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Relativistic effects on electron transport in magnetic alloys
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1 Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2,
CZ-182 21 Praha 8, Czech Republic

drchal@fzu.cz
2 Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2,

CZ-182 21 Praha 8, Czech Republic
kudrnov@fzu.cz

3 Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22,
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Abstract
We study the relativistic effects on electron transport in spin-polarized metals and random alloys
on ab initio level using the fully relativistic tight-binding linear muffin-tin-orbital (TB-LMTO)
method. We employ a Kubo linear-response approach adapted to disordered multisublattice
systems in which the chemical disorder is described in terms of the coherent potential approxi-
mation (CPA). The CPA vertex corrections are included. We calculate both the Fermi surface
and Fermi sea terms of the full conductivity tensor. We find that in cubic ferromagnetic 3d
transition metals (Fe, Co, Ni) and their random binary alloys (Ni-Fe, Fe-Si) the Fermi sea term
in the anomalous Hall conductivity is small in comparison with the Fermi surface term, however,
in more complicated structures, such as hexagonal Co and selected Co-based Heusler alloys, it
becomes important. We find an overall good agreement between the theory and experimental
data.
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1 Introduction

Simultaneous presence of a spontaneous spin polarization and spin-orbit interaction in a solid
gives rise to a number of physically interesting and technologically important phenomena, such
as magnetocrystalline anisotropy and magnetic dichroism in the X-ray absorption spectra [12].
The anomalous Hall effect [9] (AHE) represents the most famous example of a spin-orbit driven
transverse transport phenomenon in itinerant magnets. The AHE is explained in terms of the
Berry curvature of occupied Bloch states for perfect crystals [5] and the skew scattering and
side-jump mechanisms for systems with impurities [4, 9].

Recently, first-principles studies of specific materials have appeared, devoted to pure ferro-
magnetic metals and various ordered compounds, including Heusler alloys and partially ordered
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alloys. Existing studies are based on the single-particle Green’s function (GF) and the coher-
ent potential approximation (CPA) in the framework of the fully relativistic Korringa-Kohn-
Rostoker (KKR) or the tight-binding linear muffin-tin orbital (TB-LMTO) methods. Both
approaches employ the conductivity tensor formulated in the Kubo linear response theory [7],
where the configuration averaging leads to the CPA-vertex corrections [17, 2, 3].

Most of the published results for random alloys rest on the Kubo-Středa formula [13, 4]
which provides an expression for the full conductivity tensor at zero temperature solely in
terms of quantities at the Fermi energy. However, the calculations could be performed only
with the neglect of the term containing the coordinate operator which is not compatible with
periodic boundary conditions used in standard bulk techniques. The neglect of the problematic
term has been justified by a high degree of symmetry of the crystal lattice (e.g., cubic). The
neglected term is equivalent to the so-called Fermi sea contribution which follows from the
original Bastin formula for the conductivity tensor [1]. The Fermi sea term does not contain
coordinate operator, but it requires energy integration over the occupied part of the valence
spectrum. Its direct evaluation for model systems and for realistic band structures of transition
metals indicates that, at least in the high-conductivity regime, the Fermi sea term represents
a small correction to the dominating Fermi surface term defined only in terms of quantities at
the Fermi energy. However, similar studies for qualitatively different systems mentioned above
cannot be found in the literature.

The present study is devoted to a formulation of the conductivity tensor from the Bastin
formula in the relativistic TB-LMTO method; the focus is on the Fermi sea term and random
alloys. The paper is organized as follows. The theory is summarized in Section 2, illustrative
examples are shown in Section 3 and the conclusions are presented in Section 4.

2 Theory

2.1 Spin-polarized relativistic electronic structure

We use the relativistic spin-polarized version of the linear muffin-tin orbital (LMTO) method
in the atomic sphere approximation (ASA). The Hamiltonian reads

H = C +WS0
(
1− γS0

)−1
WT , (1)

where the C, W (WT corresponds to
√
Δ, T denotes transposition), and γ are site-diagonal

matrices of potential parameters and the S0 denotes the matrix of canonical structure constants.
In the spin-polarized case the only quantum number is μ which corresponds to the z-component
of the total angular momentum Jz. Consequently, the matrices in (1) have two types of indices,
namely, Λ = (κμ) connected with the behavior of wave functions at surfaces of the Wigner-Seitz
spheres and Λ̃ = (λμ) that reflect the behavior of wave functions in the vicinity of atomic nuclei.
For details see [11, 10, 14].

The (physical) Green function G(z) = (z −H)
−1

is calculated via the auxiliary Green

function gα(z) = [Pα(z)− Sα]
−1

as G(z) = λα(z) + μα(z)gα(z)μαT (z), where

Pα(z) =
[
WT (z − C)−1W + γ − α

]−1
(2)

is the potential function and

λα(z) = μα(z)(γ − α)W−1 , μα(z) = (WT )−1 [1 + (α− γ)Pα(z)] (3)

are site-diagonal quantities, α is a site-diagonal matrix of screening constants. In what follows
the auxilliary quantities are in the LMTO representation α, which is not written explicitly.
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2.2 Conductivity tensor

Coordinate and velocity operators. The coordinate operator Xμ is represented by a ma-

trix diagonal in the (RΛ̃)-index as

(Xμ)R′Λ̃′,RΛ̃ = δR′R δΛ̃′Λ̃ Xμ
R, (4)

where Xμ
R is the μ-th component of the position vector R. The velocity operator Vμ is then

defined as a time derivative of Xμ (h̄ = 1):

Vμ = −i [Xμ, H] , (5)

where [A,B] = AB − BA denotes a commutator. The simple rule (4) is an approximation of
the true continuous coordinate by its step-like integer part constant inside each atomic sphere.
This leads to a systematic neglect of intraatomic currents so that the resulting conductivity
σμν describes only the net electron motion between atomic sites [16].

Bastin formula and Kubo-Středa formula. The Bastin formula [1] for the conductivity
tensor of a non-interacting electron system reads

σμν = −2σ0

∫
dEf(E)Tr

〈
VμG

′
+(E)Vν [G+(E)−G−(E)]− Vμ[G+(E)−G−(E)]VνG

′
−(E)

〉
.

(6)
The integral is taken over the whole real energy axis and the function f(E) denotes the Fermi-
Dirac distribution function. The prime at the G±(E) denotes the energy derivative. The
trace (Tr) in (6) is taken over all orbitals of the system and the symbol 〈. . . 〉 denotes the
average over all configurations of the random alloy. The subscripts μ and ν denote Cartesian
coordinates (μ, ν ∈ {x, y, z}), and we abbreviated G±(E) = G(E± i0). The numerical prefactor
σ0 reflects the units employed and the size of the big system; with h̄ = 1 assumed here, it is
σ0 = e2/(4πV0N), where V0 is the volume of the primitive cell and N is the number of cells in
a big finite crystal with periodic boundary conditions. By employing the auxiliary quantities
we get

σμν = −2σ0

∫
dEf(E)Tr〈vμg′+(E)vν [g+(E)− g−(E)]− vμ[g+(E)− g−(E)]vνg

′
−(E)〉. (7)

This form is identical with the original one, but the Eq. (7) has clear advantages in the configu-
ration averaging for two reasons. First, the full resolvents G±(E) are replaced by the auxiliary
GFs for which the CPA-average ḡ(z) can be directly evaluated. Second, the random velocities
Vμ are replaced by the non-random effective velocities vμ = −i [Xμ, S] so that the configuration
average of the whole conductivity tensor can be performed by following the standard formu-
lation of the CPA-vertex corrections [17, 3]. The expression (7) can be further modified (see

Refs. [4, 15]) to the form σμν = σ
(1)
μν +σ

(2)
μν , where the first term (called the Fermi surface term)

is

σ(1)
μν = σ0

∫
dEf ′(E)Tr〈vμg+(E)vν [g+(E)− g−(E)]− vμ[g+(E)− g−(E)]vνg−(E)〉, (8)

and the second term (called the Fermi sea term) is

σ(2)
μν = σ0

∫
dEf(E)Tr

〈
vμg+(E)vνg

′
+(E)− vμg

′
+(E)vνg+(E)

−vμg−(E)vνg
′
−(E) + vμg

′
−(E)vνg−(E)

〉
. (9)
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The zero-temperature case of the Fermi sea term (9) can be recast into a contour integral in
the complex energy plane:

σ(2)
μν = σ0

∫
C

dzTr 〈vμg′(z)vνg(z)− vμg(z)vνg
′(z)〉 , (10)

where the integration path C starts and ends at EF, it is oriented counterclockwise and it
encompasses the whole occupied part of the alloy valence spectrum. Note that the Fermi

sea term is antisymmetric, σ
(2)
μν = −σ(2)

νμ , so that it contributes only to the anomalous Hall
conductivity (AHC) while the longitudinal conductivities are given solely by the Fermi surface
term.

The Fermi sea term, obtained from the Kubo-Bastin formulation can be transformed into the

corresponding term of the Kubo-Středa formula, namely, σ
(2)
μν = iσ0Tr〈(Xμvν−Xνvμ)[g+(EF)−

g−(EF)]〉. This transformation is formally exact, but the transformed result contains the co-
ordinate operator that is unbounded and incompatible with the periodic boundary conditions
used in the numerical implementation.

For simple systems with inversion symmetry (cubic, hexagonal close-packed), the lattice

summations can be rearranged in such a way that the resulting σ
(2)
μν vanishes identically, in

contrast to the results of Eq. (10). Since the Kubo-Bastin approach does not involve the

problematic coordinate operator and since the direct evaluation of σ
(2)
μν yields non-zero values

even for the simplest systems, the formula (10) represents a correct version of the Fermi sea
term within the TB-LMTO formalism.

The configurational average of the integrand in (10) contains only the coherent part

Tr 〈vμg′(z)vνg(z)− vμg(z)vνg
′(z)〉 = Tr {vμḡ′(z)vν ḡ(z)− vμḡ(z)vν ḡ

′(z)} , (11)

because the vertex corrections vanish (for details of derivation see [15]). On the other hand,
the energy derivative ḡ′(z) in (11) is expressed as ḡ′(z) = −ḡ(z)P ′(z)ḡ(z), where P(z) is the
coherent potential function. It turns out, however, that P ′(z) can be calculated using the
procedure which is basically the same as the evaluation of vertex corrections (see Appendix A
in [15]).

Internal consistency of the theory. The TB-LMTO method is formulated in a general
LMTO representation specified by a set of site-diagonal screening constants [14]. Here we show
that the conductivity is independent of screening constants. Let us write the conductivity tensor

as σμν = σ
(1)
μν,coh + σ

(1)
μν,VC + σ

(2)
μν , where the first and the second term denote, respectively, the

coherent and the incoherent (vertex) part of the Fermi surface term (8). It can be shown (see
Appendix B in [15]) that the following quantities are invariant: (i) the total tensor σμν , (ii)

the incoherent Fermi surface term σ
(1)
μν,VC, and (iii) the sum of the coherent Fermi surface term

and of the Fermi sea term, σ
(1)
μν,coh + σ

(2)
μν . Since the Fermi sea term is antisymmetric, the last

property means that the symmetric part of the coherent Fermi surface term, [σ
(1)
μν,coh+σ

(1)
νμ,coh]/2,

is also invariant.
These properties prove the importance of the Fermi sea term for the complete TB-LMTO-

CPA theory of the AHE. The LMTO transformation properties together with the purely coher-
ent nature of the Fermi sea term (9) and with its regular behavior in diluted alloys are relevant
for a classification of the intrinsic and extrinsic contributions to the AHE. Within the present
TB-LMTO formalism, the intrinsic AHC has to be identified with the antisymmetric part of the

sum of the coherent Fermi surface term and of the Fermi sea term [σ
(1)
μν,coh + σ

(2)
μν ], whereas the
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extrinsic AHC is given by the antisymmetric part of the incoherent Fermi surface term σ
(1)
μν,VC.

This seems to be a natural generalization of the classification introduced recently in the KKR
method using the Kubo-Středa formula [6].

3 Applications

3.1 Numerical implementation

The LMTO representation giving the most localized real-space structure constants for the
valence basis of s-, p-, and d-type orbitals was used. For the parametrization of the local density
functional the Vosko-Wilk-Nusair exchange-correlation potential was used. For calculations of
the Fermi surface term, a small imaginary part of ±10−5 Ry has been added to the Fermi
energy while in the evaluation of the Fermi sea term (10), the integration has been performed
along a circular contour of a diameter 1.5 Ry. The contour integral was approximated by a sum
over 20 – 40 complex nodes on the upper semicircle; the nodes were located in an asymmetric
way which results in a denser mesh near the Fermi energy. The number of k vectors sampling
the Brillouin zone depends on the distance between the particular complex node and the Fermi
energy; for the node closest to the Fermi energy, total numbers of ∼ 108 k vectors have been
used. Convergence tests with respect to the numbers of energy nodes and of k vectors have
been performed for each system, which guarantee reliability of the results.

3.2 3d magnetic metals and their alloys

The calculated AHCs for pure Fe, Co and Ni, compared with other theoretical results and
with measured values, are shown in Table 1. The magnetization vector was taken along the
[001] direction for cubic metals while for hcp Co the magnetization was considered along the
hexagonal c axis (easy axis) and also lying in the ab plane. Note that the theoretical approaches
based on the Berry curvature include both the Fermi surface and the Fermi sea terms, whereas
the published KKR results contain only the surface term. The total AHCs calculated in present
work are in reasonable agreement with other theoretical results. The AHC of bcc Fe is in a
fair agreement with experiment. Bigger discrepancies are found for Co and for Ni. The latter
disagreement is ascribed to electron correlations, not treated properly within the local spin-
density approximation (LSDA). The calculated Fermi sea term is essentially negligible in fcc
Co and Ni, and it represents a weak effect as compared to the Fermi surface term in bcc Fe. A
completely different picture is obtained for hcp Co, where the Fermi sea term amounts nearly
to 40% of the total AHC, irrespective of the orientation of the magnetization, i.e., the relative
anisotropy of the Fermi sea term is similar to that of the Fermi surface term. The inclusion of
the Fermi sea term brings the present TB-LMTO results in a better agreement with those of
the Berry-curvature approach and with experiment. Our calculations show that the previous
statements about the dominating Fermi surface term in metallic systems with high longitudinal
conductivities are not generally valid.

An example of the calculated AHC in a concentrated random alloy is presented in Table
2 for the fcc Ni1−cFec system. The Fermi sea term represents a very small correction to the
dominating Fermi surface term, as expected from the similar situation in pure elements Fe and
Ni.

Another study concerns the high-conductivity regime of diluted bcc Fe1−cSic alloys, being
motivated by recent experiments for systems with Si impurity concentrations c ≤ 0.01. The
calculated AHCs are given in Table 3 together with the measured data; the total theoretical
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bcc Fe hcp Co (c) hcp Co (ab) fcc Co fcc Ni
Experiment 1032a ∼ 813b ∼ 150b 727c −1100d
Berry curvature 751e 481b 116b 249b −2203f
KKR method 685g 325g 213g −2062g
This work total 796 471 169 359 −2432
This work Fermi sea 179 181 66 −5 −17

aP.N. Dheer, Phys. Rev. 156:637 (1967); bE. Roman et al., Phys. Rev. Lett. 103:097203 (2009);
cD. Hou et al., J. Phys.: Condens. Matter 24:482001 (2012); dL. Ye et al., Phys. Rev. B 85:220403 (2012);

eY. Yao et al., Phys. Rev. Lett. 92:207208 (2004); fX. Wang et al., Phys. Rev. B 76:195109 (2007);
gD. Ködderitzsch et al., New J. Phys. 15:053009 (2013).

Table 1: The experimental and calculated values of the AHC (in S/cm) for ferromagnetic 3d
transition metals. Two columns for hcp Co refer to the magnetization direction along the c
axis (c) and in the ab plane (ab).

values were decomposed into the intrinsic and extrinsic parts as defined in Section 2.2. One can
see a sign change of the AHC in a semiquantitative agreement with experiment; this effect can
be obviously ascribed to a strong variation of the extrinsic part, which diverges for c → 0 due
to the skew scattering mechanism, whereas the intrinsic part approaches smoothly the AHC
of pure Fe. Note that the Fermi sea term, which enters the intrinsic part, is independent of
Si concentration and it becomes non-negligible for compositions with a very small total AHC.
This system is an example of a ferromagnetic metal containing very light impurities with a
negligible strength of the spin-orbit interaction and a weak exchange splitting. The diverging
AHC and the change of its sign in the diluted Fe-Si alloy prove clearly that such light non-
magnetic impurities in a feromagnetic host with spin-orbit coupling can lead to pronounced
skew-scattering effects in the transverse transport.

c 0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60
total −2432 −981 52 410 516 492 463 418 457 544
Fermi sea −17 −5 4 11 18 25 32 48 66 90

Table 2: The calculated values of the total AHC σxy and of the Fermi sea contribution (in
S/cm) for disordered fcc Ni1−cFec alloys as functions of Fe concentration c.

c 0.0 0.003 0.005 0.010 0.020
experimenta −1000 700
total 796 −714 141 557
Fermi sea 179 177 174 165
intrinsic 796 701 708 687
extrinsic −1415 −567 −130

aY. Shiomi et al., Phys. Rev. B 79:100404 (2009).

Table 3: The values of the AHC σxy in diluted bcc Fe1−cSic alloys as functions of Si con-
centration c. The experimental values and the calculated values of the total AHC, Fermi sea
contribution, intrinsic and extrinsic parts are given (in units S/cm).
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3.3 Co-based Heusler alloys

The AHE has also been studied intensively in Co-based Heusler alloys Co2CrAl and Co2MnAl,
both experimentally and theoretically. There is a generally accepted view that the struc-
ture and chemical composition of measured samples differ from those of ideal L21 compounds.
These imperfections are responsible for a discrepancy between the calculated and measured
magnetic moments, strong especially for the Co2CrAl system, as well as for relatively high
longitudinal resistivities of both systems [8]. Table 4 displays the total AHCs for both ideal
compounds and for three disordered systems of compositions (Co1−cCrc)2(Cr1−2cCo2c)Al and
Co2(X1−cAlc)(Al1−cXc) with c = 0.25 and X = Cr, Mn. The main conclusions that the strong
reduction of the AHC of the ideal compounds by the antisite disorder and the small extrinsic
(vertex corrections) part of the AHC [8] are robust with respect to inclusion of the Fermi sea
term. Relative values of the latter term lie between 20 and 40 % of the total AHC; the only
exception is the Co2CrAl alloy with 25% of Cr-Al swap, where the Fermi sea term is essentially
negligible.

A B C D total Fermi sea
Co Cr Co Al 400 −107

Co0.75Cr0.25 Cr0.5Co0.5 Co0.75Cr0.25 Al 144 39
Co Cr0.75Al0.25 Co Al0.75Cr0.25 129 4
Co Mn Co Al 1787 728
Co Mn0.75Al0.25 Co Al0.75Mn0.25 452 90

Table 4: The calculated values of the total AHC and of the Fermi sea contribution for selected
ordered and disordered Co-based Heusler alloys (in S/cm). First four columns (denoted as A,
B, C, and D) show the occupation of four sublattices of the Heusler alloy.

4 Conclusions

We have extended our recent transport theory in the relativistic TB-LMTO method by a
formulation and numerical implementation of the Fermi sea term, which follows from the Bastin
formula for the conductivity tensor and which contributes to the AHE. In the case of random
alloys treated in the CPA, the configuration averaging of this term revealed its purely coherent
nature, with effective vertex corrections originating in the energy dependence of the average
single-particle propagators. The behavior of the Fermi sea term in the dilute limit of a random
alloy is in general regular, in contrast to the often diverging Fermi surface term. We have
further examined the transformation properties of the conductivity tensor with respect to the
choice of the LMTO representation. This analysis proved the importance of the Fermi sea term
for the representation invariance of the total AHCs and of their intrinsic part.

Calculations performed with the best screened LMTO representation for several qualitatively
different systems confirmed in most cases an expected fact, namely, significantly smaller values
of the Fermi sea term as compared to the Fermi surface term. Notable exceptions refer to
uniaxial systems (hexagonal cobalt) and to multisublattice multicomponent systems (Heusler
alloys). However, even in these cases, the inclusion of the Fermi sea term did not change
qualitatively the most important features of the AHE, such as its anisotropy or sensitivity to
antisite defects.
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