
Computer Physics Communications 185 (2014) 708–719

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Particle-in-Cell algorithms for emerging computer architectures
Viktor K. Decyk a,∗, Tajendra V. Singh b

a Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547, USA
b Institute for Digital Research and Education, University of California, Los Angeles, CA 90095-1547, USA

a r t i c l e i n f o

Article history:
Received 22 June 2013
Received in revised form
4 October 2013
Accepted 14 October 2013
Available online 22 October 2013

Keywords:
Parallel algorithms
Particle-in-Cell
GPU
CUDA
Plasma simulation

a b s t r a c t

We have designed Particle-in-Cell algorithms for emerging architectures. These algorithms share a
common approach, using fine-grained tiles, but different implementations depending on the architecture.
On the GPU, there were two different implementations, one with atomic operations and one with no data
collisions, using CUDA C and Fortran. Speedups up to about 50 compared to a single core of the Intel i7
processor have been achieved. There was also an implementation for traditional multi-core processors
using OpenMP which achieved high parallel efficiency. We believe that this approach should work for
other emerging designs such as Intel Phi coprocessor from the Intel MIC architecture.

© 2013 The Authors. Published by Elsevier B.V .

1. Introduction

High Performance Computing (HPC) is going through a revolutionary phase with greatly increased parallelism on shared memory
processors, but with different approaches. A number of these approaches make use of Single Instruction Multiple Data (SIMD) vector
processors, which introduces another level of parallelism. Graphical Processing Units (GPUs) were an early pioneer in this kind of
computing, especially after NVIDIA introduced CUDA, a parallel computing architecture with a new parallel programming model and
instruction set architecture which substantially simplified programming their devices [1]. Intel has also introduced a similar architecture
with the Phi coprocessor [2], but with a different programming model. The Intel Phi coprocessor is based on the Intel Many Integrated
Core (MIC) Architecture.

This paper focuses on how to implement Particle-in-Cell (PIC) codes on such emerging architectures. PIC codes model plasmas by
integrating self-consistently the trajectories of many charged particles responding to the electromagnetic fields that they themselves
generate [3,4]. They are widely used in plasma physics, and with domain-decomposition techniques [5] they have run in parallel on very
large distributed memory supercomputers [6]. PIC codes have three major steps: depositing some quantity such as charge or current from
particles onto a grid, solving a field equation to obtain the electromagnetic fields, and interpolating electric andmagnetic fields to particles
from a grid. They have two data structures, particles and fields, that need to efficiently communicate with one another.

A variety of PIC codes have been implemented on GPU platforms in recent years [7–15]. In an earlier paper [8], we described how we
implemented a two dimensional (2D) electrostatic spectral PIC code on the NVIDIA GT200 class of GPUs. The fundamental approach we
usedwas to divide space into small tiles (typically containing 2×3 grid points) and to keep particles in each tile stored together inmemory.
Each tile could then be processed independently in parallel and only a small amount of fast local memory was needed.

More tiles were used than actual processors. The deposit step is very critical because data collisions are possible when two threads
attempt to write to the same memory location simultaneously. Because the GT200 series GPUs (such as the Tesla C1060) are very slow
in resolving data collisions for floating point data, the algorithm we designed was collision-free. This was accomplished by assigning a
different thread to each tile. Because tiles were very small, the cost of reordering particles moving between tiles was substantial.

∗ Corresponding author. Tel.: +1 310 206 0371.
E-mail address: decyk@physics.ucla.edu (V.K. Decyk).

0010-4655 © 2013 The Authors Published by Elsevier B.V..
http://dx.doi.org/10.1016/j.cpc.2013.10.013

Open access under CC BY-NC-SA license.

Open access under CC BY-NC-SA license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81130824?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.cpc.2013.10.013
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2013.10.013&domain=pdf
mailto:decyk@physics.ucla.edu
http://dx.doi.org/10.1016/j.cpc.2013.10.013
http://creativecommons.org/licenses/by-nc-sa/3.0/.
http://creativecommons.org/licenses/by-nc-sa/3.0/

V.K. Decyk, T.V. Singh / Computer Physics Communications 185 (2014) 708–719 709

Fig. 1. Partition of grid space into tiles. In this figure, the variables defined in the text have values nx = 16, ny = 12, mx = 2, my = 3, and their sizes are shown. The total
number of tiles is 32, with layout mx1 = 8, my1 = 4. Additional guard cells for the tiles are not shown.

With NVIDIA’s introduction of the Fermi architecture, several new features were added that had a substantial impact on optimal PIC
algorithms: increased fast local memory, automatic cache, and native support for atomic adds for floating point data. The use of tiles is still
optimal, but now it is preferable to assign a block of threads to a tile rather than one thread.We call this algorithm collision-resolving. This
paper describes the changes made to the earlier algorithm and the resulting performance of the new algorithm. Furthermore, we show
that the general tiling approach can also work well on conventional shared-memory multi-processors and this can be used as the basis for
a portable approach to PIC codes on emerging architectures. Both electrostatic and electromagnetic spectral algorithms are described.

2. Collision-free GPU PIC algorithm

An earlier version of this algorithm is described in [8]. Here we summarize the main points and describe some changes. The algorithm
is described in 2D space, but can be extended to 3D.

Space is divided into tiles each of which contains mx, my uniformly spaced grid points in x and y respectively, plus additional
guard cells. If there are nx, ny grid points in the entire computational region, then there is a total of mx1 × my1 tiles, where mx1 =

(nx − 1)/mx + 1 and my1 = (ny − 1)/my + 1. Tiles at the edges can contain grid points which are not active. Fig. 1 describes the parti-
tioning.

To determine which tile a particle belongs to, one first determines the grid point n, m, that the particle belongs to. The tile number is
then given by: n/mx and m/my. The same tiling is used in both the collision-free and collision-resolving algorithms.

Both GPUs as well as other high performing processors make use of SIMD processors, which perform nvec vector operations
simultaneously (in lockstep). The value of nvec varies from 4 on the Intel SSE to 32 on NVIDIA Fermi devices. These SIMD processors
also read data in large blocks, such as 128 bytes on the Fermi device. It is thus advantageous that adjacent memory locations needed by a
vector operation are stored in adjacent memory locations. On the GPU, each vector operation is performed by a group of threads (called a
thread block in CUDA).

For the collision-free algorithm, each vector element (thread) is responsible for one tile, and the particle data is stored in an arraywhere
adjacent threads in a thread block read adjacent memory locations. Such data layout for the particles is described by the following Fortran
declaration:

real dimension partc(lvect,idimp,nppmx,mbxy1)

where lvect is typically the blocksize on the GPU, idimp is the number of particle co-ordinates (2 positions plus 2 or 3 velocities),
nppmx is the maximum number of particles expected in a tile, and mbxy1 the number of independent blocks of tiles given by:
(mx1 ∗ my1 − 1)/lvect + 1. An auxiliary array kpic is used to store the number of actual particles in each tile in partc. It is declared
as follows:

integer kpic(mx1*my1)

Normally, the code initializes the particle co-ordinates on the host computer in the usual way, then rearranges them by tile into the new
data structure and copies them to the GPU.

Advancing particles is now easily and efficiently parallelized. The input to the push procedure is a global field array, which for linear
interpolation is declared as follows:

real dimension fxye(idimp-2,nx+1,ny+1)

where idimp-2 corresponds to the number of velocity co-ordinates (2 for the electrostatic code, 3 for the electromagnetic code). Each
thread block copies the fields it requires from global memory into a small local (shared) memory array which can be readmuch faster than

710 V.K. Decyk, T.V. Singh / Computer Physics Communications 185 (2014) 708–719

the global array. For linear interpolation this is declared as follows:

real, shared, dimension(idimp-2,mx+1,my+1,lvect) :: sfxy

Each thread processes different tiles and different particles independently, and there are no data collisions. Shared memory is not actually
shared among threads currently, but it is the fastest memory available in CUDA which allows indirect addressing.

The structure of the deposit step is similar to that of the particle push. For example, the charge density is first accumulated to a local
(shared) array, declared as:

real, shared, dimension(mx+1,my+1,lvect) :: sq

Then it is copied to a tiled global array qs, declared as follows:

real, dimension(lvect,mx+1,my+1,mbxy1) :: qs

The current deposit is similar. After the deposit, the guard cells in the charge or current array need to be added up. This is done by a separate
procedure where each thread is responsible for a different grid point and some threads may read (but not write) data which belong to
different tiles. The output goes to a different global array. The output charge density has the declaration:

real dimension q(nx,ny)

This also avoids any data collisions in the deposit. The push and deposit procedures do not need to know how the tiles are ordered in
memory, but the guard cell and the reordering procedures do because they impose periodic boundary conditions. We have stored the tiles
as one would a two dimensional array with Fortran ordering, but other orderings are possible. Two features which were described in [8],
allowing a thread to process more than one tile and allowing the tile sizes to vary, were not helpful and are not currently supported.

3. Particle reordering with one thread per tile

Implementing the push and deposit procedures on the GPU was relatively straightforward and performed well, as we show below.
However, particles need to be reordered at each time step as they move between tiles, and this is a challenge, since reordering is highly
irregular and does not fit the GPU architecture well. The procedure we use now is simpler than the procedure described in [8]. It has three
steps. In the first step, a list of the indices of the particles leaving a tile and their direction indices (which indicate which of the 8 possible
neighboring tiles the particles are going to), arewritten to an arraynhole. The sumof the number of particles going to each of the direction
indices is also written to an array ncl. Fig. 2 illustrates which direction corresponds to which index. The arrays are declared as follows:

integer dimension nhole(lvect,2,ntmax+1,mbxy1)
integer dimension ncl(8,mx1*my1)

where ntmax is the maximum number of particles expected to leave a tile. The total number of particles leaving a tile is also stored in the
nhole array. If the number of particles leaving a tile would exceed ntmax, an error is returned. In a production environment, one could
reallocate the nhole array upon error and run the procedure again.

In the second step, the particles leaving a tile are copied into an ordered global buffer pbuff, where all the particles going in a particular
direction are stored together in memory. This ordering is achieved by first performing a running sum (sometimes called a prefix scan or
prefix sum) of ncl for each tile, which gives the offset into the pbuff array where to start copying the outgoing particles going in a
particular direction. The declaration of the buffer is as follows:

real dimension pbuff(lvect,idimp,ntmax,mbxy1)

In the third step, the thread controlling each tile reads the ncl array for each of the 8 directions to determine how many particles
it needs from each direction, and where they are located in the pbuff array. (Since ncl contains a running sum, the number for each
direction is just the difference between two neighboring directions.) The buffer data is then written into the particle array. First any holes
left by departing particles are filled. Any additional particles arewritten at the end of the particle array. Ifip holes remain after all incoming
particles are processed, then those holes are filled with the last ip particles from the end of the array. In this way, particles are always
stored in a contiguous array with no gaps. The auxiliary array kpic is also updated. During processing, the global array ncl is copied
to shared memory in the first and second steps and then written back to global memory. No data collisions occur in any of these steps,
since each thread always controls its own write buffers. An OpenMP version of the entire reordering scheme in Fortran77 is listed in the
Appendix.

The overall scheme, illustrated in Fig. 2, is similar to that used inmessage-passing on distributedmemory computers [5], except that one
ordered buffer is used for sending particles instead of separate buffers for each direction. This simplified reordering schemewas relatively
straightforward to implement, compared to the previous scheme.

The first step is the most time-consuming, because all the particles need to be read into memory. The remaining two steps only read
the particles which are leaving from or arriving into a tile, which is normally a small subset of the total particles. We do not allow particles
to cross more than one tile in a time step, but this is possible by executing the reordering scheme more than once.

In the collision-free algorithm, the first step was incorporated into the particle push. This avoids reading all the particles again just to
determine which particles need to be moved. In the electromagnetic (EM) code, the push advances the position only half a time step and
the current deposit step advances it the remaining half step. This keeps both current and charge deposits properly time-centered. As a
result, two reorderings are performed each time step (but fewer particles need to be moved). As in the push, the first step of the second
reordering is incorporated into the current deposit.

V.K. Decyk, T.V. Singh / Computer Physics Communications 185 (2014) 708–719 711

Fig. 2. Particle reordering. Particles leaving a tile are first written into an ordered GPU buffer by one procedure. A separate procedure copies particles coming into a tile
from 8 different buffers.

Table 1
Benchmarks of the collision-free algorithm on GT200 GPUs.

4. Benchmark results with collision-free algorithm on GT200 architecture GPUs

With this algorithm, we have implemented both a 2D electrostatic (ES) spectral code, as in [8], as well as a 2-1/2D relativistic, EM
spectral code, which calculates electric and magnetic fields from the full set of Maxwell’s equation, as in [16]. Both codes solve the field
equations using Fast Fourier Transforms (FFTs) with periodic boundary conditions, 3 FFTs per time step for the ES code and 10 for the EM
code. Spectral EM codes deposit both charge and current density. The GPU routines were implemented in CUDA C, but the main programs
and initialization procedures were written in Fortran90 and Fortran77, using gfortran. The benchmark program (Table 1) had a grid of
1024 × 1024 with 37, 748,730 particles (36 particles per cell) and was run on an NVIDIA Tesla S1070 device, in single precision. A CUDA
blocksize = 32 gave the best results. The host machine used Intel i7 CPUs (Dual Intel Xeon—X5650, each with six cores), running at a clock
speed of 2.67 GHz. Time reported is per particle per time step. The GPU field solver time is not shown, but it made use of the CUDA FFT
library and was about 6% of the total time for the ES case, and 11% in the EM case. A plasma in thermal equilibrium was simulated for 100
steps in the ES case and 250 steps in the EM case.

About 30%–40% of the total time was spent in reordering particles. The average number of particles leaving a tile per time step was
6.5% for the ES case and 1.5% for the EM case. The major limitation of this algorithm is that each thread needs its own copy of the shared
memory arrays, and thus the amount of sharedmemory needed by a thread block is large. Since sharedmemory is a scarce resource, small
tile sizes are required and this leads to a relatively large percentage of particles moving between tiles each time step. The optimal tile size
for the EM case was smaller because the shared memory requirements were larger.

5. Collision-resolving GPU PIC algorithm

The introduction of the NVIDIA Fermi architecture added several new features that had a substantial impact on optimal PIC algorithms,
the most important being hardware support for atomic adds for floating point data. (Atomic adds treat the add as an uninterruptible
operation, without interference between threads.) If atomic operations work well, then it is possible to assign a block of threads to a tile,
and the total amount of sharedmemory per block is greatly reduced, allowing larger tile sizes. Atomic operations are needed in the deposit
step if multiple threads are used in a tile because two threadsmight be attempting to update the same grid point at the same time. In order
for adjacent threads to access adjacent memory locations, a new data structure is needed for particles, declared as:

real dimension ppart(nppmx,idimp,mx1*my1)

712 V.K. Decyk, T.V. Singh / Computer Physics Communications 185 (2014) 708–719

Implementing the particle advance with one thread block per tile was relatively easy. Instead of a loop over particles as we had in the
collision-free algorithm:

do j = 1, npp
...
enddo

where npp is the number of particles in a tile, one uses the following construct in PGI CUDA Fortran:

j = threadIdx%x
do while (j <= npp)

...
j = j + blockDim%x

enddo

with similar expressions in CUDA C. When copying the field arrays to shared memory, each thread copies part of the data and the shared
memory is actually shared. The declarations for the shared arrays are now:

real, shared, dimension(idimp-2,mx+1,my+1) :: sfxy
real, shared, dimension(mx+1,my+1) :: sq

Implementing the deposit procedure is similar. The major additional change is the use of the atomicAdd function. Instead of operations
such as:

sq(n) = sq(n) + a,

one writes:

old = atomicAdd(sq(n),a)

where old will contain the old value of sq(n). In CUDA C the expression is similar. When the particles have been processed, the charge
density can be copied to a tiled global array qp, declared as follows:

real dimension qp(mx+1,my+1,mxy1)

Then guard cells can be added and the result written to the global array q, as in the collision-free case. Alternatively, the charge density
and guard cells can be added in the deposit step directly to the global array q using atomicAdds. Since most of the time in the deposit
is spent in accumulating the charge density in the shared memory, and not writing to global memory, it does not make much difference
which deposit method is chosen. Current deposit is handled the same way.

6. Particle reordering with multiple threads per tile

To implement the particle reordering scheme shown in the Appendix using a vector or group of threads per tile, on the other hand,
is much more challenging to implement than with one thread per tile. It requires a different data structure for the array describing the
particles leaving a tile, as follows:

integer dimension ihole(2,ntmax+1,mxy1)

To avoid complex if tests (causing warp divergence in CUDA), data parallel algorithms using masking operations and prefix scans are
effective here. As an example of how a masking operation is used, consider the first step of the reordering, where ist represents the
direction a particle is going (0 <= ist<= 8), and j is its location in the particle array. The OpenMP version has the following construct:

if (ist.gt.0) then
ncl(ist,k) = ncl(ist,k) + 1
ih = ih + 1
ihole(1,ih+1,k) = j
ihole(2,ih+1,k) = ist

endif

When multiple threads, each responsible for a different particle, are executing this in parallel, one can use atomicAdds to sum ncl.
However, the remaining steps of the reordering are much simpler if the particle locations j stored in the array ihole at location ih are
monotonically increasing. In that case, we cannot use atomicAdds to increment ih because different threads will place the values of j in
unpredictable locations ih. Instead we use data parallel programming techniques [17,18], as shown in the following pseudo code, where
mask is an integer array, and i refers to the thread index:

mask(i) = 0
if (ist > 0) mask(i) = 1
prefixscan(mask)
ih = mask(i)
ip = 0
if (i > 1) ip = mask(i-1)
if (ih > ip) then

ihole(1,ih+1,k) = j
ihole(2,ih+1,k) = ist

endif

V.K. Decyk, T.V. Singh / Computer Physics Communications 185 (2014) 708–719 713

One sets mask to 1 if ist > 0, otherwise 0. After the prefix scan (running sum), the mask(i) array value for thread i will jump by one
compared to the previous value for the threadwhere ist > 0, and the value of mask for that thread is the required ih value. For example,
suppose we have a vector length (thread block) of 6, and threads 2 and 5 have ist > 0. In that case, mask = [0 1 0 0 1 0]. The prefix sum
gives mask = [0 1 1 1 2 2]. For thread 2, we have ih = mask(2) = 1, and for thread 5, we have ih = mask(5) = 2. For threads where
ist = 0 (which means the particle is not moving to another tile), mask(i) = mask(i − 1) and ih = mask(i) is not used.

In the third step of the reordering, the code (shown in the Appendix) has a double loop over directions and the number of particles in
each direction.

do ii = 1, 8
ip = ...
do j = 1, ip
...

where the indexii refers to thenumber of directions, andip is the number of incomingparticles from that direction.Multiple (segmented)
prefix scans are used to find the addresses in the pbuff array for incoming particles in order to read from all directions simultaneously.
Prefix scans are also used to load the addresses to determine how to fill any leftover holes if there are more holes than incoming particles.

One could implement the particle reordering schememore simply using one thread per tile as before. However, itwould be less efficient,
because the particle data structure ppart used with one thread block per tile for the push and deposit, is not optimal when using one
thread per tile for the reordering, making that scheme less efficient here.

7. Field solvers

Both the collision-free and collision-resolving algorithms use the same field solvers. The 2D ES code solves Poisson’s equation in Fourier
space as described in [8]. At the time that paper was written, NVIDIA’s real to complex (R2C) FFT was not optimized and performed poorly.
The R2C transforms now perform well and as a result, we use an algorithm which uses multiple 1D R2C transforms in x, followed by a
transpose, thenmultiple 1D complex to complex (C2C) transforms in y. This performed better than using NVIDIA’s 2D R2C transform and is
also more compatible with a future MPI version. The ES code first transforms the charge density, calculates a 2 component electric field in
Fourier space, and then performs a 2 component FFT, where both components are transformed at the same time. For the 2-1/2D EM code,
the particles have three velocity co-ordinates and 2 spatial co-ordinates. The field solver separates the vector quantities into longitudinal
(curl-free) and transverse (divergence-free) quantities. The Poisson equation is solved as in the ES code. In addition, Maxwell’s equations
for the transverse quantities are updated. The transverse quantities for current, electric andmagnetic fields each have 3 components and 3
component FFTs are performed. The ES and EM electric fields are combined in Fourier space before transforming to real space. The outputs
of the FFT are global arrays, such as the following for the electric field:

real dimension fxy(nx,idimp-2,ny)

This array is then copied, with guard cells added, to the array fxye, described in Section 2. The magnetic field is treated similarly.

8. Porting the GPU algorithms to multi-core processors

During the development of the GPU codes, it was helpful to develop serial versions of all the subroutines as an aid in debugging. The
procedure shown in the Appendix was an example. After this was done, we realized that the loops over tiles could be easily parallelized
with OpenMP, and we could obtain a library of procedures which could run in parallel on current generation multi-core processors. Since
these procedures had the same dummy arguments as the GPU procedures, it was possible to use the same main program with either
multi-core processors or GPUs and just link with different libraries. With the OpenMP version only the loop over tiles was parallelized, so
there were never any collisions within a tile for either the collision-free or collision-resolving algorithm. We implemented the collision-
resolving algorithm because it was simpler. The only change was that the particle array with OpenMP was transposed relative to the GPU
version, as follows:

real, dimension ppart(idimp,nppmx,mx1*my1)

This gave better cache performance on traditional architectures.

9. Benchmark results with collision-resolving algorithm on Fermi architecture GPUs

We ran the collision-resolving algorithm on the NVIDIA Fermi M2090 (Table 2). For the ES case and the OpenMP cases it was beneficial
to move step one of the reordering scheme (calculating ihole and ncl) into the push procedure (and into the current deposit for the EM
code). However, for the EMcode on theGPU, itwas better to keep all three steps in the reordering scheme. Thiswas due to the increased use
of registers and shared memory when extra calculations were included, which reduced the number of independent blocks which can run
simultaneously (occupancy). The Fermi GPU has fewer registers than the GT200. Due to its larger memory, we increased the benchmark
size to a larger grid of 2048× 2048 with 150,994,944 particles (36 particles per cell). The implementation reported here used Cuda C with
a Fortran90 main program. We used single precision, and a CUDA blocksize = 128 gave the best results. Shared Memory was set to 48 kB.
The GPU field solver time is not shown, but was about 6% of the total time for the ES case, and 10% in the EM case.

Note that theOpenMP code result has better than 95%parallel efficiency. On theGPU, about 15%–30% of the timewas spent in reordering
particles. The average number of particles leaving a tile per time step was 1.0% for the ES case and 0.3% for the EM case. The performance
on the M2090 was nearly twice that of the S1070. For the ES case, the reordering time using OpenMP with 12 cores is similar to the time
with the GPU. For the EM case, reordering with OpenMP appears much faster than on the GPU, but this is deceptive, because in this case
the GPU did not incorporate the first part of the reordering into the push. One important advantage of the OpenMP version of the code

714 V.K. Decyk, T.V. Singh / Computer Physics Communications 185 (2014) 708–719

Table 2
Benchmarks of the collision-resolving algorithm on Fermi GPUs.

is that particles are now ordered, so that additional interactions (such as particle collisions) which need to know the location of nearby
particles are much easier and less costly to implement.

The number of floating point operations per particle per time step for the combined push and deposit steps is about 60 for the ES code
and 175 for the EM code. The time to complete those two steps is 0.76 ns and 1.34 ns, respectively. This gives a floating point performance
of 79 GFlops and 131 GFlops, respectively, where GFlops means one billion floating point operations per second. Since the peak floating
point speed of the M2090 is 1.33 TFlops (one trillion floating point operations per second), the ES code is achieving about 6% of peak
floating point speed, and the EM code 10% of peak floating point speed.

Such a figure is misleading, however, because these codes are memory bound, with low computational intensity. A better measure of
computational efficiency is to include the memory access time. The ES code accesses 40 bytes of global memory per particle per time step,
while the EM code accesses 76 bytes. The peak memory speed for global memory access is 142 GB/s for memory with error correction
(ECC) turned on, as in our case. The minimum time to just access memory is then 0.28 ns per particle per time step for the ES code and
0.54 ns for the EM code, neglecting latency, accessing field quantities and load imbalance. In comparison, if the device were operating at
peak speed (1.33 TFlops), theminimum time to perform the floating point operations would be 0.05 ns per particle per time step for the ES
code and 0.13 ns for the EM code. Thememory access timewill likely partially overlapwith floating point calculation time. If we define the
ideal time to be the largest of these times (which assumes complete overlap), then we can define the lower bound of the computational
efficiency to be the ratio of this ideal time to the actual time. We then obtain a computational efficiency of 37% for the ES code and 40%
for the EM code for these two steps. The particle reordering has very flew floating point operations and its memory access is irregular and
inefficient. Fortunately, in most cases few particles need to be moved between tiles so this inefficiency does not dominate.

A CUDA Fortran version of the collision-resolving algorithm was also implemented and the results were about 10% slower than with
native CUDA C.

10. Discussion

It is possible to run the collision-free algorithm on Fermi architectures. Results show that the collision-resolving algorithm is about
twice as fast as the collision-free algorithm. On the GT200 architectures, it is not possible to run the collision-resolving algorithm as
written because floating point atomic updates are not supported. However, if we use the less efficient atomic CAS (Compare and Swap)
operations to implement atomic updates, then the collision-free algorithm is about 10% faster than the collision-resolving algorithm on
the GT200.

The optimal tile size was determined empirically. As the tile size increases, fewer particles need to be reordered, and the reordering
time decreases. However, the push and deposit run more slowly since more shared memory is required and therefore the number of
independent blocks which can run simultaneously (occupancy) goes down.

The simple skeleton codes described here use linear interpolation. The use of higher order interpolation requires more sharedmemory,
which tends to slow the code down. However, the computational intensity (more operations per memory access) is higher, so overall one
expects the speedups to be higher.

The GPU hardware consists of a collection of vector processors with small amounts of fast memory, coupled by slow global memory. So
it is not surprising that programming GPUs makes use of algorithms familiar to scientific programmers from past architectures. In these
PIC codes we have made use of vector algorithms similar to those used on the Cray for particle pushing and field solvers. We made use
of data parallel algorithms similar to those used on the Connection Machine [17,19] in the reordering scheme. Blocking techniques were
used in the overall tiling design as well as in other procedures such as the data transpose used in the FFT. Message-passing algorithms
were also used in the reordering to send and receive particle buffers.

One new element, however, is that programming GPUs favors designs where there are many more threads than physical processors,
due to the extremely fast thread switching in the hardware. This helps to hidememory latency.We can also use this feature to assignwork
to threads for load-balancing, either manually or automatically with the master–slave paradigm. Originally, it was thought that very fine-
grained parallelism would be very difficult or impossible to load-balance, since the number of particles in small regions would fluctuate a
great deal. But using a large number of threads can avoid this problem.

One would think that with the introduction of cache memory in the Fermi architecture, shared memory might be unnecessary and
redundant. However, shared memory is useful because the data there cannot be evicted by the hardware, whereas data in cache could be.

V.K. Decyk, T.V. Singh / Computer Physics Communications 185 (2014) 708–719 715

We have determined that fine-grain tiling with reordering every time step is an efficient approach to emerging architectures. We have
written two versions, one collision-free for architectures where atomic updates are inefficient, and another collision-resolving where
atomic updates work well. We have also implemented a multi-core version which works with high parallel efficiency on current multi-
core architectures. One of our goals is to develop a portable approach to PIC codes on other emerging architectures, such as the Intel PHI
coprocessor. The Intel PHI has a similar underlying hardware architecture consisting of multiple SIMD processors, but the programming
model is different. The authors of [2] claim (p. 16) that applications which work well on GPUs should work well on the PHI, and that
all one needs is OpenMP with some efficient vectorization method. We do not expect that one source code will be possible in the near
term, because expressing parallelism is still evolving. However, creating different implementations that utilize the same algorithms and
similar data structures looks feasible now. Modifying our procedures to support multiple GPUs with MPI also appears to be relatively
straightforward. This will be the subject of a future paper.

It is our intention to make compact skeleton codes for various parallel architectures available on the UCLA IDRE web site at:
https://idre.ucla.edu/hpc/parallel-plasma-pic-codes. Some are available now.

Acknowledgments

This work was supported by the US Department of Energy under grant DE-SC0008491, the National Science Foundation under grants
NSF PHY-0960344 and OCI-1036224, NASA under grant NNX10AK98G, and the UCLA Institute for Digital Research and Education (IDRE).

Appendix. OpenMP particle reordering

subroutine PPORDER2L(ppart,ppbuff,kpic,ncl,ihole,idimp,nppmx,nx,
1ny,mx,my,mx1,my1,npbmx,ntmax,irc)

c this subroutine sorts particles by x,y grid in tiles of mx, my
c linear interpolation, with periodic boundary conditions
c tiles are assumed to be arranged in 2D linear memory
c algorithm has 3 steps. first, one finds particles leaving tile and
c stores their number in each direction, location, and destination
c in ncl and ihole. second, a prefix scan of ncl is performed and
c departing particles are buffered in ppbuff in direction order.
c finally, we copy the incoming particles from other tiles into ppart.
c input: all except ppbuff, ncl, ihole, irc
c output: ppart, ppbuff, kpic, ncl, ihole, irc
c ppart(1,n,k) = position x of particle n in tile k
c ppart(2,n,k) = position y of particle n in tile k
c ppbuff(i,n,k) = i co-ordinate of particle n in tile k
c kpic(k) = number of particles in tile k
c ncl(i,k) = number of particles going to destination i, tile k
c ihole(1,:,k) = location of hole in array left by departing particle
c ihole(2,:,k) = direction destination of particle leaving hole
c all for tile k
c ihole(1,1,k) = ih, number of holes left (error, if negative)
c idimp = size of phase space = 4
c nppmx = maximum number of particles in tile
c nx/ny = system length in x/y direction
c mx/my = number of grids in sorting cell in x/y
c mx1 = (system length in x direction - 1)/mx + 1
c my1 = (system length in y direction - 1)/my + 1
c npbmx = size of buffer array ppbuff
c ntmax = size of hole array for particles leaving tiles
c irc = maximum overflow, returned only if error occurs, when irc > 0
c written by viktor k. decyk, ucla
c copyright 2012, regents of the university of california

implicit none
integer idimp, nppmx, nx, ny, mx, my, mx1, my1, npbmx, ntmax
integer irc
real ppart, ppbuff
integer kpic, ncl, ihole
dimension ppart(idimp,nppmx,mx1*my1)
dimension ppbuff(idimp,npbmx,mx1*my1)
dimension kpic(mx1*my1), ncl(8,mx1*my1)
dimension ihole(2,ntmax+1,mx1*my1)

c local data
integer mxy1, noff, moff, npp, ncoff
integer i, j, k, ii, kx, ky, ih, nh, ist, nn, mm, isum
integer ip, j1, j2, kxl, kxr, kk, kl, kr

https://idre.ucla.edu/hpc/parallel-plasma-pic-codes

716 V.K. Decyk, T.V. Singh / Computer Physics Communications 185 (2014) 708–719

real anx, any, edgelx, edgely, edgerx, edgery, dx, dy
integer ks
dimension ks(8)
mxy1 = mx1*my1
anx = real(nx)
any = real(ny)

c find and count particles leaving tiles and determine destination
c update ppart, ihole, ncl
c loop over tiles
!$OMP PARALLEL DO
!$OMP& PRIVATE(j,k,noff,moff,npp,nn,mm,ih,nh,ist,dx,dy,edgelx,edgely,
!$OMP& edgerx,edgery)

do 30 k = 1, mxy1
noff = (k - 1)/mx1
moff = my*noff
noff = mx*(k - mx1*noff - 1)
npp = kpic(k)
nn = min(mx,nx-noff)
mm = min(my,ny-moff)
ih = 0
nh = 0
edgelx = noff
edgerx = noff + nn
edgely = moff
edgery = moff + mm

c clear counters
do 10 j = 1, 8
ncl(j,k) = 0

10 continue
c loop over particles in tile

do 20 j = 1, npp
dx = ppart(1,j,k)
dy = ppart(2,j,k)

c find particles going out of bounds
ist = 0

c count how many particles are going in each direction in ncl
c save their address and destination in ihole
c use periodic boundary conditions and check for roundoff error
c ist = direction particle is going

if (dx.ge.edgerx) then
if (dx.ge.anx) ppart(1,j,k) = dx - anx
ist = 2

else if (dx.lt.edgelx) then
if (dx.lt.0.0) then

dx = dx + anx
if (dx.lt.anx) then

ist = 1
else

dx = 0.0
endif
ppart(1,j,k) = dx

else
ist = 1

endif
endif
if (dy.ge.edgery) then

if (dy.ge.any) ppart(2,j,k) = dy - any
ist = ist + 6

else if (dy.lt.edgely) then
if (dy.lt.0.0) then

dy = dy + any
if (dy.lt.any) then

ist = ist + 3
else

dy = 0.0
endif

V.K. Decyk, T.V. Singh / Computer Physics Communications 185 (2014) 708–719 717

ppart(2,j,k) = dy
else

ist = ist + 3
endif

endif
if (ist.gt.0) then

ncl(ist,k) = ncl(ist,k) + 1
ih = ih + 1
if (ih.le.ntmax) then

ihole(1,ih+1,k) = j
ihole(2,ih+1,k) = ist

else
nh = 1

endif
endif

20 continue
c set error and end of file flag

if (nh.gt.0) then
irc = ih
ih = -ih

endif
ihole(1,1,k) = ih

30 continue
!$OMP END PARALLEL DO
c ihole overflow

if (irc.gt.0) return
c
c buffer particles that are leaving tile: update ppbuff, ncl
c loop over tiles
!$OMP PARALLEL DO
!$OMP& PRIVATE(i,j,k,isum,ist,nh,ip,j1,ii)

do 70 k = 1, mxy1
c find address offset for ordered ppbuff array

isum = 0
do 40 j = 1, 8
ist = ncl(j,k)
ncl(j,k) = isum
isum = isum + ist

40 continue
nh = ihole(1,1,k)
ip = 0

c loop over particles leaving tile
do 60 j = 1, nh

c buffer particles that are leaving tile, in direction order
j1 = ihole(1,j+1,k)
ist = ihole(2,j+1,k)
ii = ncl(ist,k) + 1
if (ii.le.npbmx) then

do 50 i = 1, idimp
ppbuff(i,ii,k) = ppart(i,j1,k)

50 continue
else

ip = 1
endif
ncl(ist,k) = ii

60 continue
c set error

if (ip.gt.0) irc = ncl(8,k)
70 continue

!$OMP END PARALLEL DO
c ppbuff overflow

if (irc.gt.0) return
c
c copy incoming particles from buffer into ppart: update ppart, kpic
c loop over tiles

718 V.K. Decyk, T.V. Singh / Computer Physics Communications 185 (2014) 708–719

!$OMP PARALLEL DO
!$OMP& PRIVATE(i,j,k,ii,kk,npp,kx,ky,kl,kr,kxl,kxr,ih,nh,ncoff,ist,j1,
!$OMP& j2,ip,ks)

do 130 k = 1, mxy1
npp = kpic(k)
ky = (k - 1)/mx1 + 1

c loop over tiles in y, assume periodic boundary conditions
kk = (ky - 1)*mx1

c find tile above
kl = ky - 1
if (kl.lt.1) kl = kl + my1
kl = (kl - 1)*mx1

c find tile below
kr = ky + 1
if (kr.gt.my1) kr = kr - my1
kr = (kr - 1)*mx1

c loop over tiles in x, assume periodic boundary conditions
kx = k - (ky - 1)*mx1
kxl = kx - 1
if (kxl.lt.1) kxl = kxl + mx1
kxr = kx + 1
if (kxr.gt.mx1) kxr = kxr - mx1

c find tile number for different directions
ks(1) = kxr + kk
ks(2) = kxl + kk
ks(3) = kx + kr
ks(4) = kxr + kr
ks(5) = kxl + kr
ks(6) = kx + kl
ks(7) = kxr + kl
ks(8) = kxl + kl

c loop over directions
nh = ihole(1,1,k)
ncoff = 0
ih = 0
ist = 0
j1 = 0
do 100 ii = 1, 8
if (ii.gt.1) ncoff = ncl(ii-1,ks(ii))

c ip = number of particles coming from direction ii
ip = ncl(ii,ks(ii)) - ncoff
do 90 j = 1, ip
ih = ih + 1

c insert incoming particles into holes
if (ih.le.nh) then

j1 = ihole(1,ih+1,k)
c place overflow at end of array

else
j1 = npp + 1
npp = j1

endif
if (j1.le.nppmx) then

do 80 i = 1, idimp
ppart(i,j1,k) = ppbuff(i,j+ncoff,ks(ii))

80 continue
else

ist = 1
endif

90 continue
100 continue

c set error
if (ist.gt.0) irc = j1

c fill up remaining holes in particle array with particles from bottom
if (ih.lt.nh) then

ip = nh - ih

V.K. Decyk, T.V. Singh / Computer Physics Communications 185 (2014) 708–719 719

do 120 j = 1, ip
j1 = npp - j + 1
j2 = ihole(1,nh-j+2,k)
if (j1.gt.j2) then

c move particle only if it is below current hole
do 110 i = 1, idimp
ppart(i,j2,k) = ppart(i,j1,k)

110 continue
endif

120 continue
npp = npp - ip

endif
kpic(k) = npp

130 continue
!$OMP END PARALLEL DO

return
end

References

[1] Shane Cook, CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs, Morgan Kaufmann, 2012.
[2] James Jeffers, James Reinders, Intel Xeon Phi Coprocessor High Performance Programming, Morgan Kaufmann, 2013.
[3] Charles K. Birdsall, A. Bruce Langdon, Plasma Physics via Computer Simulation, McGraw-Hill, New York, 1985.
[4] Roger W. Hockney, James W. Eastwood, Computer Simulation Using Particles, McGraw-Hill, New York, 1981.
[5] P.C. Liewer, V.K. Decyk, A general concurrent algorithm for plasma particle-in-cell codes, J. Comput. Phys. 85 (1989) 302.
[6] B.J. Winjum, J.E. Fahlen, F.S. Tsung, W.B. Mori, Anomalously hot electrons due to rescatter of stimulated Raman scattering in the kinetic regime, Phys. Rev. Lett. 110

(2013) 165001.
[7] H. Burau, R. Widera, W. Honig, G. Juckeland, A. Debus, T. Kluge, U. Schramm, T.E. Cowan, R. Sauerbrey, M. Bussman, PIConGPU: a fully relativistic particle-in-cell code

for a GPU cluster, IEEE Trans. Plasma Sci. 38 (2010) 2831.
[8] Viktor K. Decyk, Tajendra V. Singh, Adaptable particle-in-cell algorithms for graphical processsing units, Comput. Phys. Comm. 182 (2011) 641.
[9] Xianglong Kong, Michael C. Huang, Chuang Ren, Viktor K. Decyk, Particle-in-cell simulations with charge-conserving current deposition on graphical processsing units,

J. Comput. Phys. 230 (2011) 1676.
[10] P. Abreu, R. Fonseca, J.M. Pereira, L.O. Silva, PIC codes in new processors: a fully relativistic PIC code in CUDA enabled hardware with direct visualization, IEEE Trans.

Plasma Sci. 39 (2011) 675.
[11] R.G. Joseph, G. Ravunnikutty, S. Ranka, E. D’Azevedo, S. Klasky, Efficient GPU implementation for particle in cell algorithm, in: 2011 IEEE International, Intl. Parallel and

Distributed Symposium (IPDPS), Anchorage, AK, May 2011.
[12] K. Madduri, Eun-Jin Im, K.Z. Ibrahim, S. Williams, S. Ethier, L. Oliker, Gyrokinetic particle-in-cell optimization on emerging multi-and manycore platforms, Parallel

Comput. 37 (2011) 501.
[13] G. Chen, L. Chacon, D.C. Barnes, An efficient mixed-precision, hybrid CPU–GPU implementation of a non-linearly implicit one-dimensional particle-in-cell algorithm, J.

Comput. Phys. 231 (2012) 5374.
[14] J. Claustre, B. Chaudhury, G. Fubiani, M. Paulin, J.P. Boeuf, Particle-in-cell Monte Carlo collision model on GPU—application to a low-temperature magnetized plasma,

IEEE Trans. Plasma Sci. 41 (2013) 391.
[15] K. Germaschewski, H. Ruhl, W. Fox, A. Bhattacharjee, Dynamic load-balancing and GPU computing with the particle-in-cell code PSC, in: 22nd International Conference

on Numerical Simulation of Plasmas ICNSP2001, Long Branch, NJ, September 2011.
[16] J.M. Dawson, Particle simulation of plasmas, Rev. Modern Phys. 55 (1983) 403.
[17] Guy-Rene Perrin, Alain Darte (Eds.), The Data Parallel Programming Model, in: Lecture Notes in Computer Science, vol. 1132, Springer, Berlin, 1996.
[18] Nicholas Wild, The CUDA Handbook: A Comprehensive Guide to GPU Programming, Addison-Wesley, 2013.
[19] W. Daniel Hillis, Lewis W. Tucker, The CM-5 connection machine: a scalable supercomputer, Commun. ACM 36 (1993) 31.

http://refhub.elsevier.com/S0010-4655(13)00341-X/sbref1
http://refhub.elsevier.com/S0010-4655(13)00341-X/sbref2
http://refhub.elsevier.com/S0010-4655(13)00341-X/sbref3
http://refhub.elsevier.com/S0010-4655(13)00341-X/sbref4
http://refhub.elsevier.com/S0010-4655(13)00341-X/sbref5
http://refhub.elsevier.com/S0010-4655(13)00341-X/sbref6
http://refhub.elsevier.com/S0010-4655(13)00341-X/sbref7
http://refhub.elsevier.com/S0010-4655(13)00341-X/sbref8
http://refhub.elsevier.com/S0010-4655(13)00341-X/sbref9
http://refhub.elsevier.com/S0010-4655(13)00341-X/sbref10
http://refhub.elsevier.com/S0010-4655(13)00341-X/sbref12
http://refhub.elsevier.com/S0010-4655(13)00341-X/sbref13
http://refhub.elsevier.com/S0010-4655(13)00341-X/sbref14
http://refhub.elsevier.com/S0010-4655(13)00341-X/sbref16
http://refhub.elsevier.com/S0010-4655(13)00341-X/sbref17
http://refhub.elsevier.com/S0010-4655(13)00341-X/sbref18
http://refhub.elsevier.com/S0010-4655(13)00341-X/sbref19

	Particle-in-Cell algorithms for emerging computer architectures
	Introduction
	Collision-free GPU PIC algorithm
	Particle reordering with one thread per tile
	Benchmark results with collision-free algorithm on GT200 architecture GPUs
	Collision-resolving GPU PIC algorithm
	Particle reordering with multiple threads per tile
	Field solvers
	Porting the GPU algorithms to multi-core processors
	Benchmark results with collision-resolving algorithm on Fermi architecture GPUs
	Discussion
	Acknowledgments
	OpenMP particle reordering
	References

