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Abstract

The inverse of a banded matrix is, in general, dense. If the structure of the original banded matrix is “striped”,
that is, the non-zero diagonals are separated by one or more zero diagonals, the inverse may exhibit a similar striped
structure. The motivation for studying inverses of striped matrices is to obtain efficient preconditioners for systems
arising from radiation transport equations, whose matrices include dominant values along diagonal stripes. Linear
systems whose system matrix has a striped inverse lend themselves to the use of a sparse approximate inverse (SPAI)
preconditioner whose structure is derived from that of the actual inverse.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Sparsity patterns in matrices

This paper discusses matrices similar in sparsity patterns and dominant values to those resulting from
radiation transport equations used, for example, to model collapsing neutron stars (see[21]). These
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transport equations, representing different spatial or radial dimensions, are coupled together to pro-
duce a matrix with dense diagonal blocks and linking diagonals.Fig. 1 shows the sparsity pattern of
a sample matrix modeling phenomena in one dimension. The two-dimensional model includes mul-
tiple copies of one-dimensional matrices forming the diagonal blocks of a larger matrix, coupled by
two additional, outlying diagonals, resulting in four diagonals augmenting the values of the diagonal
blocks.

The sparsity pattern does not tell the entire story, however. Although the main diagonal blocks are
dense, in some cases a block is dominated by elements on its main diagonal, as can be seen by looking at
the three-dimensional display, given inFig. 2, of values of a portion of a test matrix from[21] (the height
or depth indicates the values of the element).

This type of matrix can be understood as an overlay of a matrix consisting of non-zero diagonal stripes
(i.e., non-zero diagonals separated by one or more zero diagonals) upon a block diagonal matrix. The
differences in magnitudes between the elements on the diagonals and the non-diagonal elements in the
center blocks result in a striped structure in the inverse. The actual inverse, seen inFig. 3, though dense,
has dominant values along diagonal stripes at regular intervals whose width matches the distance between
the main diagonal and the diagonal coupling the center blocks in the original matrix.

Matrices resulting from transport equations are examples ofbanded(square) matrices, that is, matrices
in which all non-zero elements are no more thank columns from the main diagonal, wherek is the least
such integer. In this case, the matrix is said to have abandwidthof 2k + 1. A typical example is a
tridiagonal matrix in which the bandwidth is 3 andk, therefore, is 1. Matrices with a small bandwidth
are alsosparse,that is, having many more zero elements than non-zeroes. (In contrast, a matrix in which
essentially every element is non-zero is said to bedense.)

It is well-known that, in general, the inverse, if it exists, of a tridiagonal matrix is dense. If, however, the
three non-zero diagonals are not adjacent, the inverse is not necessarily dense and may, in fact, exhibit a
diagonally striped structure reflective of the original matrix. (In general, we allow diagonals other than the
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Fig. 1. The sparsity pattern of matrices derived from radiation transport equations. The dense diagonal blocks represent coupling
between the various energy groups at the same spatial location. The two outlying diagonals denote coupling between neighboring
spatial locations.
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Fig. 2. A three-dimensional display of two diagonal blocks of a radiation transport matrix, where the height indicates the value
of an element.

main diagonal to include zero as a value for some, but not all, elements.) In this paper,structureinformally
refers to the pattern of non-zero elements, in particular, the locations of non-adjacent diagonals containing
non-zero elements. (Gilbert uses a formal definition of the “structure” of a matrix as a directed graph[9,
p. 63]. Also see[7, p. 1806].) For convenience, in this paper, when the inverse of a matrix is referred to,
it is assumed that the inverse exists.

Others have examined the inverses of banded matrices, proposing, in some cases, formulas for the
elements of the inverse (see, for example,[1,13] and, for Toeplitz matrices,[4,18]). This paper will
examine a specific type of banded matrix and, instead of proposing an algorithm to compute its inverse,
will focus on the structure of the inverse and its relationship to the structure of the original matrix.

1.2. Inverses and preconditioners

Our motivation for determining the structure of the inverse of a banded matrix,A, is to obtain a
preconditioner for use in solving a system of linear equations whose system matrix isA, in particular for
a matrix arising from the important application of radiation transport. (A preconditioner,M−1, is a matrix
used to transform a linear systemAx = b into the preconditioned systemM−1Ax = M−1b. The ideal
preconditioner is one that well approximatesA−1 yet is relatively inexpensive to compute. See[11].)

Moreover, the particular type of preconditioner we desire is asparse approximate inverse(SPAI)
preconditioner (see, for example,[6,7,10,12]), whose structure is based on that of the exact inverse. The
observed relationship between the diagonal stripes in the actual inverse and in the original matrix as seen
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Fig. 3. A three-dimensional display of the inverse of four diagonal blocks of a radiation transport matrix, where the height
indicates the value of an element.

in Figs. 2and3 gave additional motivation to study the striping phenomenon in an attempt to construct
appropriate SPAI matrices with only a specific number of diagonals.

Other approaches exist for analyzing matrix structure and finding the inverse, for example, those by
Gilbert [9] or Chow[7]. Gilbert used a graph theoretic approach to analyze the matrix structure ofA

and then showed that the structure ofA−1 may be characterized by the transitive closure of the graph
describing the structure ofA (see[9, pp. 65, 72]). Chow used a similar approach (see[7, pp. 1806,
1808]) adding a “sparsifying” step forA (see[7, p. 1807]) to obtain the SPAI in which elements small
in magnitude are dropped before examining the structure. Also see[14,15]. This paper takes a visual
approach to showing the structure of the inverses of matrices that exhibit a striped structure, without
requiring graph theoretic concepts. Knowing the structure of the exact inverse, an SPAI preconditioner
can be constructed by a judicious choice of the locations of the diagonals based on the locations of the
non-zero elements in the exact inverse.

SPAI preconditioners have a number of advantages in the iterative solution of linear systems, including
their implementation as matrix-vector products and their sparsity. Moreover, computing the parameters
of an SPAI preconditioner independently and, therefore, in parallel, takes greater advantage of the ar-
chitecture of parallel platforms. See, for example,[6,10,12]. One result is that the computation of a
preconditioner is a secondary effort and is a low-level contribution to the total work. This further mo-
tivates investigating the structure of the inverse of the matrices described in this paper and the relation
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Fig. 4. Non-zero structure of a 200× 200 striped matrix and its inverse.

of these inverses to SPAI preconditioners. The theorems included below link the structure of a matrix
inverse with that of the matrix itself. We see this paper as contributing to the discussion of methods of
constructing effective SPAI preconditioners and provides the background for the design of the several
successful preconditioners used to solve linear systems derived from radiation transport equations as
noted above (see[21]). In addition, one strong advantage of the approach described here is its simplicity.

1.3. Diagonally striped matrices

We define adiagonally striped matrixas one consisting of diagonals of non-zero (and possibly some
zero) elements such that the adjacent diagonals of at least one non-zero diagonal are zero. (See Melhem
who does not require the stripes to be parallel to the main diagonal,[19,20].) One example of a diagonally
striped matrix would be a matrix with exactly three non-zero diagonals, one of which is the main diagonal
and the other two are equally spaced on either side, though not adjacent to the main diagonal. We will
call a matrix of this type a (structurally symmetric) 3-diagonal(diagonally) striped matrix.

Fig. 4 displays an example of a striped matrix of size 200× 200 and of its inverse. The two outer,
non-zero diagonals are separated from the main diagonal in the original matrix by 20 columns.

In row i of a 3-diagonal striped matrix, only elementsai,i−m, aii andai,i+m are allowed to be non-zero
wherem is the spacing distance between the diagonals. As is also seen isFig. 4, the inverseB = A−1 is
not dense, but instead exhibits a remarkable striped property consisting of multiple non-zero diagonals,
each separated by several zero diagonals. In other words, in rowi of the inverse, the non-zero elements
arebii andbi,i±mk wherek is an integer so thati ± mk is a legitimate column subscript value. It is this
striped property that guides us to an SPAI preconditioner.

1.4. Organization

This paper is organized as follows. Section 2 examines structurally symmetric 3-diagonal striped
matrices, that is, a banded matrix where there are three non-adjacent, non-zero diagonals and Section 3
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examines 5-diagonal striped matrices. Then, Section 4 deals with striped matrices with dense non-zero
central bands which is the type of matrix that is associated with radiation transport equations and that
has motivated this study. Section 5 deals with structurally non-symmetric striped matrices and Section
6 comments on the standard approach taken to find an inverse when systems can, in fact, be decoupled.
Finally, Section 7 reiterates the link between striped matrices and SPAI preconditioners and offers some
concluding remarks.

2. Structurally symmetric 3-diagonal striped matrices

AsFig. 4above demonstrates, the inverse of a (structurally symmetric) 3-diagonal striped matrix, rather
than being dense, is also a striped matrix and this striped structure will, in general, be found in inverses
of other striped matrices. The inverse will contain the maximum number of diagonals possible for the
number of columns of the matrix. (The “maximum number of diagonals possible” is approximately the
number of columns of the matrix divided by the number of columns between the main diagonal and the
nearest non-zero diagonal, and we omit a longer, more precise definition trusting that the reader will
understand this intuitive concept.) InFig. 4, each diagonal in the inverse is spaced 20 columns away from
adjacent diagonals until no more diagonals are possible in the upper right and lower left corners.

As another, smaller, numerical example, letA be the following 10× 10 3-diagonal striped matrix



2 1
2 1

1 2 1
1 2 1

1 2 1
1 2 1

1 2 1
1 2 1

1 2
1 2




.

Its inverse,A−1, is the diagonally striped matrix

1

6




5 −4 3 −2 1
5 −4 3 −2 1

−4 8 −6 4 −2
−4 8 −6 4 −2

3 −6 9 −6 3
3 −6 9 −6 3

−2 4 −6 8 −4
−2 4 −6 8 −4

1 −2 3 −4 5
1 −2 3 −4 5




.

Note that the dominance of values along the main diagonal is evident in both the original matrix and
its inverse, a phenomenon seen above inFigs. 2and3. This decay in values motivates the use of only a



422 D.C. Smolarski / Journal of Computational and Applied Mathematics 186 (2006) 416–431

limited number of central diagonals when we approximate the exact inverse of a striped matrix with an
SPAI matrix to use as a preconditioner (as was reported in[21]).

More generally, we have the following theorem.

Theorem 1. If A is a 3-diagonal striped matrix with the outer two diagonals spacedm columns
away from the main diagonal(with m > 1), the inverseA−1 will be a diagonally striped matrix with
a maximum number of diagonals per row also spaced atm columns away from each other.

Proof. Let A = (aij ) and letaij equal zero except foraii andai,i±m (some of which may also be zero)
for m �= 1. LetB = A−1 andB = (bij ).

SinceA · A−1 = A · B = I , the following relation holds:

ai,i−mbi−m,j + aiibij + ai,i+mbi+m,j =
{

1 if i = j,

0 if i �= j.
(1)

(By assumptionaij = 0 if j �= i or j �= i ± m.)
Substitutingi + 1 for j in (1) results inai,i−mbi−m,i+1 + aiibi,i+1 + ai,i+mbi+m,i+1 = 0, which, in

turn, implies thatbi−m,i+1, bi,i+1, andbi+m,i+1 are all zero for everyi. A similar argument can be made
for every value ofj not equal toi ± km for an appropriate integer value ofk. Thus we can assume that all
values of elements ofB along diagonals not spaced at multiples ofm away from the main diagonal are
zero.

To show that the diagonals ofB spaced at multiples ofm away from the main diagonal are, in general,
non-zero, we argue as follows.

If i = j , thenai,i−mbi−m,j + aiibij + ai,i+mbi+m,j = ai,i−mbi−m,i + aiibii + ai,i+mbi+m,i = 1 and,
thus, at least one ofbi−m,i , bii , andbi+m,i must be non-zero. Substitutingi − m for i andi for j in (1),
we have

ai−m,i−2mbi−2m,i + ai−m,i−mbi−m,i + ai−m,ibii = 0. (2)

If ai−m,i−2m is non-zero, then it follows that, ifbi−2m,i is non-zero, it equals

−ai−m,i−mbi−m,i + ai−m,ibii

ai−m,i−2m

.

If ai−m,i−2m equals zero, thenbi−2m,i could, in fact, be any value and (2) would be satisfied. The
uniqueness of the inverse means thatbi−2m,i is, in fact, zero.

This argument can be repeated to derive a value forbi+2m,i (assuming it is also non-zero). The same
argument can be repeated to obtain values forbi±km,i (assuming they are non-zero) for any integerk such
thati ± km is a legitimate row value.

Thus,B consists of (possible) non-zero values along diagonals spaced everymcolumns away from the
main diagonal. �

We note that matrixA could be block 3-diagonally striped and corresponding results would hold.

Corollary 2. If A is ann × n 3-diagonal striped matrix with the outer two diagonals spacedm > n/2
columns away from the main diagonal, the sparsity patterns forA andA−1 coincide.
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Proof. Since Theorem 1 concludes thatA−1 has the maximum number of diagonals per row spaced at
m columns apart, given thatm > n/2, it is only possible to have two non-zero diagonals in the inverse
apart from the main diagonal. These diagonals are spacedm columns away from the main diagonal as in
the original matrix. �

3. Structurally symmetric 5-diagonal striped matrices

As noted earlier, a matrix representing a two-dimensional model employing radiation transport equa-
tions includes diagonals coupling multiple copies of the pattern displayed inFig. 1. Thus, the domi-
nant values in this model produce a 5-diagonal striped matrix. The inverse of this matrix is not always
striped.

SupposeA is a 5-diagonal striped matrix with non-zero diagonals ataii ,ai,i±m1 andai,i±m2 with m1=3
andm2 = 5, as in the following 10× 10 matrix:




2 1 1
2 1 1

2 1 1
1 2 1 1

1 2 1 1
1 1 2 1

1 1 2 1
1 1 2

1 1 2
1 1 2




.

In this case, the inverse is, in fact, adensematrix, rather than a diagonally striped matrix.
In contrast, ifA were a 5-diagonal striped matrix with non-zero diagonals ataii , ai,i±m1 andai,i±m2

with m1 = 4 andm2 = 6, its inverseB = A−1 would also be a diagonally striped matrix with non-zero
diagonals atbii andbi,i±2k where, as above,k is are arbitrary integer value so thati ± 2k is a legitimate
column subscript value.Fig. 5 depicts a larger version of this latter matrix, whereA is 200× 200, and
m1 =40 andm2 =60. AsFig. 5shows, the multiple diagonals of the inverse are spaced 20 columns apart.

These two examples motivate the following theorem.

Theorem 3. Let A be ann × n 5-diagonal striped matrix with non-zero diagonals ataii , ai,i±m1,
andai,i±m2 with 0< m1 < m2. Assumem1�n/2. If gcd(m1, m2) = 1, thenA−1 is dense. If, however,
gcd(m1, m2) = m > 1, thenB = A−1 will be a diagonally striped matrix with non-zero diagonals atbii

andbi,i±mk where, as above, k is an arbitrary integer value so thati±mk is a legitimate column subscript
value.

Comment: If m1 > n/2, thenA can be partitioned into blocks such that the upper left and lower right
blocks are simple diagonal matrices. In this case, the inverse will consist of four striped diagonal sub-
blocks separated by spacing twice the distance betweenm1 andn/2. In addition, the center part of the
matrix will continue a diagonal from the diagonal of the upper left block to the diagonal of the lower
right block. SeeFigs. 6and7 as examples.
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Fig. 5. Non-zero structure of a 200× 200 striped matrix and its inverse.
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Fig. 6. Non-zero structure of a 100× 100 striped matrix and its inverse wherem1 = 55 andm2 = 60.

Proof. This proof follows the argument given above for Theorem 1, with adaptations for two different
values for column spacing.

LetA= (aij ) and assumeaij are zero except foraii , ai,i±m1, andai,i±m2 for m1, m2 �= 1. LetB =A−1

andB = (bij ).
SinceA · A−1 = A · B = I , the following relation holds:

ai,i−m2bi−m2,j + ai,i−m1bi−m1,j + aiibij

+ ai,i+m1bi+m1,j + ai,i+m2bi+m2,j =
{

1 if i = j,

0 if i �= j.
(3)
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Fig. 7. Non-zero structure of a 100× 100 striped matrix and its inverse wherem1 = 55 andm2 = 56.

(As in Theorem 1, by assumptionaij = 0 if j �= i or j �= i ± m1 or j �= i ± m2. Again, as in
Theorem 1, we can conclude that all values of elements ofB along diagonals other than those demanded
by this theorem will be zero.)

To show that B is either dense or the diagonals ofB spaced at multiples ofm = gcd(m1, m2) > 1 are,
in general, non-zero, we argue as follows:

If i=j , thenai,i−m2bi−m2,j +ai,i−m1bi−m1,j +aiibij +ai,i+m1bi+m1,j +ai,i+m2bi+m2,j =ai,i−m2bi−m2,i+ ai,i−m1bi−m1,i + aiibii + ai,i+m1bi+m1,i + ai,i+m2bi+m2,i = 1 and at least one ofbi−m2,i , bi−m1,i , bii ,
bi+m1,i , bi+m2,i must be non-zero. Substitutingi − m1 for i andi for j in (3), we have

ai−m1,i−(m1+m2)bi−(m1+m2),i + ai−m1,i−2m1bi−2m1,i + ai−m1,i−m1bi−m1,i + ai−m1,ibii

+ ai−m1,i−(m1−m2)bi−(m1−m2),i = 0. (4)

If ai−m1,i−(m1+m2) is non-zero, it follows that, ifbi−(m1+m2),i is also non-zero, it equals

−ai−m1,i−2m1bi−2m1,i + ai−m1,i−m1bi−m1,i + ai−m1,ibii + ai−m1,i−(m1−m2)bi−(m1−m2),i

ai−m1,i−(m1+m2)

.

If ai−m1,i−(m1+m2) equals zero, thenbi−(m1+m2),i is also zero, as in Theorem 1.
Also as with Theorem 1, this argument can be repeated to show thatbi−(2m1+m2),i andbi−(m1+2m2),i are

also non-zero and then thatbi+k1m1+k2m2,i is non-zero for any integersk1 andk2 such thati+k1m1+k2m2
is a legitimate row value.

Since gcd(m1, m2)=m implies that there exist integersk1 andk2 such thatm= k1m1 + k2m2, if m=1
then the subdiagonal and superdiagonal of the inverse matrix have non-zero values. By taking appropriate
multiples ofk1 andk2, one can show that every diagonal has non-zero values. Ifm > 1, the inverse matrix
will be striped with stripes at distances±m from the main diagonal.

Thus,B consists of (possible) non-zero values along diagonals spaced everymcolumns and rows away
from the main diagonal if gcd(m1, m2) = m > 1 and dense if gcd(m1, m2) = 1. �
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Fig. 8. Non-zero structure of a 30×30 striped matrix with dense center band and its inverse. For this matrix,m1=5 andm2=10.

Numerical experiments suggest that this theorem also generalizes to diagonally striped matrices with
a higher number of diagonals.

4. Striped matrices with dense non-zero bands

The striping phenomenon can also exist in an inverse that is dense as was seen in the introduction in
the example given inFigs. 1–3 of a matrix derived from radiation transport equations (and its inverse).
This phenomenon will occur, for example, in a 5-diagonal striped matrix in which values between the two
inner, off-main diagonals are allowed to be non-zero, but small in magnitude relative to the magnitude
of the values on the other diagonals. As another example, the matrix and inverse depicted inFig. 8 is
30× 30, withm1 = 5 andm2 = 10. The values of the elements on the five primary diagonals range from
1 to 30, but the non-zero elements between the two diagonals at distancem1 = 5 from the main diagonal
are all 0.100. Thus the primary diagonals are of magnitude 10 to 100 times greater than other elements.
This difference in magnitude is enough to retain the striped diagonal phenomenon in the inverse even
though the inverse is, in fact, dense.

5. Structurally non-symmetric matrices

The matrices discussed in the previous sections were assumed to be structurally symmetric, i.e., to have
diagonals spaced at equal distances on either side of the main diagonal, although no assumption about the
values of those diagonals has been made. Matrices motivated by physical problems, for example those
generated by radiation transport equations, are usually structurally symmetric.

Nevertheless, there are two types of structurallynon-symmetricmatrices that can also be examined.
One type has diagonals on either side of the main diagonal but spaced differently, and the other has
diagonals only on one side of the main diagonal (and is, thus, upper or lower triangular). Although a
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Fig. 9. Non-zero structure of a 100× 100 striped matrix and its inverse wherem1 = 10 andm2 = 15. Stripes in the inverse are
separated by five columns.
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Fig. 10. Non-zero structure of a 20× 20 striped matrix and its inverse wherem1 = 3 andm2 = 4. Inverse is dense.

lower triangular system can be easily solved by backward reduction, it may not be practical to use this
approach and some preconditioner may be needed. For this reason, we comment briefly on the structure
of inverses of structurally non-symmetric striped matrices.

WhenA has non-zero diagonals on either side of the main diagonal but spaced differently, the results
of Theorem 3 also hold with a slight modification of the statement as follows: ifA is ann × n 3-diagonal
striped matrix (rather than a 5-diagonal matrix) with non-zero diagonals ataii , ai,i+m1, andai,i−m2, then
the inverse is dense if gcd(m1, m2) = 1 and a striped diagonal matrix otherwise. For examples, seeFigs.
9 and10.
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Fig. 11. Non-zero structure of a 100× 100 striped matrixA and its inverseB wherem1 = 20 andm2 = 25. Stripes in the
inverse are separated by five columns. There are only zero diagonals inB = A−1 betweenbii andbi,i−20, betweenbi,i−25 and
bi,i−2×20 = bi,i−40, and betweenbi,i−2×25 = bi,i−50 andbi,i−3×20 = bi,i−60.

The case when additional diagonals are on the same side of the main diagonal, however, is not a simple
generalization of the structurally symmetric case. We will examine two subcases independently and state,
without proof, conjectures concerning the structure of the inverses. The conjectures assumeA is lower
triangular; the upper triangular case is similar.

The first subcase occurs when the additional diagonals are at distances not relatively prime. In this
case, the inverse will be sparse and striped. SeeFig. 11as an example. This case motivates the following
conjecture.

Conjecture 4. LetA be ann × n 3-diagonal(lower triangular) striped matrix with non-zero diagonals
at aii , ai,i−m1, andai,i−m2 andm1 < m2. If gcd(m1, m2) = m > 1, thenB = A−1 will be a diagonally
striped(lower triangular) matrix with non-zero diagonals atbii andbi,i−mk wherek is a positive integer
so that i − mk is a legitimate column subscript value, with these exceptions: there are no non-zero
diagonals betweenbii and bi,i−m1, betweenbi,i−m2 and bi,i−2m1, betweenbi,i−2m2 and bi,i−3m1, . . . ,

betweenbi,i−pm2 andbi,i−(p+1)m1 (for positive integerp), until (p + 1)m1 − pm2 = m.

The second subcase occurs when the additional diagonals are at distances that are relatively prime. In
this case, the inverse will be generally dense, and most dense in the lower left portion (assumingA is a
lower triangular matrix). But diagonal stripes may appear between that portion and the main diagonal.
SeeFig. 12as an example. This case motivates the following conjecture.

Conjecture 5. LetA be ann × n 3-diagonal(lower triangular) striped matrix with non-zero diagonals
at aii , ai,i−m1, andai,i−m2 andm1 < m2. If gcd(m1, m2) = 1, thenB = A−1 will be a lower triangular
dense matrix, with these exceptions: there are zero diagonals betweenbii andbi,i−m1 and betweenbi,i−m1

andbi,i−m2; in addition, there are zero diagonals spaced atm2 − m1 intervals(at irregular patterns)
betweenbi,i−m2 andbi,i−m1m2.
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Fig. 12. Non-zero structure of a 100× 100 striped matrixA and its inverse wherem1 = 5 andm2 = 9. There are only zero
diagonals inB =A−1 betweenbii andbi,i−20, betweenbi,i−25 andbi,i−2×20= bi,i−40, and betweenbi,i−2×25= bi,i−50 and
bi,i−3×20 = bi,i−60.

6. Decoupled systems

We briefly mention decoupled matrices and how techniques employed for these matrices can also be
used to obtain an SPAI preconditioner for a tridiagonal matrix.

Matrices considered in this paper consist of diagonals corresponding to the location of thedominant
values, and assume the existence of non-zero values elsewhere (as there are in main diagonal blocks in
matrices derived from radiation transport equations). Without such additional non-zero values, it may be
possible to decouple the equations and rearrange the non-zeros into a matrix of smaller bandwidth.

For example, the following 6× 6 3-diagonal striped matrixA (with values corresponding to the
subscripts in the natural ordering) can be transformed into a tridiagonal matrixÃ.

A =




11 13
22 24

31 33 35
42 44 46

53 55
64 66




, Ã =




11 13
31 33 35

53 55
22 24
42 44 46

64 66




.

(The rearranged matrix̃A consists of the columns and rows of the original matrix with the column and
row order being 1, 3, 5, 2, 4, and 6.)

Ã is also block diagonal, resulting in a block diagonal inverse in which each block is dense. It is obvious
that rearranging the order of rows and columns in the inverse of the rearranged matrix to correspond to
the original ordering leads, in this case, to a 5 diagonal striped matrix. (We also note that whether an
inverse is sparse is independent of the ordering that is used and, thus, independent of the striping.)

Where the values in a 3-diagonal striped matrix can be reordered to create a tridiagonal system matrix,
various efficient techniques, including parallel preconditioners other than SPAI, exist to solve the new
system. Nevertheless, the equivalence ofA andÃ suggests that it is possible to take a tridiagonal matrix,
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duplicate the values to obtain a larger matrix with the block pattern ofÃ, reorder the values to obtain a
3-diagonal striped matrix, and then construct an SPAI striped preconditioner. In some situations, using a
3-diagonal striped preconditioner may lead to faster convergence than methods specifically designed for
tridiagonal matrices.

7. Conclusion

This paper has focussed on a particular type of banded matrix, namely a diagonally striped matrix, and
on the structure of its inverse. As shown in Theorems 1 and 3, the inverse of a striped matrix generally
reflects the striped structure of the original matrix. The motivation was to obtain efficient preconditioners
to solve linear systems arising from radiation transport equations, where the dominant values in the system
matrix exhibit a striped structure.

When the actual inverse does exhibit a diagonally striped pattern, an SPAI preconditioner could
be constructed, based on the structure of the actual inverse, but with a reduced number of diago-
nals, for example, having a 3-diagonal or 5-diagonal striped structure. This type of preconditioner
would be very efficient to compute (since the elements in each row could be computed independently)
and could take advantage of parallel platforms. In addition, the preconditioner may approximate the
actual inverse (which may, in fact, be dense) well enough to accelerate convergence of an iterative
method.

Experiments conducted in[21] validate diagonally striped SPAI preconditioners for matrices derived
from radiation transport equations (also see comparisons and discussion in[2]). SPAI preconditioners
with 3 and 5 diagonals were successfully tested on matrices derived from a one-dimensional case and
preconditioners with 5 and 9 diagonals on matrices from a two-dimensional case.

Striped diagonal SPAI preconditioners have particular advantages when the system matrixA is not
explicitly formed (as in some of our experiments) and other preconditioning approaches, such as an LU
decomposition, are not feasible.

Finally, we note that Toeplitz matrices may seem to belong to the class of matrices studied in this paper
and finding inverses of Toeplitz matrices has been an active area of research (e.g.,[3,5,8,16–18,22,23]).
We have not found, however, the Toeplitz structure to be of any advantage.
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2 + · · · + an−1A
n−1 + anA

n = 0. Rearranging terms,
dividing by a0 and multiplying byA−1, we obtain an expression forA−1 which is a sum of powers
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of A, all of which are diagonally striped matrices (with diagonals spacedm columns apart), namely,
A−1 = −a1/a0I − a2/a0A − · · · − an−1/a0A

n−2 − an/a0A
n−1. ThusA−1 itself must be a diagonally

striped matrix with diagonals spacedmcolumns apart, with the maximum number of diagonals possible.
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