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A weak and a strong concept of plurifinely plurisubharmonic and plurifinely holomorphic
functions are introduced. Strong will imply weak. The weak concept is studied further.
A function f is weakly plurifinely plurisubharmonic if and only if it is locally bounded
from above in the plurifine topology and f ◦h is finely subharmonic for all complex affine-
linear maps h. As a consequence, the regularization in the plurifine topology of a pointwise
supremum of such functions is weakly plurifinely plurisubharmonic, and it differs from
the pointwise supremum at most on a pluripolar set. Weak plurifine plurisubharmonicity
and weak plurifine holomorphy are preserved under composition with weakly plurifinely
holomorphic maps.
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1. Introduction

The plurifine topology F on C
n was briefly introduced in [17] as the weakest topology in which all plurisubharmonic

functions are continuous, in analogy with the H. Cartan fine topology on R
n , in particular on C ∼= R

2. For comments on
this choice of “fine” topology on C

n , see [17]. The plurifine topology F is clearly biholomorphically invariant. Furthermore,
F is locally connected, as shown in [9,10], where also further properties of F are given. Much as in [8,10,11] we begin
by considering (in Definition 2.2, resp. 2.6) two concepts of plurifinely plurisubharmonic (resp. plurifinely holomorphic)
functions—a strong concept defined by F -local uniform approximation with plurisubharmonic (resp. holomorphic) functions,
and a weak concept defined by restriction to complex lines. We thereby draw on the theory of finely sub- or superharmonic
and finely holomorphic functions defined on finely open subsets of C, cf. [12,14,18]. The plurifine topology F on C

n induces
on each complex line L in C

n the Cartan fine topology on L ∼= C (Lemma 2.1). In analogy with ordinary plurisubharmonic
functions, the weakly F -plurisubharmonic functions f may be characterized as follows. They are F -upper semicontinuous
and such that f ◦ h is R

2n-finely subharmonic (or identically −∞ in some fine component of its domain of definition) for
every C-affine-linear bijection h of C

n (Theorem 3.1).
The concepts of strongly F -plurisubharmonic and strongly F -holomorphic functions on an F -open set Ω ⊂ C

n are
obviously biholomorphically invariant. We show that the same holds for the weak concepts (Theorem 4.6), cf. [11]. We do
not know whether the strong and the weak concepts are actually the same. The weak concepts are closed under F -locally
uniform convergence, and altogether seem to be more useful, cf. [10].

The convex cone of all weakly F -plurisubharmonic functions on Ω is stable under taking the pointwise infimum for
lower directed families and under taking the pointwise supremum for finite families. The above characterization of weakly
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F -plurisubharmonic functions allows us to answer questions posed by the first named author in [8]. Namely, for any F -
locally upper bounded family of weakly F -plurisubharmonic functions fα on Ω , the F -upper semicontinuous regularization
f ∗ of the pointwise supremum f = supα fα is likewise weakly F -plurisubharmonic (Theorem 3.9), and the exceptional
set { f < f ∗} is pluripolar, as expected from a theorem of Bedford and Taylor [2, Theorem 7.1]. Furthermore, there is a
removable singularity theorem for weakly F -plurisubharmonic functions (Theorem 3.7), and likewise for F -holomorphic
functions (Corollary 3.8).

In the final Section 4 we show that the concepts of weakly F -plurisubharmonic function and weakly F -holomorphic
function are biholomorphically invariant, even in a plurifine sense. In fact, composition with weakly F -holomorphic maps
preserves weak F -plurisubharmonicity and weak F -holomorphy (Theorem 4.6).

2. Definitions and first properties of strongly and weakly F -plurisubharmonic and F -holomorphic functions

The F -interior (plurifine interior) of a set K ⊂ C
n , n ∈ N, is denoted by K ′ . It is known that every F -neighborhood

of a point of C
n contains an F -neighborhood which is compact in the Euclidean topology—an easy consequence of [10,

Theorem 2.3], plurisubharmonic functions being upper semicontinuous. Henceforth, topological properties not explicitly
referring to the plurifine topology F or the Cartan fine topology are tacitly understood to refer to the Euclidean topology.
Generalizing known properties of the fine topology, cf. [19], we have

Lemma 2.1.

(a) The plurifine topology F on C
n induces on every C-affine subspace L ∼= C

k of C
n the plurifine topology on L. Explicitly, for any

F -open set Ω ⊂ C
n the intersection L ∩ Ω is F -open in L, and so is the orthogonal projection of Ω on L.

(b) A set ω ⊂ C
k is F -open in C

k if and only if ω × C
n−k is F -open in C

n.

Proof. For z = (z1, . . . , zn) ∈ C
n write

z′ = (z1, . . . , zk), z′′ = (zk+1, . . . , zn).

For (a) it suffices to consider the particular subspace L0 = {(z′,0′′): z′ ∈ C
k} which we identify with C

k . For any F -
open set Ω ⊂ C

n denote by ω the part of Ω in L0. Consider a point a′ ∈ ω. According to [9, Theorem 2.3], there exist a
plurisubharmonic function ψ on C

n ∼= C
k × C

n−k and neighborhoods U ′ of a′ in C
k and U ′′ of 0′′ in C

n−k such that(
a′,0′′) ∈ {(

z′, z′′) ∈ U ′ × U ′′: ψ
(
z′, z′′) > 0

} ⊂ Ω. (2.1)

Define ϕ : C
k → [−∞,+∞[ by ϕ(z′) = ψ(z′,0′′). Then ϕ is plurisubharmonic and

a′ ∈ {
z′ ∈ U ′: ϕ

(
z′) > 0

} ⊂ ω. (2.2)

Thus ω is indeed an F -neighborhood of a′ in C
k .

For each t ∈ C
n−k the translate Ωt = Ω − (0′, t) of Ω is F -open in C

n . It follows that Ωt ∩ L0 is F -open in L0, and
therefore so is the union of the Ωt ∩ L0, that is, the projection of Ω on L0.

For (b) we have just shown, in particular, that if Ω := ω × C
n−k is F -open in C

n then ω is F -open in C
k . To establish

the converse, suppose that ω is F -open in C
k and let us prove that every point a = (a′,a′′) of ω×C

n−k is an F -inner point
of that set. Since ω is an F -neighborhood of a′ in C

k there exist (again by [9, Theorem 2.3]) a plurisubharmonic function
ϕ on C

k and a neighborhood U ′ of a′ in C
k such that (2.2) holds. The function ψ defined on C

n by ψ(z′, z′′) = ϕ(z′) is
plurisubharmonic—an easy and well-known consequence of the definition of plurisubharmonicity [24, p. 306], cf. [21, p. 62].
Furthermore, (2.1) holds (with Ω = ω × C

n−k and with (a′,0′′) replaced by a) for any neighborhood U ′′ of a′′ in C
n−k . Thus

ω × C
n−k is indeed an F -neighborhood of a in C

n . �
For a compact set K ⊂ C

n we denote by S0(K ) the convex cone of all restrictions to K of finite continuous plurisub-
harmonic functions defined on open subsets of C

n containing K . By S(K ) we denote the closure of S0(K ) in C(K ,R) (the
continuous functions K → R with the uniform norm); S(K ) is likewise a convex cone.

Definition 2.2 (Plurifinely plurisubharmonic function). Let Ω denote an F -open (i.e., plurifinely open) subset of C
n:

(i) A function f : Ω → R is said to be F -cpsh if every point of Ω has a compact F -neighborhood K in Ω such that
f |K ∈ S(K ).

(ii) A function f : Ω → [−∞,+∞[ is said to be strongly F -plurisubharmonic if f is the pointwise limit of a decreasing net
of F -cpsh functions on Ω .

(iii) (Cf. [8, Section 5], [10, Definition 5.1].) A function f : Ω → [−∞,+∞[ is said to be weakly F -plurisubharmonic if f is
F -upper semicontinuous and, for every complex line L in C

n , the restriction of f to the finely open subset L ∩ Ω of L
is finely hypoharmonic.
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See [12, Definition 8.2 and §10.4] for finely hypoharmonic (resp. finely sub- or superharmonic) functions, and recall that
a function f is finely hypoharmonic on a finely open subset U of C (or of R

N ) if and only if f is finely subharmonic on
every fine component of U in which f �≡ −∞. The concepts strongly and weakly F -plurisubharmonic are both F -local ones
(that is, these have the sheaf property).

The concept of F -cpsh functions, defined in (i), is an auxiliary one. Every strongly F -plurisubharmonic function is
F -upper semicontinuous (even F -continuous, see Theorem 2.4(c) and Proposition 2.5) because every F -cpsh function is
F -continuous. The class of all strongly, resp. weakly, F -plurisubharmonic functions on Ω is clearly a convex cone which
is stable under taking of the pointwise supremum of finite families. The latter class is furthermore stable under taking of
the pointwise infimum for lower directed (possibly infinite) families, and is closed under F -locally uniform convergence in
view of [12, Lemma 9.6]. For upper directed families of weakly F -plurisubharmonic functions, see Theorem 3.9 below.

If f is strongly, resp. weakly, F -plurisubharmonic on Ω (F -open in C
n) then the restriction of f to L ∩ Ω (L is a

C-affine subspace L ∼= C
k of C

n) has the same property in L ∩ Ω . This follows easily from Lemma 2.1(a) above.
For n = 1, f is strongly, resp. weakly, F -plurisubharmonic on Ω (finely open in C) if and only if f is finely hypoharmonic

on Ω . This is obvious in the weak case. In the strong case, suppose first that f is finite and finely hypoharmonic on Ω .
By the Brelot property [18, p. 284], every point of Ω has a compact fine neighborhood K in Ω such that f |K ∈ C(K ,R)

( f being finely continuous by [12, Theorem 9.10]). Because f is finite and finely hypoharmonic in the fine interior K ′ of
K we have f ∈ S(K ) according to [1, Theorem 4.7], cf. [16, Theorem 4], and so f is F -cpsh on Ω . For a general finely
hypoharmonic function f on Ω write f = infn∈N max{ f ,−n} and note that max{ f ,−n} is finite and finely hypoharmonic,
cf. [12, Corollary 2, p. 84]. Conversely, if f is strongly F -plurisubharmonic we may assume by the same corollary that f is
even F -cpsh. For any compact set K ⊂ C, every function of class S(K ) is finite and finely hypoharmonic on K ′ according to
[12, Lemma 9.6]. With K as in (i) this shows that f indeed is finite and finely hypoharmonic on Ω .

In the following two theorems we collect some properties of weakly finely plurisubharmonic functions recently obtained
by the third author in collaboration with S. El Marzguioui. By an F -domain we understand an F -connected F -open set.

Theorem 2.3. (See [10].) Let f be a weakly F -plurisubharmonic function on an F -domain Ω ⊂ C
n:

(a) If f �≡ −∞ then {z ∈ Ω: f (z) = −∞} has no F -interior point.
(b) If f �≡ −∞ then, for any F -closed set E ⊂ {z ∈ Ω: f (z) = −∞}, Ω \ E is an F -domain.
(c) If f � 0 then either f < 0 or f ≡ 0.

Theorem 2.4. (See [11].) Let f be a weakly F -plurisubharmonic function on an F -open set Ω ⊂ C
n:

(a) Every point z0 ∈ Ω such that f (z0) > −∞ has an F -open F -neighborhood O ⊂ Ω on which f can be represented as the
difference f = ϕ1 −ϕ2 between two bounded plurisubharmonic functions ϕ1 and ϕ2 defined on some open ball B(z0, r) contain-
ing O .

(b) If f maps Ω into a fixed bounded interval ]a,b[, then r, O , and ϕ2 will depend on ]a,b[, but can be chosen independently
of f .

(c) f is F -continuous.
(d) If Ω is F -connected and f �≡ −∞ then {z ∈ Ω: f (z) = −∞} is an F -closed, pluripolar subset of C

n.

Assertion (d) states that pluripolar sets and weakly F -pluripolar sets (in the obvious sense) are the same. The proofs of
(a), (b), and (c) given below are essentially taken from [11].

Proof of Theorem 2.4. (a) To begin with, suppose that f is bounded. We may then assume that −1 < f < 0, for f maps
Ω into a bounded interval ]a,b[, and hence f −b

b−a maps Ω into ]−1,0[ and is likewise weakly F -plurisubharmonic. Let
V ⊂ Ω be a compact F -neighborhood of z0. Since the complement �V of V is pluri-thin at z0, there exist 0 < r < 1 and a
plurisubharmonic function ϕ on B(z0, r) such that

lim sup
z→z0, z∈�V

ϕ(z) < ϕ(z0).

Without loss of generality we may suppose that ϕ is negative on B(z0, r) and

ϕ(z) = −1 on B(z0, r) \ V and ϕ(z0) = −1/2.

Hence

f (z) + λϕ(z) � −λ for z ∈ Ω ∩ B(z0, r) \ V and λ > 0. (2.3)

Now define a function uλ on B(z0, r) by

uλ(z) =
{

max{−λ, f (z) + λϕ(z)} for z ∈ Ω ∩ B(z0, r),
(2.4)
−λ for z ∈ B(z0, r) \ V .
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This definition makes sense because (Ω ∩ B(z0, r))∪(B(z0, r)\ V ) = B(z0, r), and the two definitions agree on Ω ∩ B(z0, r)\ V
in view of (2.3).

Clearly, uλ is weakly F -plurisubharmonic on Ω ∩ B(z0, r) and on B(z0, r) \ V , hence on all of B(z0, r) in view of the
sheaf property, cf. [10]. Since uλ is bounded on B(z0, r), it follows from [12, Theorem 9.8] that uλ is subharmonic on each
complex line where it is defined. It is well known that a bounded function, which is subharmonic on each complex line
where it is defined, is plurisubharmonic, cf. [23] or [24, p. 24]. Thus, uλ is plurisubharmonic on B(z0, r).

Since ϕ(z0) = −1/2, the set O = {z ∈ Ω: ϕ(z) > −3/4} is an F -neighborhood of z0, and because ϕ = −1 on B(z0, r) \ V
it is clear that O ⊂ V ⊂ Ω .

Observe now that −4 � f (z) + 4ϕ(z) for every z ∈ O . Hence f = ϕ1 − ϕ2 on O , with ϕ1 = u4 and ϕ2 = 4ϕ , both
plurisubharmonic on B(z0, r). Thus f is weakly F -plurisubharmonic on O , which is an F -neighborhood of z0. It follows
that f is F -continuous on O along with ϕ1 and ϕ2, provided that f is bounded.

Without assuming that f be bounded, f remains F -continuous on O according to (c), proven below. It follows that f
is bounded on some F -neighborhood U of z0 in Ω , and we therefore have a decomposition of f as required, on some
F -neighborhood (replacing the above O ) of z0 on U ⊂ Ω .

(b) Again we may assume that −1 < f < 0. The set V and the plurisubharmonic function ϕ in the proof of (a) then do
not depend on f , and that applies to ϕ2 = 4ϕ as well.

(c) In the remaining case where f may be unbounded (cf. the proof of (a) above), note that f is F -upper semicontinuous
and < +∞. Choose c,d ∈ R with d < c. Then the set Ωc = {z ∈ Ω: f (z) < c} is F -open. The function max{ f ,d} is bounded
and weakly F -plurisubharmonic on Ωc , hence F -continuous there. The set{

z ∈ Ω: d < f (z) < c
} = {

z ∈ Ωc: d < max
{

f (z),d
}

< c
}

therefore is F -open, and hence f is F -continuous.
For (d) we refer to the proof given in [11, Theorem 4.1]. �

Proposition 2.5. Every strongly F -plurisubharmonic function f : Ω → [−∞,+∞[ is weakly F -plurisubharmonic.

Proof. We may assume that f is even F -cpsh. Let ( fν) be a sequence of finite continuous plurisubharmonic functions on
open sets Ων containing K from Definition 2.2(i) such that fν |K → f |K uniformly. For any complex line L in C

n , fν |L ∩ K ′
is finely hypoharmonic. This uses [12, Theorem 8.7] and the fact that the intersection of any F -open subset of C

n with any
complex line L is finely open, by Lemma 2.1. It follows by [12, Lemma 9.6] that f |L ∩ K ′ is finely hypoharmonic, and in
particular finely continuous, by [12, Theorem 9.10]. Consequently, f is indeed weakly F -plurisubharmonic. �

We now pass to concepts of F -holomorphic functions. For a compact set K ⊂ C
n we denote by H0(K ) the algebra of all

restrictions to K of holomorphic functions defined on open subsets of C
n containing K . By H(K ) we denote the closure of

H0(K ) in C(K ,C) (the continuous functions K → C with the uniform norm). Then H(K ) is likewise an algebra.

Definition 2.6 (Plurifinely holomorphic function). Let Ω denote an F -open subset of C
n:

(i) (Cf. [10, Definition 6.1].) A function f : Ω → C is said to be strongly F -holomorphic if every point of Ω has a compact
F -neighborhood K in Ω such that f |K ∈ H(K ).

(ii) A function f : Ω → C is said to be weakly F -holomorphic if f is F -continuous and if, for every complex line L in C
n ,

the restriction f |L ∩ Ω is finely holomorphic.

For finely holomorphic functions see [14,18]. The concepts strongly and weakly F -holomorphic are F -local ones.
The class of all strongly, resp. weakly, F -holomorphic functions on Ω is an algebra, and the latter class is closed under F -
locally uniform convergence, in view of [14, Théorème 4]. Clearly, every strongly F -holomorphic function is F -continuous
(on K ′ from Definition 2.6(i), and so on all of Ω).

If f is strongly, resp. weakly, F -holomorphic on Ω (F -open in C
n) then the restriction of f to L ∩ Ω (L is a C-affine

subspace L ∼= C
k of C

n) has the same property on L ∩ Ω . This follows easily from Lemma 2.1 above.
For n = 1, f is strongly (resp. weakly) F -holomorphic on Ω (finely open in C) if and only if f is finely holomorphic

on Ω . This is obvious in the weak case. In the strong case, suppose first that f is finely holomorphic on Ω . By [14, Corollaire,
p. 75], every point of Ω has a compact fine neighborhood K in Ω such that f |K ∈ R(K ) (= H(K ) in the 1-dimensional case).
Consequently, f is indeed strongly F -holomorphic on Ω . Conversely, if f is strongly F -holomorphic then, for any compact
set K ⊂ C, every function of class H(K ) is finely holomorphic on K ′ , see [14, p. 63]. With K as in Definition 2.6(i) this
shows that f indeed is finely holomorphic on Ω .

Proposition 2.7. Every strongly F -holomorphic function f : Ω → C is weakly F -holomorphic, and in particular F -continuous.

Proof. For any K as in Definition 2.6(i) there exists a sequence of holomorphic functions fν defined on open sets containing
K such that fν |K → f |K uniformly. For every complex line L in C

n this shows that the finely holomorphic functions
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fν |L ∩ K ′ converge uniformly to f |L ∩ K ′ , which therefore is finely holomorphic, see again [14, p. 63]. Consequently f |L ∩Ω

is finely holomorphic, and so f is indeed weakly F -holomorphic, being also F -continuous. �
The concept of weakly F -holomorphic function can be characterized in terms of weakly F -pluriharmonic functions (that

is, functions f : Ω → C such that ±Re f and ± Im f are weakly F -plurisubharmonic on the F -open set Ω ⊂ C
n):

Lemma 2.8. A function f : Ω → C is weakly F -holomorphic if and only if f and each of the functions z �→ z j f (z) ( j ∈ {1, . . . ,n})
are weakly F -pluriharmonic on Ω .

Proof. This reduces right away to the case n = 1 which is due to Lyons [25], cf. [14, Section 3], and which asserts that a
function h : U → C, defined on a finely open set U ⊂ C, is finely holomorphic if and only if h and z �→ zh(z) are (complex)
finely harmonic. �

For any F -open set U ⊂ C
m , an n-tuple (h1, . . . ,hn) of strongly (resp. weakly) F -holomorphic functions h j : U → C will

be termed a strongly (resp. weakly) F -holomorphic map U → C
n .

Assertion (b) of the following proposition provides two slight strengthenings of [10, Lemma 6.2].

Proposition 2.9. Let U ⊂ C
m be F -open and let h = (h1, . . . ,hn) : U → C

n be a strongly (resp. weakly) F -holomorphic map. Then:

(a) The map h : U → C
n is continuous from U with the F -topology on C

m to C
n with the Euclidean topology.

(b) For any plurisubharmonic function f on an open set Ω in C
n, the function f ◦ h is strongly (resp. weakly) F -plurisubharmonic

on the F -open set h−1(Ω) = {z ∈ U : h(z) ∈ Ω} ⊂ C
m.

(c) For any holomorphic function f on an open set Ω in C
n, the function f ◦ h is strongly (resp. weakly) F -holomorphic on the

F -open set h−1(Ω) ⊂ C
m.

Proof. Assertion (a) holds because each h j (whether strongly or weakly F -holomorphic) is F -continuous and because the
Euclidean topology on C

n is the product of the Euclidean topology on each of n copies of C.
For (b) with each h j strongly F -holomorphic we begin by showing that, if the plurisubharmonic function f on Ω is finite

and continuous, then f ◦ h is even F -cpsh (cf. Definition 2.2(i)) on h−1(Ω), which is F -open according to (a). Every point
a ∈ h−1(Ω) has a compact F -neighborhood K j in h−1(Ω) (⊂ U ⊂ C

m) such that h j |K j ∈ H(K j). Thus there exists a sequence
(hν

j )ν∈N of holomorphic functions hν
j on open sets Uν

j in C
m containing K j such that hν

j |K j → h j|K j uniformly as ν → ∞.
Write K = K1 ∩ · · · ∩ Kn and hν = (hν

1 , . . . ,hν
n ) on Uν = Uν

1 ∩ · · · ∩ Uν
n . Then h j|K j ∈ C(K j,C) and hence h|K ∈ C(K ,C

n).
It follows that h(K ) is a compact subset of Ω ⊂ C

n . Denoting by ‖ · ‖ the Euclidean norm on C
n and by B the closed

unit ball in C
n , there accordingly exists δ > 0 such that h(K ) + δB ⊂ Ω . We may assume that ‖hν(z) − h(z)‖ < δ for any

ν and any z ∈ K . Under the present extra hypothesis, f is finite and uniformly continuous on the compact set h(K ) + δB
containing any hν(K ), and it follows that f ◦ hν |K → f ◦ h|K uniformly as ν → ∞. Because f ◦ hν is finite, continuous, and
plurisubharmonic, on the open set Uν ⊃ K , we have f ◦ h|K ∈ S(K ). By varying a ∈ h−1(Ω) and hence the F -neighborhood
K of a in h−1(Ω) we infer that f ◦ h is F -cpsh on h−1(Ω).

If we drop the extra hypothesis that f be finite and continuous, f is the pointwise limit of a decreasing net of finite con-
tinuous plurisubharmonic functions fν on Ω , and f ◦ h is then the pointwise limit of the decreasing net of functions fν ◦ h
on h−1(Ω) which we have just shown are F -cpsh, and so f ◦ h is indeed strongly F -plurisubharmonic, cf. Definition 2.2(ii)
(with Ω replaced by h−1(Ω)).

Next suppose instead that each h j is weakly F -holomorphic on U , and consider a complex line L in C
m; then L ∩ U

is finely open in L. According to Definition 2.6(ii), h j |L ∩ U is then finely holomorphic, which is the same as strongly
F -holomorphic (see above for n = 1). As shown above (now with m = 1 and with U replaced by L ∩ U ) it follows that
f ◦ h|L ∩ h−1(Ω) is strongly F -plurisubharmonic, which is the same as finely hypoharmonic (because the dimension is 1).
According to Definition 2.2(iii) this means that f ◦ h indeed is weakly F -plurisubharmonic on h−1(Ω), noting that f ◦ h is
F -upper semicontinuous in view of (a) because f is upper semicontinuous.

For (c), suppose first that each h j is strongly F -holomorphic on U . Proceeding as in the first part of the proof of (b) we
arrange that f ◦ hν |K → f ◦ h|K uniformly as ν → ∞; but now f ◦ hν is holomorphic on Uν . We therefore conclude that
f ◦ h|K ∈ H(K ), and so f ◦ h is indeed strongly F -holomorphic according to Definition 2.6(i).

If instead each h j is weakly F -holomorphic on U then, for every complex line L in C
m , each h j |L ∩ U is again strongly

F -holomorphic. As just established, this implies that f ◦ h|L ∩ h−1(Ω) is strongly F -holomorphic, or equivalently finely
holomorphic. We conclude that indeed f ◦ h is weakly F -holomorphic, according to Definition 2.6(ii), noting that f ◦ h is
F -continuous in view of (a). �

In the version of Proposition 2.9 with ‘weakly’ in each of the three cases one may allow f in (b) to be just weakly F -
plurisubharmonic (in place of plurisubharmonic), and similarly f in (c) to be weakly F -holomorphic (in place of holomorphic),
see Theorem 4.6 at the end of the paper. At this point we merely show that we may allow f in (b) (of Proposition 2.9) to
be strongly F -plurisubharmonic, and f in (c) to be strongly F -holomorphic:
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Theorem 2.10. Let U ⊂ C
m be F -open and let h = (h1, . . . ,hn) : U → C

n be a weakly F -holomorphic map. Then:

(a) The map h : U → C
n is continuous from U with the F -topology on C

m to C
n with the F -topology there.

(b) For any strongly F -plurisubharmonic function f defined on an F -open set Ω in C
n, the function f ◦ h is weakly F -

plurisubharmonic on the F -open set h−1(Ω) = {z ∈ U : h(z) ∈ Ω} ⊂ C
m.

(c) For any strongly F -holomorphic function f defined on an F -open set Ω in C
n, the function f ◦ h is weakly F -holomorphic on

the F -open set h−1(Ω) ⊂ C
m.

Proof. For the present weakly F -holomorphic functions h j assertion (a) is stronger than Proposition 2.9(a). We shall prove
that h−1(Ω) is F -open in C

m for any F -open set Ω in C
n . Fix a point a ∈ h−1(Ω) and write h(a) = b (∈ Ω). According

to [10, Theorem 2.3], there exist a plurisubharmonic function ϕ on an open ball B(b, r) in C
n and a number c < ϕ(b) such

that the basic F -neighborhood

W = {
w ∈ B(b, r): ϕ(w) > c

}
of b in C

n is a subset of the F -open set Ω in C
n . Then h−1(W ) ⊂ h−1(Ω) (⊂ U ), and

h−1(W ) = {
z ∈ U : h(z) ∈ B(b, r) and (ϕ ◦ h)(z) > c

}
is F -open in C

m because h : U → C
n is F -continuous by Proposition 2.9(a). Moreover, ϕ ◦ h : h−1(B(b, r)) → [−∞,+∞[ is

weakly F -plurisubharmonic by Proposition 2.9(b) (applied with Ω, f replaced by B(b, r),ϕ), and in particular F -continuous,
by Theorem 2.4(c). By varying a ∈ h−1(Ω) we infer that indeed h−1(Ω) is F -open.

For (b) we may assume that f is even F -cpsh on Ω . Let K ⊂ Ω be as in Definition 2.2(i), and let ( f ν) be a sequence of
finite continuous plurisubharmonic functions on open sets Ων ⊃ K such that f ν |K → f |K uniformly as ν → ∞. According
to Proposition 2.9(a), (b) each f ν ◦ h is weakly F -plurisubharmonic on the F -open set h−1(Ων). By (a), h−1(K ′) is F -open,
and it follows that each f ν ◦h|h−1(K ′) likewise is weakly F -plurisubharmonic, in particular F -upper semicontinuous. Hence
so is its uniform limit f ◦ h|h−1(K ′) in view of [12, Lemma 9.6]. By varying K ⊂ Ω and hence K ′ we conclude that indeed
f ◦ h is weakly F -plurisubharmonic on h−1(Ω).

Finally, the proof of (c) is quite parallel to that of (b) in view of Proposition 2.9(a), (c), using [14, Théorème 4] in place
of [12, Lemma 9.6]. �

Theorem 2.10 has two corollaries for m = 1 and n = 1, respectively. In either corollary ‘strongly’ can be replaced by
‘weakly’ according to Theorem 4.6. For m = 1 we have

Corollary 2.11. Let h j : U → C ( j ∈ {1, . . . ,n}) be finely holomorphic functions defined on a finely open set U ⊂ C, and write h =
(h1, . . . ,hn). For any strongly F -plurisubharmonic (resp. strongly F -holomorphic) function f defined on an F -open set Ω ⊂ C

n, the
function f ◦ h is finely hypoharmonic (resp. finely holomorphic) on the finely open set h−1(Ω) = {z ∈ U : h(z) ∈ Ω} ⊂ C.

Remark 2.12. Suppose now that one can prove that the cone of F -cpsh, resp. the algebra of strongly F -holomorphic,
functions on an F -open subset Ω of C

n is closed under uniform convergence, then the proofs of Theorem 2.10(b), (c)
easily show that ‘weakly’ can be replaced throughout the theorem by ‘strongly’. Indeed, with f F -cpsh (resp. strongly
F -holomorphic) and h strongly F -holomorphic, let K ⊂ Ω denote a compact F -neighborhood of a point a ∈ Ω , and let
( fν) denote a sequence of finite continuous plurisubharmonic (resp. a sequence of holomorphic) functions, defined on open
subsets Ων of C

n containing K , and such that fν → f uniformly on K . Then fν ◦ h is strongly F -plurisubharmonic and
even F -cpsh (resp. strongly F -holomorphic) on the F -open set h−1(K ′) ⊂ h−1(Ων) ⊂ U ⊂ C

m , by Proposition 2.9 (cf. the
beginning of the proof of Theorem 2.10(b)). Under the hypothesis at the beginning of this remark it will follow that the
uniform limit f ◦ h of ( fν ◦ h) on h−1(K ′) likewise is F -cpsh (resp. strongly F -holomorphic) on h−1(K ′), and therefore on
h−1(Ω), by varying K and hence K ′ . If f is merely strongly F -plurisubharmonic (rather than F -cpsh), it follows as usual
that indeed f ◦ h is likewise strongly F -plurisubharmonic.

In the case n = 1 the hypothesis stated in the above remark is always fulfilled in view of [12, Lemma 9.6] (resp. [14,
Théorème 4]). We therefore have the following corollary of Theorem 2.10 for that case:

Corollary 2.13. Let h : U → C be a strongly F -holomorphic function defined on an F -open set U ⊂ C
m. Then for any finely hypohar-

monic (resp. finely holomorphic) function f defined on a finely open set Ω ⊂ C, the function f ◦ h is strongly F -plurisubharmonic
(resp. strongly F -holomorphic) on the F -open set h−1(Ω) ⊂ C

m.

The same statement with ‘strongly’ replaced throughout by ‘weakly’ is simply the case n = 1 of Theorem 2.10 as it stands.
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Proposition 2.14. Let now Ω be a Euclidean open subset of C
n. For a function f : Ω → [−∞,+∞[ the following are equivalent:

(i) f is plurisubharmonic (in the ordinary sense).
(ii) f is strongly F -plurisubharmonic and not identically −∞ on any component of Ω .

(iii) f is weakly F -plurisubharmonic and not identically −∞ on any component of Ω .

Proof. Every finite continuous plurisubharmonic function on Ω is of course F -cpsh. It follows that any plurisubharmonic
function on Ω is strongly F -plurisubharmonic (being the pointwise limit of a decreasing sequence of finite continuous
plurisubharmonic functions). Conversely, if f is weakly F -plurisubharmonic on Ω then f is plurisubharmonic on every
connectivity component ω of Ω on which f is not identically −∞. To see this, we can assume without loss of generality
that Ω is convex. First observe that f is F -locally bounded from above, so every point a ∈ Ω has an F -neighborhood
U ⊂ Ω on which f < Ma , say. According to [10, Proposition 4.1] we may further arrange that there exists δ > 0 such that,
for every complex line L passing through a, the intersection U ∩ L contains a circle CL about a with radius at least δ. Let DL

be the disc in L bounded by CL . Then DL ⊂ Ω , and the CL is the fine boundary of DL . By the maximum principle for finely
subharmonic functions on a planar domain [13, Theorem 2.3], it follows that f < Ma on the discs DL , hence in particular
on the ball B(a, δ) ⊂ ∪L DL . For functions that are locally bounded from above in the Euclidean topology, the statement
alternatively follows from [12, Theorem 9.8(a)] in view of [23, Définition 1, p. 306]. �
Remark 2.15. Similarly to Proposition 2.14, a function f : Ω → C (with Ω Euclidean open) is holomorphic if and only if f
is strongly, or equivalently weakly, F -holomorphic; the ‘if part’ follows from [14, p. 63] in view of Hartogs’ theorem.

We close this section with an application to pluripolar hulls. Recall that the pluripolar hull P∗
Ω of a pluripolar set P

relative to an open set Ω containing P is defined as the following set (F -closed relatively to Ω):

P∗
Ω =

⋂
u

{
z ∈ Ω: u(z) = −∞}

.

Here the intersection is taken over all plurisubharmonic functions u defined on Ω and such that u|P ≡ −∞. A pluripolar
set E has empty plurifine interior E ′ [10, Theorem 5.2]. (More generally, a polar set is a Lebesgue null set and therefore has
empty fine interior.)

For any set E ⊂ C
m , m ∈ N, and any function h : E → C we denote by Γh(E) = {(z,h(z)): z ∈ E} the graph of h|E and by

Γh(E)∗
Cm+1 the pluripolar hull of Γh(E).

Proposition 2.16. Let h be a weakly F -holomorphic function on an F -domain U ⊂ C
m:

(a) If h �≡ 0, the set h−1(0) of zeros of h is pluripolar in C
m. In particular, the graph Γh(U ) of h is pluripolar in C

m+1 .
(b) If E is a non-pluripolar subset of U then Γh(U ) is pluripolar, and Γh(U ) ⊂ Γh(E)∗

Cm+1 .

With h supposed strongly F -holomorphic on U , this proposition was obtained in [11, Corollary 4.4 and Theorem 4.5],
extending [10, Theorem 6.4], and [7, Theorem 3.5].

Proof of Proposition 2.16. (a) It follows from Proposition 2.9(b) that the function log |h(·)| is weakly F -plurisubharmonic
on U . Since log |h(z)| = −∞ for z ∈ h−1(0), but log |h(·)| �≡ −∞, we conclude from Theorem 2.4(d) that h−1(0) is pluripo-
lar.

(b) The function (z, w) �→ w − h(z) is weakly F -holomorphic and �≡ 0 on the F -open set U × C ⊂ C
m+1. Again by

Proposition 2.9(b) it follows that the function (z, w) �→ log |w − h(z)| is weakly F -plurisubharmonic and �≡ −∞ on U × C.
Since this function equals −∞ on Γh(E) we conclude that Γh(E) is pluripolar. By Josefson’s theorem [20] there exists a
plurisubharmonic function f on all of C

m+1 such that f (z,h(z)) = −∞ for every z ∈ E . It follows by Theorem 2.3(a) that
f (z,h(z)) = −∞ even for every z ∈ U , and hence Γh(U ) is pluripolar in C

m+1. By the definition of the pluripolar hull of
Γh(E) we conclude that indeed Γh(U ) ⊂ Γh(E)∗

Cm+1 . �
3. A characterization of weakly F -plurisubharmonic functions

By the prefix ‘R2n-fine’ we denote concepts relative to the Cartan fine topology on C
n ∼= R

2n . Recall that this topology
is finer than the plurifine topology F [17]. It is well known that a plurisubharmonic function f on a domain Ω ⊂ C

n is
subharmonic when considered as a function on Ω ⊂ R

2n , because the average of f over a sphere can be expressed in terms
of the average of f over the circles that are intersection of the sphere with complex lines passing through the center. While
this approach does not work in the fine setting, the analogous result nevertheless remains valid. Indeed, a well-known
characterization of plurisubharmonic functions (see [24, Théorème 1, p. 18] or [21, Theorem 2.9.12]) may be adapted as
follows. This will lead to further properties of weakly F -plurisubharmonic functions (Theorems 3.7 and 3.9).
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Theorem 3.1. A function f : Ω → [−∞,+∞[ (Ω is F -open in C
n) is weakly F -plurisubharmonic if and only if f is F -locally

bounded from above and f ◦ h is R
2n-finely hypoharmonic on the F -open set h−1(Ω) for every C-affine bijection h of C

n.

For the proof of the ‘only if part’ of Theorem 3.1 we need the following

Lemma 3.2. Let u1, u2 be bounded subharmonic functions on an open set B ⊂ R
n, and consider the function f = u1 − u2 on B. Let

U be a finely open Borel subset of B. Then f |U is finely subharmonic if and only if the signed Riesz measure � f on B has a positive
restriction to U .

Proof. Suppose first that (� f )|U � 0, and let us prove that f then is finely subharmonic on U .
Recall that the base b(X) in B of X ⊂ B consists of the points of B at which X is not thin. Denote by �X the complement

of X relative to B . For a finely open set U , its regularization equals r(U ) = �b(�U )) = U ∪ i(�U ) where i(X) is the polar set
consisting of the points of X at which X is thin. We may assume that U is regular, i.e., U = r(U ) and hence an Fσ -set, for
u1 and u2 are bounded, and therefore �u1 and �u2 do not charge the polar set by which U differs from r(U ).

Writing � f := μ = μ+ − μ− on B we have, by hypothesis, μ−|U = 0. Proceeding as in the proof of the former
(and easier) ‘if part’ of [12, Theorem 8.10], consider any bounded finely open set V of compact closure V ⊂ U . Then
(μ−)�V = μ− because μ− is carried by b(�V ) ⊃ �U . For any x ∈ V we obtain in terms of the Green kernel G on B accord-
ing to [6, Theorems 1.X.3 and 1.X.5] applied within B∫

Gμ− dε�V
x = R̂�V

Gμ−(x) = G
(
(μ−)�V )

(x) = Gμ−(x) < +∞,∫
Gμ+ dε�V

x = R̂�V
Gμ+(x) � Gμ+(x) < +∞,

whence by subtraction
∫

Gμdε�V
x � Gμ(x), showing that the finely continuous function Gμ is finely hyperharmonic, and

indeed (being also bounded) finely superharmonic on U [12, Theorem 8.10 and §10.4]. By the Riesz representation theorem,
f = −Gμ+h on B , with h harmonic on B , in particular finely harmonic on U , and therefore f is likewise finely subharmonic
on U .

Conversely, suppose that f |U is finely subharmonic. Recall the corollary in [6, 1.XI.18] that if two subharmonic functions
g1 and g2, defined on some open set, coincide on a set A, then their Riesz masses satisfy �g1 = �g2 on the fine interior
of A. Hence the Riesz measure � f = �u1 − �u2 on U is independent of the choice of u1 and u2. In fact, if f = w1 − w2
(with w1 and w2 subharmonic on U ) then u1 + w2 = u2 + w1 on U , hence �u1 + �w2 = �u2 + �w1 on (the fine interior
of) U , that is, �w1 − �w2 = �u1 − �u2 on U .

Since f is finely subharmonic on U it follows by the proof of [12, Theorem 9.9] that every point x ∈ U has a fine
neighborhood V x � U in which we can write f = v1 − v2, where v1 and v2 are superharmonic functions on some Euclidean
neighborhood B0 of x in B . Moreover, v2 is the swept-out on B0 \ V x of a certain superharmonic function � 0 on B0.
The Riesz mass of v2 is concentrated on the fine boundary of the complement of V x , cf. e.g. [6, Theorem 1.XI.14(b)], hence
on the fine boundary of V x . It follows that the Riesz mass � f of f is positive on V x for every x. By the quasi-Lindelöf
property, we can find countably many x j ∈ U such that U = ⋃∞

j=1 V x j ∪ E , where E is polar. Clearly � f is positive on
⋃

V xi .
Because E is polar, the Riesz mass of a bounded subharmonic function does not charge E , so we have �ui(E) = 0 (i = 1,2).
We conclude that the measure � f is positive on U . �
Proof of the ‘only if part’ of Theorem 3.1. We may assume that Ω is F -connected and that f �≡ −∞. Let E = { f = −∞}.
According to Theorem 2.4(a), every point a ∈ Ω \ E has a bounded F -open F -neighborhood O ⊂ Ω on which f is rep-
resentable as f = u1 − u2, where u1 and u2 are bounded plurisubharmonic functions, defined on an open ball B in C

n

containing O . For every j ∈ {1, . . . ,n} the distributions

Mi, j = Mi, j(z) = ∂2ui(z1, . . . , zn)

∂z j∂ z̄ j
, i = 1,2,

are well-defined positive measures on B . Below we show that (M1, j − M2, j)|O � 0 and hence �(u1 − u2) =
4
∑n

j=1(M1, j − M2, j) � 0 on O , where � denotes the Laplacian on C
n ∼= R

2n . According to Lemma 3.2 this will imply

that u1 − u2 indeed is R
2n-finely subharmonic on O , and hence actually on Ω \ E , by varying a and O . By Theorem 2.4(c),

f is F -continuous, in particular R
2n-finely continuous; and since f < +∞, E is pluripolar and hence R

2n-polar. It follows
by the removable singularity property [12, Theorem 9.14] that f is R

2n-finely hypoharmonic on all of Ω .
For the proof that (M1, j − M2, j)|O � 0 it is convenient to write points of C

n as (z, w), now with z ∈ C and w ∈ C
n−1.

Each of the above measures Mi, j on B then takes the form

Mi = Mi(z, w) = ∂2ui(z, w)

∂z∂ z̄
, i = 1,2,

and we shall prove that (M1 − M2)|O � 0.
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For each w ∈ C
n−1 define

B(w) = {
z ∈ C: (z, w) ∈ B

}
(and similarly with B replaced by other subsets of C

n). The functions ui(·, w), i = 1,2, induce subharmonic functions
ui(·, w) on the open subset B(w) of C, and therefore the distributions

μi,w = μi,w(z) = ∂2ui(z, w)

∂z∂ z̄
, i = 1,2,

are positive measures on the open set B(w) (if non-empty). Being weakly F -plurisubharmonic on O , f = u1 − u2 induces
the finely subharmonic function f (·, w) = u1(·, w) − u2(·, w) on the finely open set O (w). According to the planar ver-
sion of Lemma 3.2, applied to the induced bounded subharmonic functions ui(·, w) on B(w), i = 1,2, the Riesz measure
μ1,w − μ2,w of f (·, w) is positive on the finely open set O (w) ⊂ B(w).

Let V z , V w denote Lebesgue measure on C, C
n−1, respectively. For any test function ϕ ∈ C∞

0 (B) we have by Fubini’s
theorem∫

B

ϕ dMi =
∫
B

∂2ϕ(z, w)

∂z∂ z̄
ui(z, w)dV z dV w

=
∫

Cn−1

( ∫
B(w)

∂2ϕ(z, w)

∂z∂ z̄
ui(z, w)dV z

)
dV w

=
∫

Cn−1

( ∫
B(w)

ϕ(z, w)dμi,w(z)

)
dV w .

Choose a compact F -neighborhood K of the given point a ∈ O ⊂ Ω so that K ⊂ O . There exists a decreasing sequence
of functions ϕk ∈ C∞

0 (B) with 0 � ϕk � 1 so that ϕk = 1 on K and ϕk ↘ χK (the characteristic function of K ) as k ↗ ∞.
Since Mi and μi,w are locally finite positive measures and B and ϕk are bounded, we obtain by the monotone convergence
theorem

Mi(K ) =
∫
B

χK dMi = lim
k→∞

∫
B

ϕk dMi

= lim
k→∞

∫
Cn−1

( ∫
B(w)

ϕk(·, w)dμi,w

)
dV w

=
∫

Cn−1

( ∫
B(w)

χK (w) dμi,w

)
dV w

=
∫

Cn−1

μi,w
(

K (w)
)

dV w .

It follows that

M1(K ) − M2(K ) =
∫

Cn−1

(
μ1,w

(
K (w)

) − μ2,w
(

K (w)
))

dV w � 0

because μ1,w − μ2,w � 0 on O (w) ⊃ K (w). Thus M1(K ) � M2(K ) for every compact F -neighborhood K of a in O .
The proof of Theorem 2.4(a) shows that we may take O = {z ∈ B(z0, r): Φ∗(z) � − 1

4 }, where Φ∗ is plurisubharmonic on
the open ball B(z0, r), and in particular upper semicontinuous there. It follows that O = ⋃

p∈N
F p with

F p =
{

z ∈ B

(
z0,

(
1 − 1

p

)
r

)
: Φ∗(z) � −1

4
+ 1

p

}
,

a bounded closed and hence compact subset of C
n . Defining K p = F p ∪ K we find that K p is a compact F -neighborhood

of a. We infer that K p ↗ O as p ↗ ∞, and consequently

M1(O ) = sup
p∈N

M1(K p) � sup
p∈N

M2(K p) = M2(O ).

By Lemma 3.2, this completes the proof of the ‘only if part’ of Theorem 3.1. �
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For the proof of the ‘if part’ of Theorem 3.1 we will need the following lemma, and some results of Bedford and Taylor
on slicing of currents.

Lemma 3.3. Let f be a bounded finely subharmonic function on an F -open set Ω ⊂ C
n and suppose that for every C-affine bijection

h of C
n the function f ◦ h is finely subharmonic on h−1(Ω). Then every z0 ∈ Ω admits a (compact) F -neighborhood Kz0 such that f

can be written as

f = f1 − f2 on Kz0 ,

where f1, f2 are plurisubharmonic functions defined on a ball B(z0, r) ⊃ Kz0 .

Proof. As in the proof of (a) of Theorem 2.4, we can assume that −1 < f < 0, and find a compact F -neighborhood V of z0
and a negative plurisubharmonic function ϕ on a ball B(z0, r) ⊃ V such that ϕ(z0) = −1/2 and ϕ = −1 on B(z0, r) \ V . For
every λ > 0 we can form the function

uλ(z) =
{

max{−λ, f (z) + λϕ(z)} for z ∈ Ω ∩ B(z0, r),

−λ for z ∈ B(z0, r) \ V .

It is a bounded finely subharmonic function on B(z0, r), hence uλ is subharmonic on B(z0, r). Similarly, for every C-affine
bijection h of C

n the function uλ ◦h is finely subharmonic, hence subharmonic on h−1(B(z0, r)). From this we conclude that
uλ is in fact plurisubharmonic. Taking λ = 4, we see that

u4(z) = f (z) + 4ϕ(z)

on the closed F -neighborhood Kz0 = {z ∈ Ω: ϕ(z) � −2/3} ⊂ V ∩ B(z0, r), and Kz0 is compact along with V . This proves
the lemma. �
Corollary 3.4. We keep the notation as above. Then for every z0 ∈ Ω , f is F -continuous on Kz0 , hence on Ω .

We recall from [4] the concept of slice of an (n − 1,n − 1)-current, now on a domain D in C
n . As usual we will write

d = ∂ + ∂ and dc = i(∂ − ∂) so that ddcu = 2i∂∂u. Let T be an (n − 1,n − 1)-current on D .
The slice of T with respect to a hyperplane z1 = a is the current

〈T , z1,a〉(ψ) = lim
ε→0

1

πε2

∫
{|z1−a|�ε}∩D

ψ(z2, . . . , zn)
1

4
ddc|z1|2 ∧ T .

Here ψ is a C∞
0 test form on z1 = a, extended to D independently of z1.

Now let u1, . . . , un−1 and w be bounded plurisubharmonic functions on D , and put T = w ddcu1 ∧ · · · ∧ ddcun−1. Then
by [4, Proposition 4.1], 〈T , z1,a〉 exists for every a ∈ C and

〈T , z1,a〉 = 1

2π
w

(
a, z′)ddcu1

(
a, z′) ∧ · · · ∧ ddcun−1

(
a, z′).

Here z′ = (z2, . . . , zn).
Finally, if F is holomorphic on D and M = {z ∈ D: F (z) = 0}, then by changing variables and since only regular points of

M have to be taken into account, one gets〈
w

(
ddcu

)n−1
, F ,0

〉 = w|M
(
ddcu

)n−1
.

We write ε′ = (ε2, . . . , εn), ε′2 = ∏n
j=2 ε2

j , and |z′| < ε′ for |z j| < ε j , j = 2, . . . ,n.

Lemma 3.5. Let ψ = ψ(z1) be a test function on {z ∈ D: z′ = 0′}, and let w and u be bounded plurisubharmonic functions on a
bounded domain D ⊂ C

n. Then∫
{z2=0,...,zn=0}

ψ(z1)w
(
z1,0′)ddcu

(
z1,0′) = lim

ε′↓0

1

2n−1ε′2

∫
{|z′|<ε′}

ψ(z1)w(z)ddc|z2|2 ∧ · · · ∧ ddc|zn|2 ∧ ddcu. (3.1)

Proof. Apply slicing with respect to z2 = 0 to the current T = w ddc |z3|2 ∧ · · · ∧ ddc |zn|2 ∧ ddcu to obtain 〈T , z2,0〉 =
1

2π w(z1,0, z3, . . . , zn)ddc |z3|2 ∧ · · · ∧ ddc |zn|2 ∧ ddcu. Next in {z2 = 0}, apply slicing with respect to z3 = 0 to the current
w ddc |z4|2 ∧ · · · ∧ ddc |zn|2 ∧ ddcu. Continuing in this fashion we obtain (3.1). �
Proof of the ‘if part’ of Theorem 3.1. Suppose for the moment that the ‘if part’ of the theorem holds under the extra
hypothesis that f is bounded. If instead f is merely bounded from above then each of the functions max{ f ,−p} (p ∈ N) is
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bounded and has the properties required in the ‘if part’. It follows that max{ f ,−p} is weakly F -plurisubharmonic, and so
is therefore f .

Having thus reduced the proof of the ‘if part’ of Theorem 3.1 to the case where f is bounded, we proceed as follows,
keeping our notation from Lemmas 3.3 and 3.5. First we will show that ddc f � 0 on the compact neighborhood K = Kz0 of
z0 provided by Lemma 3.3. Next we apply Lemma 3.5 to show that the restriction of f to any complex line passing through
z0 is finely subharmonic on a fine neighborhood of z0.

Let v be any plurisubharmonic function on a ball B in C
n , let h be a C-affine bijection of C

n , and let ϕ ∈ C∞
0 (B) be a

test function. Then the action of the Riesz measure �(v ◦ h) on ϕ ◦ h can be expressed as follows

4n−1(n − 1)!
∫

h−1(B)

ϕ ◦ h(z)�(v ◦ h) =
∫

h−1(B)

ϕ ◦ h(z)ddc(v ◦ h) ∧ (
ddc‖z‖2)n−1

=
∫
B

ϕ(ζ )ddc v(ζ ) ∧ (
ddc

∥∥h−1(ζ )
∥∥2)n−1

.

Returning to f , we have by Lemma 3.2 that the Riesz measure �( f ◦ h) is positive on h−1(K ), hence (with h−1 = g) we
obtain that

ddc f (ζ ) ∧ (
ddc

∥∥g(ζ )
∥∥2)n−1

(3.2)

is a positive measure on K for every C-affine bijection g of C
n , and by continuity also for every C-affine map g : C

n → C
n .

To finish the proof we want to show that f restricted to a complex line L passing through z0 is finely subharmonic in
a fine neighborhood of z0 relative to L. We write z = (z1, z′) and can assume that z0 = 0 and that L is given by z′ = 0′ .
Because K is an F -neighborhood of 0, there exists a bounded non-negative plurisubharmonic function w defined on a ball
B0 about 0 such that w = 0 on B0 \ K , while w(0) > 0. Then {z ∈ B0: w(z) > 0} is an F -open subset of K that contains 0.
On K we have f = f1 − f2 where f1, f2 are plurisubharmonic on a ball containing K , say on B0. We apply Lemma 3.5 to
f1 and f2 separately and subtract to obtain from (3.2) (with g(z) = g(z1, z′) = (0, z′))∫

{z2=0,...,zn=0}
ψ(z1)w

(
z1,0′)ddc f

(
z1,0′) = lim

ε′↓0

1

2n−1ε′2

∫
{|z′|<ε′}

ψ(z1)w(z)ddc |z2|2 ∧ · · · ∧ ddc|zn|2 ∧ ddc f .

If ε′ is sufficiently small then the integrals occurring in the limit on the right-hand side are non-negative for every non-
negative test function ψ on B0 ∩ {z′ = 0′}.

We conclude that the Riesz measure of f |L is positive on a neighborhood of 0. By Lemma 3.2, f |L is finely subharmonic
on this neighborhood. Varying z0 over L and using the sheaf-property, we find that f |L is finely subharmonic. �
Corollary 3.6. Let f be a bounded weakly F -plurisubharmonic function on an F -domain Ω ⊂ C

n such that f admits the represen-
tation f = f1 − f2 of Lemma 3.3 on Ω , and let χK denote the characteristic function of a compact set K in Ω . Then for C-affine
functions l1, . . . , ln−1 on K = Kz0 from Lemma 3.3∫

Ω

χK (z)ddc|l1|2 ∧ · · · ∧ ddc|ln−1|2 ∧ ddc f � 0.

Proof. This follows from (3.2) with g(z) = (0, l1(z), . . . , ln−1(z)). �
From Theorem 3.1 we derive the following two results, one about removable singularities for weakly F -plurisubharmonic

functions, and the other about the supremum of a family of such functions.

Theorem 3.7. Let f : Ω → [−∞,+∞[ be F -locally bounded from above on an F -open set Ω ⊂ C
n, and let E be an F -closed

pluripolar subset of Ω . If f is weakly F -plurisubharmonic on Ω \ E then f has a unique extension to a weakly F -plurisubharmonic
function on all of Ω , and this extension f ∗ is given by

f ∗(z) = F - lim sup
ζ→z

ζ∈Ω\E

f (ζ ), z ∈ Ω.

Proof. The function f ∗ (the F -upper semicontinuous regularization of f ) equals f on the F -open set Ω \ E because f is
F -upper semicontinuous on Ω \ E . Furthermore, f ∗ is F -upper semicontinuous and < +∞ on all of Ω (finiteness because
f is F -locally bounded from above). Therefore, by the ‘only if part’ of Theorem 3.1, for any C-affine bijection h of C

n ,
the function f ∗ ◦ h is R

2n-finely hypoharmonic on h−1(Ω \ E) = h−1(Ω) \ h−1(E) and F -upper semicontinuous < +∞ on
h−1(Ω). In particular, f ∗ ◦ h < +∞ is R

2n-finely upper semicontinuous on h−1(Ω). Because E is pluripolar so is h−1(E),
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which thus is R
2n-polar. According to [12, Theorem 9.14], f ◦ h is therefore R

2n-finely hypoharmonic on all of h−1(Ω), and
so f ∗ is indeed weakly F -plurisubharmonic on Ω , by the ‘if part’ of Theorem 3.1. Because the pluripolar set E has empty
F -interior, f ∗ is the only weakly F -plurisubharmonic and hence F -continuous extension of f to Ω . �

In view of Lemma 2.8 there is a similar result about removable singularities for weakly F -holomorphic functions:

Corollary 3.8. Let h : Ω → C be F -locally bounded on Ω (F -open in C
n). If h is weakly F -holomorphic on Ω \ E (E is F -closed and

pluripolar in C
n) then h extends uniquely to a weakly F -holomorphic function h∗ : Ω → C, given by

h∗(z) = F - lim
ζ→z

ζ∈Ω\E

h(ζ ), z ∈ Ω.

Theorem 3.9. Let Ω denote an F -open subset of C
n. For any uniformly F -locally upper bounded family of weakly F -plurisubharmonic

functions fα on Ω , the least F -upper semicontinuous majorant f ∗ of the pointwise supremum f = supα fα is likewise weakly F -
plurisubharmonic on Ω , and {z ∈ Ω: f (z) < f ∗(z)} is pluripolar.

Proof. We may assume that the set A of indices α is upper directed and that the net ( fα)α∈A is increasing; furthermore that
Ω is F -connected and that fα �≡ −∞ for some α ∈ A. For any function f : Ω → [−∞,+∞[ which is F -locally bounded
from above, write

f ∗(z) = F - lim sup
ζ→z

f (ζ ), f̌ (z) = R
2n- fine lim sup

ζ→z
f (ζ ).

Then f̌ (z) � f ∗(z) < +∞, the former inequality because the R
2n-fine topology is finer than the F -topology.

As in Theorem 3.1, let h : C
n → C

n be a C-affine bijection, and note that

f ◦ h = sup
α

( fα ◦ h), ( f ◦ h)̌ = f̌ ◦ h, on h−1(Ω),

the latter equation because h is an R
2n-fine homeomorphism. By Theorem 3.1, fα ◦ h is R

2n-finely hypoharmonic. Now
fα ◦ h � f ∗ ◦ h. Furthermore, f ∗ and hence f ∗ ◦ h and f̌ ◦ h are R

2n-finely locally bounded from above. It follows by [12,
Lemma 11.2] that f̌ ◦ h = ( f ◦ h)̌ is R

2n-finely hypoharmonic.

We proceed to show that f̌ = f ∗ on Ω , and hence that f̌ is F -upper semicontinuous there. Invoking also Theorem 3.1
we shall thus altogether find that f̌ = f ∗ becomes F -plurisubharmonic on Ω , and in particular F -continuous there, by
Theorem 2.4(c).

Consider a point z0 ∈ Ω such that f (z0) > −∞. Fix β ∈ A with fβ(z0) > −∞, and choose an F -open F -neighborhood
U of z0 so that U ⊂ Ω and

fβ(z0) − 1 < fβ � f ∗ < f ∗(z0) + 1 on U ,

noting that the weakly F -plurisubharmonic function fβ is F -continuous and that f ∗ is F -upper semicontinuous and
< +∞. Since fβ � fα � f for every α � β in A, any such fα maps U into some fixed bounded interval. According to
Theorem 2.4(a), (b) there exist r > 0, an F -open set O such that z0 ∈ O ⊂ B(z0, r), and locally bounded ordinary plurisub-
harmonic functions ϕα and ψ on B(z0, r) such that fα = ϕα − ψ on O for every α � β in A. The net (ϕα) is increasing,
along with the given net ( fα). The plurisubharmonic functions ϕα and ψ are F -continuous, in particular R

2n-finely contin-
uous. Writing supα ϕα = ϕ and denoting by ϕ̄ the Euclidean R

2n-subharmonic regularization of ϕ in B(z0, r), we therefore
have ϕ̌ = ϕ̄ there, by Brelot’s fundamental convergence theorem, see e.g. [6, 1.XI.7]. Because ϕ̌ � ϕ∗ � ϕ̄ it follows that
ϕ̌ = ϕ∗ in B(z0, r), and consequently

f̌ = (ϕ − ψ)̌ = ϕ̌ − ψ = ϕ∗ − ψ = (ϕ − ψ)∗ = f ∗ on O

since ψ is F -continuous and hence R
2n-finely continuous on the F -open, hence R

2n-finely open set O ⊂ B(z0, r).
Next, the set {z ∈ O : f (z) < f ∗(z)} = {z ∈ O : ϕ(z) < ϕ∗(z)} is pluripolar, by the deep theorem of Bedford and Taylor [2],

or see [21, Theorem 4.7.6]. Writing

E = {
z ∈ Ω: f (z) < f ∗(z)

}
, e = {

z ∈ Ω: f (z) = −∞}
,

we have thus found that every point z0 ∈ Ω \ e has an F -neighborhood O ⊂ Ω \ e for which O ∩ E is pluripolar. Because
e = ⋂

α∈A{z ∈ Ω: fα(z) = −∞} is F -closed relative to Ω , and pluripolar (some fα being �≡ −∞), we infer by the quasi-
Lindelöf principle [3, Theorem 2.7] that indeed E is pluripolar. Finally, we have found that f ∗ is F -plurisubharmonic on
each F -open set O as above (as z0 varies), and hence on their union Ω \ e, by the sheaf property. Because f ∗ is F -upper
semicontinuous and < +∞ on Ω , and e is pluripolar, we conclude from Theorem 3.7 above that indeed f ∗ is weakly
F -plurisubharmonic on all of Ω . �
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Taking for Ω a Euclidean open set we obtain in particular the following

Corollary 3.10. For any family { fα} of ordinary plurisubharmonic functions on a Euclidean open set Ω ⊂ C
n such that f := supα fα

is locally bounded from above, the least plurisubharmonic majorant of f exists and can be expressed as the upper semicontinuous
regularization of f in the Euclidean topology on C

n, as well as in the F -topology and in the R
2n-fine topology; that is, f̄ = f ∗ = f̌ .

The version of this involving the Euclidean topology is due to Lelong [23], or see [24, p. 26] or [21, Theorem 2.9.10].
Being locally bounded from above, f is in particular F -locally bounded from above, and hence so is f ∗ , which is F -
plurisubharmonic by Theorem 3.9. Because Ω is Euclidean open, it follows by Proposition 2.14 that f ∗ even is an ordinary
plurisubharmonic function. From f � f ∗ � f̄ it therefore follows that f ∗ = f̄ . Similarly, f̌ = f̄ in view of [12, Theo-
rem 9.8(a)].

The identity f ∗ = f̄ is perhaps new even for ordinary plurisubharmonic functions on a Euclidean open set.
We close this section with an alternative proof of the ‘only if part’ of Theorem 3.1. It is a bit shorter than the proof

given above. On the other hand it draws substantially on the theory of functions of Beppo Levi and Deny, cf. [5], and its
connection to fine potential theory, cf. [15]. We will need this approach again in Section 4.

Following Deny [5] and subsequently [15] we consider for a given Greenian domain D (denoted Ω in [5] and [15]) of
C

n ∼= R
2n the complex Hilbert space

D̂1(D),

the completion of D(D) = C∞
0 (D,C) in the Dirichlet norm ‖u‖1 = ‖∇u‖L2(D,C) . (For n � 2 we may thus take D = C

n . For

n = 1, any bounded domain D will do.) Note that D̂1(D) is a space of distributions [5, Théorème 2.1, p. 350]. Elements
of D̂1(D) may be represented by quasi-continuous functions that are finite quasi-everywhere. For an R

2n-finely open set
Ω ⊂ D denote by D̂1(D,Ω) the Hilbert subspace consisting of all ϕ ∈ D̂1(D) such that some (and hence any) R

2n-quasi-
continuous representative of ϕ satisfies ϕ = 0 R

2n-quasi-everywhere on D \Ω , cf. [5, Théorème 5.1, pp. 358 f.]. The positive
cone in for example D̂1(D,Ω) is denoted by D̂1+(D,Ω). Let Vl denote Lebesgue measure on C

l , and write Vn = V .
According to [15, Théorème 11] an R

2n-finely continuous (hence quasi-continuous) function f ∈ D̂1(D) is finely subhar-
monic quasi-everywhere (hence actually everywhere by [12, Theorem 9.14]) on Ω , if and only if f < +∞ and the inequality
sign holds in (3.3):

1

4

∫
D

∇ f · ∇ϕ dV =
n∑

j=1

∫
D

(∂ j f )(∂̄ jϕ)dV � 0 (3.3)

for every ϕ ∈ D̂1+(D,Ω). (It suffices of course to integrate over Ω .)

Alternative proof of the ‘only if part’ of Theorem 3.1. Consider a weakly F -plurisubharmonic function f on an F -open set
Ω ⊂ C

n; hence f is F -continuous and < +∞. We leave out the trivial case n = 1. We may assume that f > −∞ on Ω

(otherwise replace f by max{ f ,−p} and let p → +∞). It suffices to prove that f is R
2n-finely hypoharmonic.

Write z = (z1, . . . , zn) = (z1, z′) ∈ C
n . According to Theorem 2.4(a), every point z0 ∈ Ω then has an F -open F -

neighborhood O ⊂ Ω on which f = f1 − f2, f1 and f2 being bounded plurisubharmonic > −∞ on some open ball
B = B(z0, r) containing O . In particular, f1 and f2 are R

2n-subharmonic on B . We may further assume that − f1 and − f2
are R

2n-potentials on B , for otherwise we may replace − f i for i = 1,2 by its swept-out (relative to B) R̂ A
− f i

on A = B(z0, r/2)

(and O by O ∩ A). In terms of the Green kernel G on B we therefore may write − f i = Gμi on B for some bounded positive
measure μi of compact support in B . Since − f i is bounded, its G-energy

∫
Gμi dμi is finite, and hence Gμi is of Sobolev

class W 1,2
0 (B) ⊂ D̂1(Cn, B) [22, pp. 91–99], cf. [5, Théorème 3.1, p. 315].

For every z′ ∈ C
n−1 we have the C-finely open set

O
(
z′) = {

z1 ∈ C:
(
z1, z′) ∈ O

}
.

Because f is weakly F -plurisubharmonic and > −∞ on O , f |L∩O is finely subharmonic for every complex line L in C
n . It

follows that (3.3) holds with z replaced by z1 and with O replaced by O (z′) for each z′ ∈ C
n−1:∫

O (z′)

∇1 f
(
z1, z′) · ∇1ϕ

(
z1, z′)dV 1 � 0. (3.4)

Here ∇1 = (∂/∂x1, ∂/∂ y1). Integrating (3.4) with respect to Vn−1 leads by Fubini’s theorem to∫
∇1 f

(
z1, z′) · ∇1ϕ

(
z1, z′)dV � 0.
O
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Similarly with the subscript 1 replaced by any j ∈ {1, . . . ,n}. After addition this leads to∫
O

∇ f · ∇ϕ dV � 0.

According to [15, Théorème 11] and [12, Theorem 9.14], this shows that f indeed is R
2n-finely subharmonic on O , and

hence, by varying z0, on all of Ω . �
4. Biholomorphic invariance

The sigma-algebra QB of quasi Borel sets in C
n is generated by the Borel sets and the sets of capacity 0 (see [3]). QB con-

tains the finely open sets. All currents originating from wedge products of ddc of bounded plurisubharmonic functions have
measure coefficients that are Borel measures and put no mass on pluripolar sets, hence they extend naturally to QB.

First let us extend Corollary 3.6 to holomorphic functions g1, . . . , gn−1 in place of affine functions l1, . . . , ln−1.

Proposition 4.1. Let f be a bounded weakly F -plurisubharmonic function on an F -domain Ω ⊂ C
n such that f admits the represen-

tation f = f1 − f2 of Lemma 3.3 on Ω , and let χK denote the characteristic function of a compact set K ⊂ Ω . Then for holomorphic
functions g1, . . . , gn−1 on K = Kz0 from Lemma 3.3∫

Ω

χK (z)ddc|g1|2 ∧ · · · ∧ ddc|gn−1|2 ∧ ddc f � 0. (4.1)

Proof. Corollary 3.6 yields that (4.1) is valid for compact sets K̃ ⊂ Kz0 and C-affine functions gi . For arbitrary holomorphic
functions g j we have

∫
Ω

χK (z)ddc|g1|2 ∧ · · · ∧ ddc|gn−1|2 ∧ ddc f = lim
N→∞

N∑
j=1

∫
Ω

χE N
j
(z)ddc

∣∣l j,N
1

∣∣2 ∧ · · · ∧ ddc
∣∣l j,N

n−1

∣∣2 ∧ ddc f (4.2)

for suitable quasi Borel sets E N
j and complex affine approximants l j,N

k of gk on E N
j (k = 1, . . . ,n). Hence the right-hand side

of (4.2) is indeed non-negative. �
Next we give two characterizations of functions of class D̂1(Cn) (see the fourth paragraph following Corollary 3.10)

which are F -plurisubharmonic on an F -open set.

Theorem 4.2. Let Ω be F -open in C
n (n � 2). Given an F -continuous function f ∈ D̂1(Cn) with values in [−∞,+∞[, the following

are equivalent:

(a) f is weakly F -plurisubharmonic on Ω ,

(b) for every ϕ ∈ D̂1+(Cn,Ω) and every λ = (λ1, . . . , λn) ∈ C
n,

n∑
j,k=1

λ j λ̄k

∫
Ω

(∂ j f )(∂̄kϕ)dV � 0,

(c) for every regular holomorphic map h : ω → C
n (ω is open in C

n), f ◦ h is weakly F -plurisubharmonic on h−1(Ω) (⊂ ω).

Proof. (a) ⇒ (b). Using the characterization of weakly F -plurisubharmonic functions given in Theorem 3.1, one may adapt
the proof of the ‘only if part’ of [21, Theorem 2.9.12] as follows. Suppose f ∈ D̂1(Cn) is weakly F -plurisubharmonic on Ω ,
and so f ◦ T is R

2n-finely subharmonic on T −1(Ω) for any C-affine bijection T of C
n . To prove (b) with constant λ =

(λ1, . . . , λn) ∈ C
n , take

Tε(z) = z1λ + ε

n∑
l=2

zlel, ε > 0,

where (e1, . . . , en) denotes the canonical base of C
n . From (3.3) we obtain (with integrations over C

n), replacing Ω and ϕ ,
as we may, by T −1

ε (Ω) and ϕ ◦ Tε ∈ D̂1+(Cn, T −1
ε (Ω)),
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0 �
n∑

l=1

∫
∂l( f ◦ Tε)∂̄l(ϕ ◦ Tε)dV

=
n∑

j,k=1

∫ [
(∂ j f ) ◦ Tε

][
(∂̄kϕ) ◦ Tε

](
λ j λ̄k + O (ε)

)
dV

= |det Tε |2
(

n∑
j,k=1

∫
(∂ j f )(∂̄kϕ)λ j λ̄k dV + O (ε)

)
.

Here det Tε denotes the Jacobian of Tε . This leads to (b) after division by |det Tε |2 when we make ε → 0.
(b) ⇒ (a). Consider any C-affine bijection T = (T1, . . . , Tn) of C

n , say

Tl(z) =
n∑

j=1

clj z j + dl, l ∈ {1, . . . ,n}, z ∈ C,

with clj,dl ∈ C and det T �= 0. We obtain∫
∂l( f ◦ T )∂̄l(ϕ ◦ T )dV =

n∑
j,k=1

∫ [
(∂ j f ) ◦ T

][
(∂̄kϕ) ◦ T

]
clj c̄lk dV

= |det T |2
n∑

j,k=1

∫
clj c̄lk(∂ j f )(∂̄kϕ)dV � 0

by (b) with λ j = clj . After division by |det T |2 and summation over l this shows according to (3.3) and Theorem 3.1 that the
F -continuous function f < +∞ indeed is F -plurisubharmonic on Ω .

(c) ⇒ (a). This is contained in the ‘if part’ of Theorem 3.1 (even with h in (c) just a C-affine bijection and with f ◦ h just
R

2n-finely subharmonic).
(a) ⇒ (c). We may assume that f > −∞ on Ω (otherwise replace f by f p := max{ f ,−p}, p ∈ N, and let p → +∞).

According to Theorem 2.4(a), every point z0 ∈ h−1(Ω) then has an F -open F -neighborhood O ⊂ h−1(Ω) on which f =
f1 − f2, f1 and f2 being bounded plurisubharmonic on some open set D ⊂ C

n containing O . In particular, Ω and O are
R

2n-finely open, and f1 and f2 are R
2n-subharmonic on D . We may further assume that the Jacobian matrix (∂ jhk) of the

regular holomorphic map h : ω → C
n is bounded with determinant bounded away from 0.

Denoting by S(D, O ) the convex cone of all functions of class D̂1(D) which are R
2n-finely superharmonic quasi-

everywhere on O , we have by [15, p. 129] that − f ∈ S(D, O ) and hence by [15, Théorème 11(b)]∫
O

∇ f · ∇ϕ dV � 0 for ϕ ∈ D̂1+(D, O ).

For any ψ ∈ D̂1(Cn) we have (by the properties of h required in (c)) ψ ◦ h ∈ D̂1(ω). According to Theorem 3.1 it suffices to
show that the F -continuous function f ◦ h is R

2n-finely subharmonic on h−1(O ). For this it suffices by (3.3) to prove that,
for every j ∈ {1, . . . ,n},∫

h−1(O )

(
∂ j( f ◦ h)

)
(∂̄ jψ)dV � 0 for every ψ ∈ D̂1+

(
C

n,h−1(O )
)
,

and here ψ may be replaced equivalently by ϕ ◦ h with ϕ ∈ D̂1+(D, O ) (or just as well with ϕ ∈ D+(D, O )). We take j = 1
and write

dV = (i/2)n dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n = (1/4)n ddc|z1|2 ∧ · · · ∧ ddc|zn|2.
By abuse of notation we will write h−1 = (h−1

1 ,h−1
2 , . . . ,h−1

n ) for the components of the inverse h−1 of the map h. Then by
the chain rule we obtain∫

h−1(O )

(
∂1( f ◦ h)

)(
∂̄1(ϕ ◦ h)

)
ddc|z1|2 ∧ · · · ∧ ddc|zn|2

=
∫

d( f ◦ h) ∧ dc(ϕ ◦ h) ∧ ddc|z2|2 ∧ · · · ∧ ddc|zn|2

=
∫

d( f ◦ h) ∧ dc(ϕ ◦ h) ∧ ddc
∣∣h−1

2 ◦ h
∣∣2 ∧ · · · ∧ ddc

∣∣h−1
n ◦ h

∣∣2
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=
∫

df ∧ dcϕ ∧ ddc
∣∣h−1

2

∣∣2 ∧ · · · ∧ ddc
∣∣h−1

n

∣∣2
(4.3)

=
∫

ϕd
(
dc f ∧ ddc

∣∣h−1
2

∣∣2 ∧ · · · ∧ ddc
∣∣h−1

n

∣∣2)
(4.4)

= −
∫

ϕ ddc f ∧ ddc
∣∣h−1

2

∣∣2 ∧ · · · ∧ ddc
∣∣h−1

n

∣∣2
.

The last three lines are in h-coordinates. Equality (4.3) is justified by approximating f and ϕ in D̂1 with functions in D and
applying Stokes’ theorem to the approximants. The final expression is non-positive because of Proposition 4.1, and we are
done. �

Now we wish to consider the case where h is just some sort of plurifinely holomorphic map. Recall from the text
preceding Proposition 2.9 that an n-tuple (h1, . . . ,hn) of strongly/weakly F -holomorphic functions h j : U → C (U is F -
open in some C

m) is termed a strongly/weakly F -holomorphic map (or curve if m = 1).
The following concept of a strongly F -biholomorphic map is an auxiliary one.

Definition 4.3 (Plurifinely biholomorphic map). A strongly F -biholomorphic map h from an F -open set U ⊂ C
n onto its image

in C
n is an F -homeomorphism with the property that there exist for every z ∈ U a compact F -neighborhood Kz of z in U

and a C∞-diffeomorphism Φz from an open neighborhood of Kz to its image in C
n such that Φz|Kz = h|Kz and that Φz|Kz

is a C2-limit of biholomorphic maps defined on open sets containing Kz .

Proposition 4.4. The composition f ◦ h of a weakly F -plurisubharmonic function f on an F -open set Ω ⊂ C
n with a strongly

F -biholomorphic map h : U → Ω (U is F -open in C
n) is weakly F -plurisubharmonic on h−1(Ω) (⊂ C

n).

Proof. For n = 1 this is contained in [14, §4 and Théorème 11(c)] (in which h is any finely holomorphic function on U ).
Therefore suppose that n � 2. We may assume that Ω is F -connected and that f �≡ −∞, and so f is in particular R

2n-
finely subharmonic. As shown in the beginning of the alternative proof of Theorem 3.1 given at the end of Section 3 we
may further suppose that Ω is bounded in C

n and that f is bounded and of class D̂1(D) for some bounded domain D ⊂ C
n

containing Ω . Fix z ∈ U and let Kz be a compact F -neighborhood of z in U on which h has the properties described in
Definition 4.3. It will be sufficient to see that the expression (4.3) is non-positive if ϕ ∈ D̂1+(D, O ) for some F -open set
O ⊂ D with z ∈ O ⊂ Kz . Notice that df ∧ dcϕ is a form with L1 coefficients that is supported on Kz . Thus let (hm) be a
sequence of bi-holomorphic maps on open sets containing Kz that converge in C2 to h on Kz . Then

lim
m→∞ddc

∣∣h−1
m,2

∣∣2 ∧ · · · ∧ ddc
∣∣h−1

m,n

∣∣2 = ddc
∣∣h−1

2

∣∣2 ∧ · · · ∧ ddc
∣∣h−1

n

∣∣2
,

uniformly on Kz . Now the expression (4.4) is non-positive when we replace h by hm . By Lebesgue’s dominated convergence
theorem we conclude that (4.4) is also non-positive for h a strongly F -biholomorphic map. �

It is reasonable to expect that the concept of weakly F -plurisubharmonic function is invariant even under composition
with suitable weakly F -biholomorphic mappings. Currently, we do not know of a fine inverse function theorem for weakly
F -holomorphic maps of several variables. In fact we don’t even know if weakly F -holomorphic functions have weakly
F -holomorphic partial derivatives. However, we can handle the special case of a map of the form

G(z) = g(z1) + (0, z2, . . . , zn), (4.5)

where g = (g1, . . . , gn) is a finely holomorphic curve in C
n , and that turns out to be sufficient.

Theorem 4.5. The composition f ◦ g of a weakly F -plurisubharmonic (resp. weakly F -holomorphic) function f on an F -open set
Ω ⊂ C

n with a finely holomorphic curve g in C
n defined on a finely open set U ⊂ C, is finely hypoharmonic (resp. finely holomorphic)

on the finely open pre-image g−1(Ω) (⊂ C).

Proof. The theorem is known for n = 1, cf. [14, §4 and Théorème 13(a)], so we suppose that n � 2. According to The-
orem 2.10(a), g is continuous from U with the fine topology to C

n with the plurifine topology. The pre-image g−1(Ω)

therefore is finely open in C, and f ◦ g is finely continuous. We may of course assume that f is bounded, that U is finely
connected, and that g is non-constant, for example that g1 is non-constant, hence a fine-to-fine open map [14, p. 64].

Given a point z0 ∈ g−1(Ω) (⊂ U ⊂ C) with g′
1(z0) �= 0, cf. [14, Corollaire 11], there exists a finely open set O ⊂ C such

that z0 ∈ O ⊂ g−1(Ω) and that g1 is injective on O with g′
1(z) �= 0 for every z ∈ O , hence (g1|O )−1 is finely holomorphic

on the finely open set g1(O ) [14, Théorème 13]. We may further assume after diminishing O that there exists a C∞-map
ϕ : C → C

n such that ϕ = g on O and hence ∂ϕ = g′ , ∂̄ϕ = 0 on O [14, Théorème 11(c)]. Since ∂ϕ1(z0) = g′
1(z0) �= 0 we

may arrange (by further diminishing O ) that ϕ1 is injective on some open set ω ⊂ C containing the closure of O in C,
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and hence that ϕ1|ω is a C∞-diffeomorphism of ω onto ϕ1(ω). Likewise, we may achieve that there exists a sequence of
curves ϕ(ν) such that each coordinate ϕ

(ν)
j of ϕ(ν) , j ∈ {1, . . . ,n}, is a rational function defined on some open set O (ν) ⊂ ω

containing O , and that ϕν → ϕ , (ϕ(ν))′ → ϕ′ (= ∂ϕ), uniformly on O as ν → ∞, cf. [14, Theorem 11(a)]. We also require
that ϕ

(ν)
1 is injective with ∂1ϕ

(ν)
1 �= 0. With this final choice of O define G : O × C

n−1 → C
n by (4.5), writing now t ∈ C

n in
place of z ∈ C

n .
For a given point z = (z1, z′) ∈ O × C

n−1 choose a compact fine neighborhood Lz1 of z1 in C so that Lz1 ⊂ O (⊂ ω), and
a number c > max{|z2|, . . . , |zn|}. In analogy with (4.5) define

Φz(t) = ϕ(t1) + (0, t2, . . . , tn) for t ∈ ω × C
n−1.

It is easily verified that Φz is a C∞-diffeomorphism of ω × C
n−1 onto its image in C

n . We have Φz = G on O × C
n−1, and

in particular on the compact F -neighborhood Kz := Lz1 ×[−c, c]n−1 of z in O ×C
n−1, and consequently G : O ×C

n−1 → C
n

is a strongly F -biholomorphic map.
Suppose first that f is weakly F -plurisubharmonic on Ω . According to Proposition 4.4, f ◦ G is a weakly F -

plurisubharmonic map defined on the F -open set G−1(Ω) ⊂ O × C
n−1. Now

G(t1,0, . . . ,0) = g(t1) = (
g1(t1), g2(t1), . . . , gn(t1)

)
for t1 ∈ O ,

and hence ( f ◦ G)(t1,0, . . . ,0) = ( f ◦ g)(t1) for t1 ∈ O . It follows that f ◦ g is finely hypoharmonic on O , hence so (by
varying z0) on {z ∈ g−1(Ω): g′

1(z) �= 0}, which differs only by a countable and hence polar set from g−1(Ω), cf. [14,
Théorème 15]. Because f ◦ g is finely continuous and < +∞ on g−1(Ω) (⊂ U ) we conclude by the removable singularity
theorem [12, Theorem 9.15] that indeed f ◦ g is finely hypoharmonic on g−1(Ω).

Finally, let instead f be weakly F -holomorphic on Ω , in particular weakly (complex) F -harmonic, by [14, Définition 3].
As shown in the alternative proof of the ‘only if part’ of Theorem 3.1 given at the end of Section 3 we may suppose that Ω

is contained in some bounded domain D ⊂ C
n and that f is bounded and of class D̂1(D). Each of the functions z �→ z j f (z),

j ∈ {1, . . . ,n}, therefore is bounded and of class F̂ D
1
(D).

By the former part of the theorem, the bounded functions ±Re( f ◦ g) and ± Im( f ◦ g) are finely subharmonic on
g−1(Ω), and hence f ◦ g is (complex) finely harmonic there. Similarly, (z j f ) ◦ g = g j · ( f ◦ g) is finely harmonic on g−1(Ω)

(⊂ U ⊂ C), j ∈ {1, . . . ,n}. We therefore may further assume that U is contained in a bounded domain D1 ⊂ C and that
f ◦ g and each g j are bounded and of class D̂1(D1). Some component of g , say g1, is non-constant, and it therefore again
follows from [14, Théorème 13] that every point z0 ∈ g−1(Ω) (⊂ U ) with g′

1(z0) �= 0 has a finely open fine neighborhood
O ⊂ g−1(Ω) on which g1 is injective with g′

1 �= 0; and the inverse h1 := (g1|O )−1 is finely holomorphic on the finely open
set g1(O ). Hence, so is the re-parametrized curve g ◦ h1 : g1(O ) → C

n . The function h on g1(O ) × C
n−1 defined by

h(z) = h(z1, . . . , zn) = h1(z1)

is weakly F -holomorphic. Therefore, so is hf , and consequently (hf ) ◦ g is finely harmonic on O , like f ◦ g above. Note that
h ◦ g = h1 ◦ g1. For z ∈ O ,[

(hf ) ◦ g
]
(z) = [

(h ◦ g)(z)
][

( f ◦ g)(z)
] = [

(h1 ◦ g1)(z)
][

( f ◦ g)(z)
] = t · ( f ◦ g)(z),

and since this function (hf ) ◦ g = z · ( f ◦ g) of z ∈ O is finely harmonic it follows according to the result of Lyons [25], cf.
[14, §3], which was utilized in Lemma 2.8, that f ◦ g is finely holomorphic on O , hence (by varying z0) quasi-everywhere on
{t ∈ g−1(Ω): g′

1(t) �= 0}, and indeed everywhere on g−1(Ω) by the removable singularity theorem for finely holomorphic
functions [14, Corollaire 3]. �

The following extension of Theorem 4.5 from finely holomorphic curves g to F -holomorphic maps h is a strengthening of
Theorem 2.10(b), (c), in which f was required to be strongly F -plurisubharmonic (resp. strongly F -holomorphic). Likewise,
Theorem 4.6 (for a weakly F -plurisubharmonic function f ) extends Proposition 4.4 (in which m = n, and h is strongly
biholomorphic).

Theorem 4.6. The composition f ◦ h of a weakly F -plurisubharmonic (resp. weakly F -holomorphic) function f on an F -open set
Ω ⊂ C

n with a weakly F -holomorphic map h : U → C
n (U is F -open in C

m) is weakly F -plurisubharmonic (resp. weakly F -
holomorphic) on h−1(Ω) (⊂ C

m).

Proof. According to Theorem 2.10(a), h is continuous from U ⊂ C
m to C

n with their respective plurifine topologies. It
follows that h−1(Ω) is F -open in C

m , and that f ◦h is F -continuous. Next, we restrict f ◦h to a complex line L in C
m , and

observe that h|L∩U is a finely holomorphic curve. By Theorem 4.5, f ◦ h restricted to L ∩ U therefore is finely hypoharmonic
(resp. finely holomorphic), and we are done. �
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