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Glomerular thrombosis in pregnancy:
Role of the L-arginine-nitric oxide pathway
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Glomerular thrombosis in pregnancy: Role of the L.arglnine-nitric
oxide pathway. E. co/i endotoxin (LPS) and certain cytokines induce
synthesis of nitric oxide (NO) from L-arginine, but also promote
endothelial injury and intravascular coagulation. NO has vasodilator
and antithrombogenic properties. We investigated the relationship
between the L.arginine-NO pathway and the susceptibility to LPS-
induced glomerular thrombosis in pregnancy. Pregnant rats were given
either 0.15 or 0.75 mg/kg/body wt of LPS intraperitoneally. In rats given
0.15 mg/kg/body wt of LPS urinary N02/N03 (end products of NO)
increased 200% (P < 0.05), plasma L-arginine did not change, and
glomerular thrombosis was minimal. Pregnant rats given 0.75 mg/kg/
body wt of LPS developed glomerular thrombosis in 75% of glomeruli
(P < 0.05). In these rats plasma L-arginine fell 98%, from 53 4 to 1.4

0.9 mmol/liter (P < 0.05) but the urinary N02/N03 did not
increase. Oral administration of L-arginine but not D-arginine increased
urinary N02/N03 by 250% and averted glomerular thrombosis in
these rats (P < 0.05). Virgin rats given 0.75 mg/kg/body wt of LPS did
not contract glomerular thrombosis. In these rats plasma L-arginine
decreased only 40% while urinary N02/N03 concomitantly increased
over 200% (P < 0.05). Plasma endothelin-l increased only in rats
exhibiting glomerular thrombosis. Thus, limited maternal reserve capa-
bility for NO synthesis may underlie, at least in part, the susceptibility
for glomerular thrombosis in pregnancy.

E. coli lipopolysaccharaide (LPS) is an endotoxin which has
been associated with the syndrome of septic shock, often
accompanied by intravascular coagulation [1, 2]. Alterations in
the vascular endothelium, induced directly by LPS and/or sub-
stances synthesized in response to LPS, such as interleukin-1,
tumor necrosis factor and platelet activating factor [3, 4] are
believed to underlie many of the clinical and pathological
manifestations of endotoxemia. Animals [5—7] and humans
[8—10] are known to be more susceptible in late pregnancy to
development of glomerular thrombosis and renal failure due to
pathologic processes that result in endothelial injury and in-
creased blood coagulability. In animal species such as the rat,
which is resistant to LPS, or the rabbit, in which two consec-
utive doses of LPS are required for thrombogenesis, glomerular
thrombosis readily occurs in response to a single dose of LPS if
it is given close to the time of delivery [6, 7]. Similarly, pregnant
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humans are vulnerable to development of glomerular thrombo-
sis as a complication of disease processes accompanied by
endothelial injury and increased thrombogenicity. These condi-
tions include preeclampsia, the HELLP syndrome (Hemolysis,
Elevated Liver enzymes, and Low Platelet counts), and septic
abortion [8, 10, 11]. Decreased synthesis of prostacyclin and
increased synthesis of thromboxane, resulting in platelet aggre-
gation and increased sensitivity to vasoconstrictors such as
angiotensin II, have been suggested as important contributors
to the pathophysiology of these disease processes [8, 10, 12,
13]. Moreover, several studies have shown that plasma endo-
thelin- 1, a powerful vasoconstrictor peptide is increased in
preeclampsia [14, 15].

Nitric oxide (NO) is an endogenous vasodilator synthesized
by NO synthases from L-arginine [16—20]. NO inhibits platelet
aggregation and adhesion to subendothelial collagen [21—23].
The platelet antiaggregatory property of NO is synergistic with
that of prostacyclin [21]. Two forms of NO synthase have been
identified: Type I synthase can be induced by LPS and/or
cytokines such as tumor necrosis factor and interleukin-1 in
several types of cells, including endothelial cells, macrophages,
vascular smooth muscle, and mesangial cells of the renal
glomerulus [16, 19, 24—29]. Type II synthase is constitutive; its
prototype is that present in the endothelium [16—18, 30, 311.
Protracted synthesis of large amounts of NO by Type I synthase
has been associated with the late and often vasopressor-resis-
tant vasodilation of septic shock [32—34]. Increases in serum
levels and in urinary excretion of nitrite and nitrate anions
(NO2/NO31, the end products of NO, have been found in
animals given endotoxin [35], and recently in humans treated
with interleukin-2 [28].

We have shown that the rat responds to a single dose of LPS
with a two- to threefold increase in serum and in urinary
N02/NO3 [35]. These rats also had a concomitant increase in
urinary 3'-S' cyclic guanosine monophospate (cGMP), the end
product of guanylate cyclase activation by NO [16, 18, 20]. We
identified the glomeruli as the major source within the kidney of
the NO response to LPS [35]. Glomerular mesangial cells are
likely major contributors, since we and others have shown in
these cells induction of NO synthesis in response to LPS as well
as to several cytokines [27, 29]. We have also demonstrated that
administration of L-nitroarginine methylester (L-NAME), an
inhibitor of NO synthesis [16], to these rats prevents the urinary
increase of NO2/N03 and cGMP and concomitantly leads to
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Table 1. Urinary N02/N03 excretion and plasma endothelin in
pregnant rates

Groups
LPS dose

mg/kg/body wt

Urine N02/N03
nmol NO2/NO3/g

creatinine
Plasma FT

fmol/ml

I Control 1.2 0.1 (11) 13.3 1.1 (9)
II 0.15 2.5 0.3 (5) 12.4 0,6 (6)
III 0.75 1.09 0.1 (6) 65 3.4 (5)C
IV 0.75 + 2% L-arg 3.0 0.8 (7) 16 1.3 (7)
V 0.75 + 2% D-arg 1.4 0.1 (6) 34.1 5,6 (6)C
VI 0.15 + L-NAME 0.5 0.1 (6) 37.1 3.0 (6)C
VII L-NAME 0.5 0.1 (5) 11.1 0.6 (6)

Number of rats is in parentheses. Urinary excretion of N02/N03
and plasma endothelin-1 (ET), in 20-day pregnant control and experi-
mental rats given intraperitoneal saline or LPS, in a dose of either 0.15
mg/kg body wt or 0.75 mg/kg body wt. Group IV recieved 2%
L-arginine (L-arg), group V 2% D-arginine, (D-arg) and groups VI and
VII L-nitroarginine methylester (L-NAME) (25 mg/dl) in the drinking
water from day 13th to 20th of pregnancy.

a P < 0.05 vs. control
b P < 0.05 vs. control; 0.15 LPS + L-NAME; L-NAME

P < 0.05 vs. control; 0.75 LPS + 2% L-ARG; L-NAME

generalized glomerular thrombosis in response to a single dose
of LPS [35]. We therefore concluded that in endotoxemia, while
excessive NO synthesis may result in unwanted severe hypo-
tension, a critical amount of NO is necessary to maintain renal
perfusion, maintain medullary oxygentation [36] and prevent
platelet aggregation and thrombosis, which are common com-
plications of this form of endothelial injury [6, 35].

Plasma levels of certain arninoacids including L-arginine, the
unique substrate for NO synthesis, are decreased in animals
and humans in late pregnancy [37—39]. However, amino acid
levels in cord blood are either normal or high [37, 38]. Several
studies have shown that maternal hypoaminoacidemia, includ-
ing hypoargininemia, is in part due to active transport of amino
acids to the fetus [37, 38]. Whether or not an absolute or relative
insufficiency in maternal synthesis of aminoacids is also con-
tributory is currently unknown. Prompted by this fact and by
our previous findings suggesting a renal protective role of NO in
endotoxemia [35] we investigated in pregnant rats: (a) whether
there is a relationship between LPS induced NO synthesis,
plasma L-arginine levels and susceptibility to glomerular throm-
bosis; and (b) whether there is a relationship between glomer-
ular thrombosis, NO synthesis and endothelin-1 (ET), the
powerful vasoconstrictor of endothelial origin [40].

Methods

Thirteen day pregnant rats and age-matched female virgin
rats were obtained from Harlan Laboratories (Indianapolis,
Indiana, USA). The rats were maintained in a germ free
environment, fed standard rat chow (Purina, St. Louis, Mis-
souri, USA) and had free access to tap water or water contain-
ing either 2% L-arginine hydrochloride (L-arg), 2% D-arginine
hydrochloride (D-arg) or 25 mg/dl of the inhibitor of NO
synthesis, L-NAME. On the 20th day of pregnancy, after an
overnight fast, but with access to water, groups of rats (Table 1)
were given either 1 cc/kg body wt of sterile normal saline (NS)
or NS containing E. coli lipopolysaccharide (LPS) serotype
0127: D8 (Difco Laboratories, Detroit, Michigan, USA) in-

traperitoneally (i.p.) according to the experimental protocols
described below (Table 1).

Pregnant rats
Group I (N = 11) were control rats which received only NS

i.p.; Group II rats (N = 6) received 0.15 mg/kg body wt of LPS
in NS; Group III (N = 6) received 0.75 mg/kg body wt of LPS
in NS; Group IV (N = 8) were given 2% L-arg in the drinking
water from the 13th to 20th days of pregnancy, and received
0.75 mg/kg body wt LPS i.p.; Group V (N = 7) were given 2%
D-arg in the drinking water from the 13th to 20th days of
pregnancy, and received 0.75 mg/kg body wt LPS i.p.; Group
VI (N = 9) were given 25 mg/dl of L-NAME in the drinking
water from the 13th to 20th days of pregnancy, and received
0.15 mg/kg LPS i.p.; Group VII (N = 6) were given 25 mg/dl of
L-NAME in the drinking water from the 13th to 20th days and
received NS i.p.

Virgin rats
These rats were maintained in the same environment and fed

the same diet as pregnant rats and had free access to water. Six
virgin rats received NS i.p. and six received LPS, 0.75 mg/kg/
body wt i.p.

After administration of LPS or NS, rats were placed in
individual metabolic cages, and timed urine collections were
obtained over four to six hours for measurement of creatinine
and NO2/N03. The rats were then anesthetized with mactin
(BYK Gulden Konstanz, Germany; 100 mg/kg i.p.), the abdom-
inal aorta was exposed through a midline incision, and the rats
killed by exsanguination. The blood obtained was used for
determination of plasma L-arg. A few urine and/or blood
samples from some rats could not be used due to technical
problems such as spilling, contamination or misplacement after
collection. The actual number of samples studied is seen in
Table 1. Kidney tissue was obtained and prepared for light and
immunofluorescence microscopy as previously described [35,
42]. For light microscopy, formalin-fixed, paraffin-embedded
4-sm sections were stained with Masson trichrome. Sections
were examined in a blinded manner for evidence of capillary
thrombi, and percent glomeruli showing thrombi was quanti-
tated [35, 41]. At least 50 glomeruli were examined in each
kidney. In selected tissues, frozen sections were treated with
FITC-labeled goat anti-rat polyclonal antibody against fibrino-
gen (Cappel Laboratories, Durham, North Carolina, USA) to
confirm the nature of the thrombi observed [35]. Plasma L-arg
(jmol/liter) was measured with a Beckman 6300 Analyzer
(Beckman Instruments, Fullerton, California, USA) in four rats
in each experimental group (except groups V and VII) as well as
in four age-matched female virgin rats that received NS i.p. and
four that received LPS, 0.75 mg/kg/body wt i.p. [42]. For
N02/N03 measurements, samples were first incubated with
E. coli reductase to convert N03 to NO2—, and then total
N02 was measured using the Griess reagent according with
methods previously described [27, 35, 43]. Urine creatinine was
measured with a Creatinine Analyzer 2 (Beckman). Urine
N02/N03 was expressed as urinary N02/N03 excretion
(nmol/hr/l00 g body wt) divided by the urinary creatinine
excretion (p.g/hr/l00 g body wt). Plasma ET in pregnant rats
was measured by RIA (Amersham Corp.) and expressed in
fmollml [44]. Data are expressed as mean SEM; statistical
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Fig. 1. Percent glomerular thrombosis in
virgin and pregnant rats in the dUferent
experimental groups. Control rats received
NS i.p. instead of LPS i.p. 2% L-arginine; 2%
D-arginine or L-NAME (25 mg/dl) was given
in the drinking water from the 13th to 20th
day of pregnancy. *D < 0.05 vs. other groups.

Fig. 2. Plasma levels of L-arginine (L-arg) in
virgin Sprague-Dawley female rats age-
matched with pregnant rats in the different
experimental groups (N = 4 in each group).
Rats had free access to either tap water or
water containing 2% L-arginine (L-arg) or L-
nitroarginine methylester (L-NAME) 25 mg/dl
from day 13th of pregnancy; on the 20th day,
the rats were given E. coli lipopolysaccharide
(LPS) intraperitoneally in a dose of either 0.15
or 0.75 mg/kg body wt in saline. Plasma L-arg
was measured in blood obtained at the time of
sacrifice, 4 to 6 hours after administration of
either saline or LPS. *D < 0.05 vs. 0.75
virgin; control pregnant.
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significance of data was evaluated by unpaired Student t-test for
comparisons between groups of virgin rats, and by ANOVA for
the remaining comparisons (STATVIEW 512 software, Brain-
power, Calabases, California, USA); P <0.05 was considered
significant.

Results
The basal urinary excretion of the end products of NO,

N02/N03 was 70% higher in pregnant compared to virgin
rats (1.2 0.1 vs. 0.70 0.04 mmol N02 /N03/mg creati-
nine; P < 0.05) suggesting increased NO synthesis in pregnancy
[45]. Female virgin rats given 0.75 mg/kg/body wt i.p. of LPS
did not develop glomerular thrombosis (Fig. 1) and had a
threefold increase in urinary N02/N03 from 0.70 0.04 to
2.2 0.7 mmol NO2/NO3/j.tg creatinine (P < 0.05) The
urinary N02/N03 excretion as well as the renal histology
were markedly different between the groups of pregnant rats
which received the two different doses of LPS. The rats given

0.15 mg/kg body wt LPS (Group II) responded in a fashion
similar to that in virgin rats, that is, these rats had a significant
increase in urinary NO2/NO3 of approximately 200% (P <
0.05), and negligible glomerular thrombosis (Table 1, Fig. 1). On
the other hand, rats given 0.75 mg/kg body wt of LPS (Group
III) showed diffuse glomerular thrombosis involving 75% of
glomeruli (P < 0.05) and had no increase in urinary excretion of
N02/NO3 (Table 1, Fig. 1). In addition tubular epithelial cell
swelling and desquamation was also noted. Immunofluoresence
microscopy confirmed that the material deposited within the
glomerular capillary loops was antigenically related to fibrino-
gen [35].

In agreement with previous studies [37—39] we found that
plasma L-arg is depressed by approximately 40% in rats 20 days
pregnant compared with age-matched female virgin rats (P <
0.05) (Fig. 2). In pregnant rats receiving 0.15 mg/kg body wt of
LPS, plasma L-arg levels did not change and remained similar
to the levels in control rats (Group I) which received NS i.p.
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However, the plasma levels of L-arg decreased by 98% (from 53
4 to 1.4 0.9 mol/liter) in pregnant rats given 0.75 mg/kg

body wt of LPS (P < 0.05) while the same dose of LPS resulted
in a decrease of only 40% in virgin rats (Fig. 2). In the group of
rats which received 2% of L-arg in the drinking water from the
13th day of pregnancy until the 20th, (Group IV) plasma L-arg
levels after administration of 0.75 mg/kg body wt of LPS were
similar to those in virgin rats (Fig. 2). Likewise, in these rats the
increase in urinary N02/N03 was similar to that observed in
virgin rats as well as in rats given 0.15 mg/kg body wt of LPS
(Table 1). This represented an increase of 200% in NO2 /N03
excretion compared with pregnant control rats and also with
rats given 0.75 mg/kg body wt of LPS but no L-arg (P <0.05 vs.
both groups). Most important, L-arg supplementation com-
pletely prevented glomerular thrombosis (P < 0.05) (Fig. 1 and
3). This effect of L-arg was specific, since similar supplemen-
tation of rats with L-arg's enantiomer, D-arg, (Group V) neither
increased urinary NO/NO3 nor prevented glomerular
thrombosis (Table 1, Fig. 1). Administration of the NO synthe-
sis inhibitor L-NAME in the drinking water for 7 days (group
VI) inhibited the fall in plasma L-arg (Fig. 2) as well as the
increase in urinary NO2/NO3 in rats given 0.15 j.Lg/kg body
wt of LPS and resulted in the development of glomerular
thrombosis in 65% of glomeruli (P < 0.05) (Table 1, Fig. 1). On
the other hand rats given L-NAME but not LPS (group VII) did
not develop glomerular thrombosis.

We found that plasma ET was significantly increased only in
the groups of pregnant rats which developed diffuse glomerular
thrombosis. Indeed, plasma ET was increased in the rats
receiving 0.75 mg/kg body wt but not in those receiving 0.15
mg/kg body wt (Table 1). Similar to what we observed with
glomerular thrombosis, L-arg but not D-arg supplementation
was effective in arresting the increase in plasma El in the group
of pregnant rats which received 0.75 mg/kg body wt of LPS
(Table 1). Furthermore, plasma ET was high in the rats given
L-NAME plus LPS but not in those receiving only L-NAME
(Table 1).

Discussion

The reasons for the increased susceptibility to glomerular
thrombosis in pregnancy have puzzled scientists and clinicians
for over 50 years [5, 8].

We obtained rats on the 13th day of pregnancy to test the
hypothesis that administration of Escherichia coil LPS pre-
partum, on the 20th day of pregnancy would result in inade-
quate NO synthesis and therefore in glomerular thrombosis
[35]. In agreement with previous studies in humans and in rats
we found that plasma L-arg is depressed by approximately 40%
in rats 20 days pregnant compared with age-matched female
virgin rats [37—39] (Fig. 2). In addition, urinary excretion of
N02/NO3 was increased by 70% in pregnant rats. This
suggests that increased NO synthesis may mediate, at least in
part, the physiologic vasodilation of pregnancy [8, 45]. Urinary
N02/N03 excretion, as well as renal histology, were differ-
ent between the groups of rats that received either 0.15 or 0.75
mg/kg body wt LPS (Table 1, Fig. 1). Pregnant rats given 0.15
mg/kg body wt LPS responded similarly to female virgin rats
given 0.75 mg/kg body wt of LPS, in that they had a significant
increase in urinary N02/NO3 and minimal glomerular throm-
bosis (Tables 1, Fig. 1) [6, 7, 33]. On the other hand, pregnant

rats given 0.75 mg/kg body wt of LPS showed no increase in
urinary excretion of N02/N03 and developed glomerular
thrombosis in 75% of glomeruli (Table 1, Fig. 1).

The differences in urinary N02/N03 between these groups
could not be attributed to differences in renal function, because
the urinary N02/N03 was expressed as the ratio between
N02/NO3 and urinary creatinine excretion.

We also demonstrated that in those rats receiving 0.15 mg/kg
body wt of LPS, plasma L-arg levels did not change and
remained similar to the levels in pregnant control rats (Fig. 2).
Administration of 0.75 mg/kg body wt to pregnant rats was
followed by a 98% fall in plasma levels of L-arg. In contrast,
this same dose of LPS resulted in only a 40% fall in plasma
L-arg in virgin rats resulting in plasma L-arg levels similar to
those observed in pregnant control rats, prior to LPS adminis-
tration (Fig. 2). Taken together these findings suggested a
pathophysiologic link between hypoargininemia, reduced NO
synthesis and glomerular thrombosis in pregnant rats given the
higher dose of LPS. We therefore studied a group of rats
receiving 2% L-arg in their drinking water from the 13th day of
pregnancy until the 20th, at which time 0.75 mg/kg body wt LPS
was administered. In these rats, plasma L-arg levels did not
decrease after LPS administration (Fig. 1). Moreover, in L-argi-
nine supplemented rats, urinary N02/N03 increased 200%
compared with both pregnant-control rats given NS, and with
rats given 0.75 mg/kg body wt of LPS but no L-arg in the
drinking water. Of particular importance was the finding that
L-arg supplementation prevented glomerular thrombosis (Fig.
1). These effects of L-arg were specific, since administration of
the L-arginine's enantiomer, D-arg, neither increased urinary
N02/NO3 nor prevented glomerular thrombosis (Table 1,
Fig. 1).

To further unravel the relationship between NO and glomer-
ular thrombosis in pregnancy, we studied a group of rats given
L-NAME [16, 35] in drinking water from the 13th until the 20th
days of pregnancy, when 0.15 mg/kg body wt, the nonthrom-
bogenic dose of LPS, was administered. L-NAME, a substi-
tuted L-arg derivative, inhibits NO synthesis by competing with
L-arg for the NO synthase. In these rats, plasma L-arg did not
decrease, urinary NO2/NO3 did not increase and, similar to
rats that received 0.75 mg/kg body wt of LPS, 65% of glomeruli
developed thrombosis (Table 1, Figs. I and 2) Comparison of
the levels of L-arg between rats that received 0.75 mg/kg body
wt of LPS and those that received 0.15 mg/kg body wt plus
L-NAME suggests that the susceptibility to glomerular throm-
bosis in pregnant but not in virgin rats is unlikely to be due to an
endogenous inhibitor of NO synthesis in pregnancy. Indeed, in
the presence of an inhibitor it would be expected that plasma
L-arg would not fall after 0.75 mg/kg body wt similar to what
was observed in rats given LPS plus L-NAME (Fig. 2). Urinary
N02/NO3 in rats given the inhibitor of NO synthesis
L-NAME but not LPS was similar to that in the rats given both
L-NAME and LPS. However, glomerular thrombosis was only
observed in rats which received both L-NAME and LPS. This
suggests that inhibition of NO synthesis by itself does not lead
to glomerular thrombosis but predisposes to its development
when other factors capable of inducing endotheial injury and
increased blood coagulability, such as LPS administration, are
also involved [3, 11, 35].

The renal tubules are the principal source of plasma L-arg
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Fig. 3. Representative photomicro graphs of
glomeruli from a 20-day pregnant rat given
0.75 mg/kg body wi LPS intraperitoneally
showing thrombi within the capillary loops (a)
and a rat given 2% L-arginine in the drinking
water from the 13th day of pregnancy and
given 0.75 mg/kg body WILPS on day 20 of
pregnancy, showing a normal glomerulus (b).
Masson Trichrome, (original magnification x
460).

[461. Given the architecture of the renal circulation, in which temically [47]. Therefore, if there is increased demand for L-arg
the renal tubules receive postglomerular blood, L-arg of renal for synthesis of NO, glomeruli would not enjoy a priority in
origin would reach the glomerulus once it has circulated sys- their supply, which in fact might decrease due to shunting of
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L-arg to other tissues. In pregnancy, fetal needs for L-arg take
precedence over maternal need, contributing to maternal hy-
poargininemia [37, 38]. Our results suggest that under condi-
tions of a sudden and robust demand for L-arg to increase NO
synthesis, such as that provoked by the larger LPS dose, the
fetal needs for L-arg as well as for the extrarenal synthesis of
NO [16, 19, 35, 481, may be maintained at the expense of a great
diminution in plasma L-arg levels. Moreover, decreased syn-
thesis by injured tubules and increased L-arg catabolism due to
increased tissue arginase may establish a vicious circle and
contribute to the observed hypoargininemia in response to LPS
[49].

Low plasma L-arg would result in insufficient substrate for
the synthesis of glomerular NO in amounts adequate to main-
tain perfusion and prevent thrombosis when there is concomi-
tant endothelial injury [35]. Indeed, L-arginine availability has
been shown to be rate-limiting for the synthesis of NO by LPS
induced NO synthase in macrophages. The Km of inducible NO
synthase in macrophages has been reported to be between 70
and 140 M [25, 49]. The plasma L-arg levels of pregnant rats
given 0.75 mg of LPS/kg body wt fell to 1.4 0.9 M. This
suggests that low plasma L-arg may, in fact, have played an
important role in limiting NO synthesis. This hypothesis is
supported by the dramatic and specific effect of L-arg supple-
mentation which increased urinary N02/N03 and prevented
glomerular thrombosis. The salutary affect of increased NO
synthesis may be related to both its renal vasodilatory action
[20] as well as to its property to inhibit platelet aggregation and
adhesion [22, 23].

Endothelial cells synthesize ET in response to a variety of
stimuli, including certain forms of endothelial injury, cytokines,
and thrombin [48—50]. Studies in vitro have shown that inhibi-
tion of NO synthesis enhances endothelial ET synthesis in-
duced by thrombin [51]. The kidney is more sensitive to the
vasoconstrjctor effect of ET than other vascular territories such
as the coronary and mesentery arteries [40]. Mesangial cells are
also capable of synthesizing ET [40]. Plasma ET is increased in
preeclampsia and, transitorily, in some forms of experimental
gram-negative endotoxemia [14, 15, 40]. Thus, we considered
the possibility that ET may also play a role directly or indirectly
in the susceptibility to glomerular thrombosis during preg-
nancy.

We found that plasma ET was significantly increased only in
those pregnant rats with significant glomerular thrombosis.
Indeed, plasma ET was only increased in the rats receiving 0.75
mg/kg body wt and in rats given L-NAME plus LPS but not in
those receiving only L-NAME. Finally, L-arg but not D-arg
supplementation was effective in arresting the increase in
plasma ET in the rats receiving 0.75 mg/kg body wt of LPS
(Table 1).

These results suggest that neither LPS by itself nor inhibition
of NO synthesis alone induces changes in plasma ET in
pregnant rats. Rather, in pregnancy, NO may be important in
modulating the rise in plasma ET in response to intravascular
generation of thrombin and/or to endothelial or glomerular
injury [5 1—53]. Under these circumstances the increase in ET
would further decrease glomerular blood flow due to vasocon-
striction [40]. In conditions such as preeclampsia and related
syndromes, the situation may be further aggravated by the

concomitant decreased synthesis of prostacyclin and increased
synthesis of thromboxane [8, 10, 11].

In summary, our study suggests for the first time that in late
pregnancy, maternal reserve capability to increase NO synthe-
sis may be limited. Hence, unbalanced renal vasoconstriction
and thrombosis may result during those disease processes in
which Type I NO synthase is induced resulting in a large
increase in the synthesis of this endogenous vasodilator and
antithrombogenic agent.
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