tight-spans that was raised by B. Sturmfels.

A split S on [n] separates a pair of distinct elements i, j ∈ [n] if i and j are contained in different
parts of S. To any split system S of [n] we associate the metric dS : [n] × [n] → R≥0, given by

dS(i, j) = |{S ∈ S : S separates i and j}|, i, j ∈ [n].

In addition, define the tight-span1 associated to S to be the polytopal complex that is given by
the union of the bounded faces of the polytope in R[n] given by

P(dS) = { f : [n] → R : f (i)+ f ( j) ≥ dS(i, j), for all i, j ∈ [n]}.

1 The tight-span can be defined for metrics in general — see e.g. [8,13] for more details.
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Sturmfels asked whether the number of vertices of the tight-span associated to the split system
S(2m + 1,m) can be given in terms of Lucas numbers. Since by [11, Theorem 3.1] the median
graph associated to S(2m + 1,m) is isomorphic to the 1-skeleton of the tight-span associated to
S(2m + 1,m), it immediately follows by the above observations that this is indeed the case.
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