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the expression of AT receptor genes was found in the tubulo-Precocious activation of genes of the renin-angiotensin system
interstitium, whereas in the glomeruli this relationship wasand the fibrogenic cascade in IgA glomerulonephritis.
negative. In the interstitium, statistically significant positiveBackground. The renin-angiotensin system (RAS) seems to
relationships emerged between interstitial infiltrates and theplay a pivotal role in progression of immunoglobulin A (IgA)
gene expression of Agtg, AT1 receptor, Coll IV, and TGF-b1.nephropathy (IgAN). Accordingly, in patients with IgAN a

Conclusion. This study demonstrates that a tight regulationrelationship between the RAS and the fibrogenic cascade trig-
of the intrarenal RAS exists in IgAN and that it follows the gen-gered by transforming growth factor-�1 (TGF-�1) should be
eral rules disclosed in animal models. Moreover, the RAS seemsobserved. This study was carried out to obtain deeper insight
to be activated early in the diseased kidney and it appears thatinto the regulation of RAS and the interaction with TGF-�1
such activation drives inflammation and a parallel stimulationin the diseased kidney.

Methods. Twenty renal biopsies from IgAN patients and of the TGF-� fibrogenic loop, particularly at the tubulointer-
five from renal cancer patients (controls) were analyzed in both stitial level.
microdissected glomerular and tubulointerstitial compart-
ments by reverse transcription-polymerase chain reaction (RT-
PCR). All patients had normal renal function. The expression

Angiotensin II (Ang II), an octapeptide hormone thatof the following genes was determined: angiotensinogen (Agtg),
is the major effector molecule of the renin-angiotensinrenin, angiotensin-converting enzyme (ACE), angiotensin II

(Ang II) type 1 and type II (AT1 and AT2 receptors), TGF-b1, system (RAS), acts as a circulating hormone as well as
collagen IV (Coll IV), �-smooth muscle actin (a-SMA). Quanti- in a paracrine and/or an autocrine fashion to modulate
tative data were confirmed for TGF-b1 and ACE genes by renal function. Indeed, a number of studies have shownreal-time PCR.

that all components of the RAS are widely distributedResults. RAS genes were overexpressed in IgAN patients
in human tissues and specifically in the kidney. Ang IIvs. control subjects. There was no difference between glomerular

and tubulointerstitial RAS gene expression levels. On the con- has been shown to increase efferent arteriolar resistance,
trary, the overactivation of fibrogenic cascade genes (TGF-b1, glomerular capillary hydraulic pressure and to decrease
Coll IV, a-SMA) in the tubulointerstitium was observed (TGF-b1, plasma flow rate, glomerular filtration rate (GFR), ultra-glomerular 0.14 � 0.10 SD; tubulointerstial 0.34 � 0.20; P �

filtration coefficient, and hydraulic conductivity in the0.000) (a-SMA, glomerular 0.08 � 0.07; tubulointerstitial 0.35 �
glomerulus [1]. It has also been implicated in the autoreg-0.19; P � 0.000) (Coll IV, glomerular 0.12 � 0.11; tubulointersti-

tial 0.22 � 0.10; P � 0.03). This fibrogenic cascade seems to ulation of renal blood flow and many studies have shown
be triggered by RAS as indicated by statistically significant that Ang II plays an important role in regulating the
correlations between the expression of their respective genes. tubuloglomerular feedback [2, 3]. Furthermore, a growingA direct relationship between the putative Ang II activity and

body of evidence supports the notion that Ang II may
play a central role in the pathophysiology of renal diseases
in humans. Ang II, via type 1 Ang II (AT1) receptor,Key words: angiotensin II, angiotensin II receptors, IgA glomerulo-

nephritis, fibrosis, TGF-�. directly causes cellular phenotypic changes and cell growth,
regulates the gene expression of various bioactive sub-Received for publication October 28, 2002
stances (vasoactive hormones, growth factors, extracellu-and in revised form December 27, 2002
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vated protein kinase cascades, tyrosine kinases, various
transcription factors, etc.) in fibroblasts, endothelial, and
renal mesangial cells. These actions are supposed to par-
ticipate in the pathophysiology of glomerulosclerosis [4].

Surprisingly, little information is available about the
RAS regulation in the human kidney and particularly in
kidney diseases and data on the RAS gene expression
and regulation were mostly obtained in animals [5–8].
These data in humans and in diseased kidneys would be
worthwhile evaluating because changes in plasma RAS
do not closely reflect local expression and regulation of
the renal RAS [9–14]. On the contrary, the simultaneous
assessment of the intrarenal expression and regulation
of all components of the RAS is necessary for evaluation
of the net effect of the RAS on the kidney. Indeed, the
effect of the activity of the RAS on the kidney cannot
be accurately assessed by the measurement of one com-
ponent alone. For instance, the local availability and
functional consequence of Ang II, the effector of the
system, may depend, among others, on the angiotensin-
converting enzyme (ACE) concentration or on the Ang Fig. 1. Disposition of patients and samples. IgAN is immunoglobulin

A nephropathy.II receptor density. However, available data, and namely
the human data, are fragmentary since only few RAS
components have been evaluated, and generally not

compartments on the same day and stored at �80�Cmore than one at a time.
until further use. At enrollment, patients who had beenThis study was carried out to obtain deeper insight on
treated for hypertension were placed in pharmacologicthe RAS regulation in the diseased kidney in view of
washout for at least 10 days for ACE inhibitors, AT1the pathogenic role of this system, particularly in the
receptor inhibitors, beta blockers, clonidine, and diuret-progression to renal failure [15, 16]. As a paradigmatic
ics. Exclusion criteria from the study were age below 18renal disorder we investigated immunoglobulin A (IgA)
years, and over 65 years; non-Caucasian; serum creati-nephropathy (IgAN), the most common type of primary
nine exceeding 180 �mol/L; nephrotic range proteinuria;glomerulonephritis worldwide and a major cause of end
treatment with steroids, nonsteroidal anti-inflammatorystage renal failure (ESRF) [17, 18]. All known compo-
drugs (NSAIDs) or immunosuppressants; pregnancy ornents of the RAS and some of the transforming growth
contraceptive use in the month before biopsy; diabetesfactor-� (TGF-�) axis were simultaneously investigated
mellitus; renovascular hypertension; obstructive uropa-in both the glomerular and tubulointerstitial compart-

ments by a semiquantitative reverse transcription-poly- thy; neoplasia; liver disease; alcohol or drug abuse; con-
merase chain reaction (RT-PCR) approach set up in our nective tissue diseases; Henoch-Schonlein purpura; fa-
laboratory [19]. milial IgAN; or other contraindications for performing

a renal biopsy.
Renal biopsies were obtained under ultrasound guid-METHODS

ance with a 14-gauge needle. Only those biopsies disclos-Forty patients with a clinical and laboratory pattern
ing the typical immunofluorescence for IgAN and provid-suggesting IgAN (recurrent bouts of macrohematuria or
ing a sufficient sample for performing both the standardpersistent microhematuria associated with proteinuria)
pathologic examination and molecular biology analysis(age range, 20 to 42 years, 29 males) and eight control
(30 out of 40), were considered for this study (Fig. 1).patients (35 to 54 years, 6 males) constitute the basis of

Light microscopy and immunofluorescence were alsothis study. All gave informed, written consent.
performed on renal tissue surgical specimens, obtainedPatients were consecutively enrolled in the participat-
with a 14-gauge needle before renal artery clamping froming units of the study. From January 1999 to October
renal cancer patients undergoing nephrectomy (con-2000, in patients who were selected for renal biopsy, a
trols), after a 1-week 5 g sodium-controlled diet. Speci-sodium-controlled diet (5 g per day) was administered
mens were taken from sites remote from tumor-bearingthe week before biopsy. Diet compliance was checked
tissue. Only those biopsies disclosing a normal morphol-by evaluating the urinary excretion of sodium the day
ogy and a negative immunofluorescence (five out eight)before biopsy and a renal specimen fragment was imme-
were considered. Renal specimens were immediately mi-diately microdissected under stereomicroscopic exami-

nation as outlined below. RNA was extracted from both crodissected and RNA extracted.
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Microdissection and RNA extraction renin
forward, AAATGAAGGGGGTGTCTGTGG andIn all samples (IgAN and controls) immediately after
reverse, AAGCCAATGCGGTTGTTACGC, ampli-biopsy, approximately one tenth of the specimen was

fication product of 376 bp [20];kept in a physiologic solution containing 100 U of
RNAsin (Perkin Elmer, Branchburg, NJ, USA) on ice.

ACEThree to 21 glomeruli and corresponding tubulointerstit-
ium were isolated under microscopic control, using a forward, GCCTCCCCAACAAGACTGCCA and
stereomicroscope (Zeiss, Jena, Germany), and immedi- reverse, CCACATGTCTCCAGCCAGATG, ampli-
ately put into RNAzolB solution (BIOTEX, Houston, fication product of 388 bp [20];
TX, USA). Total RNA was extracted using the RNA-
zolB method with some minor modifications. Glomeruli AT1 receptor
and tubulointerstitium were homogenized in 200 �L of forward, GGCCAGTGTTTTTCTTTTGAATTT and
RNAzolB solution by pipetting. The homogenate was reverse, TGAACAATAGCCAGGTATCGATCA
added with 0.1 volume of chloroform, then shaken vigor- ATG, amplification product of 210 bp;
ously, kept on ice for 5 minutes and centrifuged at
14,000g (4�C) for 20 minutes. The aqueous phase was

AT2 receptor
transferred to a fresh tube, added to an equal volume

forward, GTGGCTGATTTACTCCTTTTGG andof isopropanol, stored for 45 minutes on ice and centri-
reverse, TATAAGATGCTTGCCAGGGATT, am-fuged for 20 minutes at 14,000g (4�C). The supernatant

plification product of 226 bp;was removed and the RNA pellet was washed with 70%
ethanol. To obtain a purer RNA preparation for the

TGF-b1subsequent enzymatic assay, an additional overnight pre-
forward, GCCCTGGACACCAACTATTGCT andcipitation step with 2 volumes of 100% ethanol at �20�C
reverse, AGGCTCCAAATGTAGGGGCAGG, am-was performed. The RNA pellet was dissolved in 10 �L

of diethyl pyrocarbonate (DEPC) water. Five microliters plification product of 162 bp (Clontech, Palo Alto, CA,
of RNA were used for the spectrophotometric quantita- USA);
tion at 260 and 280 nm using a 50 �L microcell (Perkin
Elmer). Amplifying the 983 bp fragment of glyceralde- Coll IV
hyde-3-phosphate dehydrogenase (G3PDH) checked forward, TTTGCATCACGAAATGACTAC and
RNA integrity [19]. reverse, AAGGTGGACGGCGTAGGCTTC, ampli-

fication product of 413 bp [21];Reverse transcription (RT)
Thirty nanograms of total RNA were retrotranscribed a-SMA

in a final volume of 20 �L, in the presence of a 5 mmol/L
forward, CTGCCTTGGTGTGTGACAAT andMgCl2, 1 mmol/L desoxynucleoside triphosphate (dNTP),
reverse, ATTGTGGGTGACACCATCTC, amplifi-1 U/�L RNAse inhibitor, 2.5 U/�L MuLV Reverse Tran-

cation product of 470 bp;scriptase (Perkin Elmer), 2.5 �mol/L Random Examers
in buffer 50 mmol/L KCl, 10 mmol/L Tris HCl, pH 8.3.

G3PDHThis reaction was carried out for 30 minutes at 42�C,
forward, ACCACAGTCCATGCCATCAC andand 5 minutes at 99�C in a thermalcycler (M.J. Research,
reverse, TCCACCACCCTGTTGCTGTA, amplifica-Inc., Waltham, MA, USA).

tion product of 452 bp (Clontech).
Polymerase chain reaction (PCR)

Although the primers were designed to span one orAn aliquot of 1 �L of RT reaction was used to amplify
more introns within the genes, control negative reactions,in different tubes the following genes: Agtg, renin, ACE,
without reverse transcriptase, were performed duringAT1 receptor, type 2 Ang II (AT2 receptor), TGF-b1, �1
the cDNA synthesis step in order to exclude genomicchain of collagen IV (Coll IV), �-smooth muscle actin

(a-SMA) and the housekeeping gene G3PDH as internal contamination. To increase the specificity and the effi-
standard. The specific cDNA sequences were amplified ciency of the PCR reaction, the “hot start” procedure
using the following primers: was applied by the use of a Jump Start Taq (Sigma

Chemical Co., St. Louis, MO, USA). The amplification
Agtg was carried out in a final volume of 50 �L containing

1.5 mmol/L MgCl2, 0.2 mmol/L dNTP, 1 U Jump Startforward, CTGCAAGGATCTTATGACCTGC and
Taq (Sigma Chemical Co.), and 0.4 �mol/L primers inreverse, TACACAGCAAACAGGAATGGGC, am-

plification product of 217 bp [20]; 50 mmol/L KCl and 10 mmol/L Tris HCl, pH 8. cDNAs
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were amplified according to the following conditions:
copies/mL �

6.023 � 1023 � C � OD260

MWt94�C for 45 seconds, 60�C for 45 seconds, and 72�C for
2 minutes.

where C � 5 � 10�5 g/mL for DNA and MWt � molecu-
lar weight of PCR product gene (base pairs � 6.58 �Comparative RT-PCR kinetic analysis
102 g). Standards were serially diluted in log steps fromKinetic analysis of amplified products was applied to
108 down to 10 copies in 1 �L volume. The sensitivity ofall samples for each genes to ensure that signals were
the PCR method using different primers was determinedderived only from the exponential phase of the amplifi-
from the threshold cycle values obtained with known

cation. cDNAs were submitted to the first 30 cycles of
quantities of purified PCR products. All calibration

amplification, and an aliquot of 5 �L from each sample curves for purified PCR products, ACE, TGF-b1, and
was drawn for electrophoretic analysis. Then the tubes G3PDH showed linearity over the entire quantification
were submitted to two more cycles of amplification and range with correlation coefficients r � 0.98, indicating a
one more 5 �L aliquot was drawn. This procedure was precise log-linear relationship. The slopes of three genes
repeated six times until it reached a total of 40 cycles. were 3.5, 3.59, and 3.6, respectively, demonstrating com-
PCR products obtained after 30, 32, 34, 36, 38, and 40 parable PCR amplification efficiencies. The intrarun
cycles were analyzed by polyacrylamide gel electropho- variability, calculated from duplicate samples for all the
resis (PAGE) in 7% polyacrylamide gel, 3% C with targets, showed an average SD for the threshold cycles
5% glycerol at 150 constant voltage in 1 � Tris-borate- of 0.12 cycles. The primers employed to amplify using
EDTA buffer (TBE) for 11⁄2 hours, visualized by ethid- SYBR Green I were, respectively, for G3PDH, forward
ium bromide staining and photographed. To enhance 5	-GAAGGTGAAGGTCGGAGT-3	, reverse 5	-TGG
band signals, gels were silver stained according to the CAACAATATCCACTTTACCA-3	; for TGF-b1, for-
following protocol: 10% ethanol for 5 minutes, 1% ward 5	-TTATCTTTTGATGTCACCGGAGT-3	, re-
HNO3 for 3 minutes, rinsed in distilled water, 12 mmol/L verse 5	-GTAGTGAACCCGTTGATGTC-3	; and for
AgNO3 for 20 minutes, rinsed in distilled water, and ACE, forward 5	-ATGAAGACCTGTTATGGGCA
developed in 280 mmol/L NaCO3 and 0.019% formal- TGG-3	, reverse 5	-ATTTCGGGTAAAACTGGAG
dehyde until the desired staining was reached; the devel- GATGG-3	.
opment was stopped with 10% CH3COOH for 2 minutes. The size of PCR products amplified with primers for

After determining for each gene in each sample the SYBR Green I analysis were G3PDH, 92 bp; ACE, 75
exponential phase of reaction by kinetic PCR, we se- bp; and TGF-b, 137 bp. The real-time PCR quantification
lected the appropriate cycles in which PCR products was performed starting from the same RT reaction of
had been quantified: G3PDH, 32 cycles; Agtg, 34 cycles; semiquantitative RT-PCR, and the same cDNA (1 �L)
renin, 34 cycles; ACE, 38 cycles; AT1 receptor, 36 cycles; quantity.
AT2 receptor, 38 cycles; TGF-b1, 32 cycles; Coll IV, 32 The optimal concentration of primers (300 nmol/L)
cycles; and a-SMA, 34 cycles. The quantification of PCR and MgCl2 (3 mmol/L) was determined in preliminary
products was performed by direct densitometric analysis experiments. The thermal cycling profile for G3PDH,
of silver-stained bands using Gel-Pro Analyser software TGF-b1, and ACE consisted of: step 1, 95�C for 5 min-
(Media Cybernetics, Silver Springs, MD, USA) and the utes; step 2, 94�C for 45 seconds; step 3, 60�C for 30
quantity of the different mRNAs was expressed as the seconds (steps 2 and 3 repeated for 40 cycles); and step
ratio between optical density (OD) generated by PCR 4, melting curve. As SYBR Green I also binds to primer
products of the different genes and the G3PDH gene. dimers formed nonspecifically during all PCR reactions,

it was necessary to obtain the most favorable tempera-
Real-time PCR quantification using SYBR Green I ture for analysis of specific product. Melting curve analy-

Few genes (ACE, TGF-b, and G3PDH) were also sis and PAGE confirmed the specificity of the amplifica-
evaluated by real-time PCR. Real-time PCR was per- tion products. The quantification data were analyzed
formed using the iCycler Thermal Cycler (BioRad, Her- with iCycler analysis software and expressed as the ratio
cules, CA, USA) and the SYBR Green I analysis. The between starting quantity mean (SQm) of target and
PCR standard for ACE, TGF-b1, and G3PDH consisted housekeeping gene.
of known numbers of molecules of purified PCR prod-

Histopathologic evaluationucts. After checking the specificity by PAGE analysis,
PCR products were purified using MinElute PCR Purifi- One of the investigators reviewed all the histologic
cation Kit (Qiagen, Bothell, WA, USA), and quantified specimens and for each biopsy three serial sections stained
by spectrophotometry at 260 nm wavelength. The num- with hematoxylin-eosin, periodic-acid Schiff (PAS), and
ber of copies/mL standard was calculated according to Masson’s trichrome were evaluated. The overall severity

of renal damage was graded according to the Lee’s classi-the following formula:
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Table 1. Clinical, histopathologic and demographic characteristics
of subjects

Patients Controls

Gender M/F 29/11 6/2
Age years 30 (20–42) 42 (35–54)
Proteinuria g/24 hours 1.3 (0.9–2.0) /
Hypertension yes/no 11/29 2/6
Serum Creatinine lmol/L 98 (79–119) 103 (85–131)
Global glomerular sclerosis % 5 (0–67) /
Diffuse mesangial proliferation % 12 (0–78) /
Crescents % 0 (0–18) /
Interstitial infiltrates 0 (0–2) /
Interstitial fibrosis 0 (0–2) /
Vascular lesions 0 (0–1) /
Lee’s score 3 (2–4) /

Values are median and (ranges) or absolute numbers (i.e., number of subjects).

fication [22]: grades I and II � mild renal damage, grade
III � moderate renal damage, and grade IV and V �
severe renal damage. Moreover, in each biopsy six fea-
tures were assessed: global glomerular sclerosis, cres-
cents, diffuse mesangial proliferation, interstitial fibrosis,
interstitial infiltrates, and vascular lesions. Global glo-
merular sclerosis was expressed as percentage of glomer-
uli with global sclerosis over the total number of glomer-
uli in each biopsy. Diffuse mesangial proliferation and

Fig. 2. Relationship between real-time polymerase chain reaction
crescents were evaluated as percentage of glomeruli in- (PCR) and reverse transcription (RT)-PCR values of transforming

growth factor-�1 (TGF-b1) (A ) and angiotensin-converting enzymeterested by the lesions over the number of glomeruli
(ACE) (B ) genes expression. Insufficient RNA precluded real-timewithout global sclerosis. Interstitial fibrosis and infiltrates
PCR analysis in some specimens. For this reason, only data points of

were graded as moderate (if absent or focal) or severe 12 (A) and 14 (B) patients instead of 20 are shown. In the x-axes, the
ratio between number of copies of TGF-b1 or ACE, and glyceraldehyde-(if multifocal or diffuse). Vascular lesions (arteriolar hya-
3-phosphate dehydrogenase (G3PDH) determined by real-time PCRlinosis and arteriosclerosis) were considered as present
is given. In the y-axes, the ratio between optical densities of TGF-b1,

or absent. ACE, and G3PDH determined by RT-PCR is shown.

Statistics

Statistics were carried out by linear regression analysis
G3PDH) was also evaluated by real-time PCR. A statis-of the different gene expression levels. The Student t
tically significant direct correlation was demonstratedtest was used to compare mRNA levels between glomer-
between RT and real-time PCR values for TGF-b1 anduli and tubulointerstitium. Statistical significance was set
ACE (r � 0.83 P 
 0.001; r � 0.71 P � 0.004, respec-at P 
 0.05.
tively) (Fig. 2).

In IgAN patients, we found no difference between
RESULTS glomerular and tubulointerstitial RAS gene expression

Clinical, histopathologic, and demographic character- levels, while the expression levels of TGF-b1, Coll IV,
istics of enrolled patients are shown in Table 1. Because and a-SMA genes were significantly higher in the tubu-
of RNA degradation (checked by evaluating the integrity lointerstitium (TGF-b1, glomerular 0.14 � 0.10 SD; tubu-

lointerstitial 0.34 � 0.20; P 
 0.001; a-SMA, glomerularof the 983 bp G3PDH amplification product) [19] and
poor total RNA yield (less than 30 ng of RNA recovered 0.08 � 0.07; tubulointerstitial 0.35 � 0.19; P 
 0.001;

Coll IV, glomerular 0.12 � 0.11; tubulointerstitial 0.22 �from renal biopsy), 10 out of 30 IgAN biopsies were
excluded from the analysis. Thus, 20 biopsies were con- 0.10; P � 0.03) as shown in Figure 3. Molecular analysis

performed in control biopsies revealed almost undetect-sidered (Fig. 1). The expression levels of RAS compo-
nents and of the TGF-� axis in two kidney compartments able expression levels of RAS genes and in particular

Agtg and ACE genes were not expressed (Fig. 4).(glomeruli and tubulointerstitium) were evaluated by
RT-PCR. However, to confirm the reliability of this pro- Table 2 reports the results of correlations between

RAS components in glomeruli and tubulointerstitium incedure as a quantitative tool, the expression of three
index genes (TGF-b1, ACE, and the housekeeper IgAN patients. In glomeruli, Agtg mRNA was inversely
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was evidenced between the expression of explored genes
in the tubulointerstitial compartment. A schematic rep-
resentation is shown in Figure 6.

There was no statistically significant correlation be-
tween glomerular histopathologic features and mRNA
glomerular levels of RAS and fibrogenic genes. On the
contrary, in the interstitium, statistically significant posi-
tive relationships emerged between interstitial infiltrates
and the interstitial gene expression of Agtg (r � 0.61;
P 
 0.008), AT1 receptor (r � 0.84; P 
 0.001), Coll IV
(r � 0.71; P 
 0.01), TGF-b1 (r � 0.71; P 
 0.01);
the Lee’s score was also positively correlated with the
interstitial AT1 receptor gene levels (r � 0.65; P 
 0.03).Fig. 3. Expression of fibrogenic cascade genes in renal biopsies from

immunoglobulin A nephropathy (IgAN) patient. The relative quantita-
tion between optical densities of the target gene [transforming growth
factor-�1 (TGF-b1), collagen IV (Coll IV), �-smooth muscle actin DISCUSSION
(a-SMA) and glyceraldehyde-3-phosphate dehydrogenase (G3PDH)

This study suggests that intrarenal RAS in humangene is given in the glomerular (�) and tubulointerstitial ( ) compart-
ments. IgAN is overexpressed and is strictly regulated as dem-

onstrated by the correlation between different compo-
nents of the RAS cascade. It also shows that the fibro-
genic cascade is distinctively overexpressed in thecorrelated with both AT1 receptor and AT2 receptor gene
tubulointerstitial compartment and with the overacti-expression (r � �059; P 
 0.01 and r � �0.64; P 

vated RAS seem to incite renal lesions.0.005, respectively), and positively with renin (r � 0.60;

The aim of this study was to obtain a comprehensiveP 
 0.009), with ACE (r � 0.61; P 
 0.008) and with
evaluation of RAS in glomeruli and tubulointerstitiumTGF-b1 (r � 0.70; P 
 0.001). A positive correlation
of patients with IgAN to overcome the many limits ofemerged between mRNA levels of renin and ACE (r �
the few available human investigations. This goal was0.61; P 
 0.008), and renin and TGF-b1 (r � 0.47; P 

addressed by evaluating simultaneously in the same0.05); on the contrary, renin and AT2 receptors were
biopsy, the maximum number of components of thislinked through an inverse relationship (r � �0.46; P 

system and of the fibrogenic cascade functionally linked0.05). ACE gene expression was negatively correlated
to it, by a semiquantitative comparative kinetic RT-PCRwith AT1 receptor and AT2 receptor expression (r �
approach developed in our laboratory [19]. We verified�0.47; P 
 0.05; r � �0.59; P 
 0.01, respectively),
the reliability of RT-PCR results through the quantifica-positively with TGF-b1 (r � 0.51; P 
 0.03) and with
tion of some of the gene expressions with the real-timeColl IV (r � 0.59; P 
 0.01). AT1 receptor mRNA level
PCR technology. There was a statistically significant cor-was positively correlated with AT2 receptor mRNA lev-
relation for both ACE and TGF-b1 between semiquanti-els (r � 0.68; P 
 0.002), but negatively correlated to
tative RT and real-time PCR values (Fig. 2), supportinga-SMA (r � �0.53; P 
 0.03), TGF-b1 (r � �0.52; P 

the reliability of our data and analysis.0.02) and with Coll IV (r � �0.53; P 
 0.03). AT2

The molecular biology approach addressing the deter-receptor expression was inversely correlated with TGF-b1
mination of gene expression of the RAS and fibrogenic(r � �0.51; P 
 0.03). Finally, TGF-b1 was positively
cascade components in the kidney does not allow thecorrelated with Coll IV (r � 0.85; P 
 0.001) and with
determination of activity nor the regulation of eithera-SMA (r � 0.46; P 
 0.05). No other correlation was
Ang I or Ang II. However, the latter can be inferredevidenced between the expression of explored genes in
from the relationship between the expression of up-glomeruli. A schematic representation is shown in Figure 5.
stream (hereafter, the terms “upstream” or “upward”In the tubulointerstitial compartment, Agtg mRNA
will be used to indicate RAS components preceding Anglevels were positively correlated with the gene expres-
II; the contrary for the components following Ang II insion of ACE (r � 0.87; P 
 0.001), with AT1 receptor
the RAS cascade) enzyme genes, ACE and renin, and(r � 0.66; P 
 0.02), with a-SMA (r � 0.64; P 
 0.03)
the substrate Agtg gene. Furthermore, mRNA levelsand Coll IV (r � 0.71; P 
 0.01). ACE gene expression
alone may not accurately reflect the overall level of ex-was positively correlated with a-SMA gene expression
pression of the RAS protein components and of Ang(r � 0.90; P 
 0.001). AT1 receptors and AT2 receptors
II–mediated events. RNA stability, posttranslationalwere both positively correlated with TGF-b1 (r � 0.64;
processing, changes in receptor cycling, and second-mes-P 
 0.03; and r � 0.69; P 
 0.01, respectively). Finally, a
senger uncoupling of AT receptors may modulate signalpositive correlation was demonstrated between TGF-b1

and Coll IV (r � 0.63; P 
 0.03). No other correlation transduction. However, at least for some RAS compo-
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Fig. 4. Expression of renin-angiotensin sys-
tem (RAS) genes in controls and immuno-
globulin A nephropathy (IgAN) patient renal
biopsies. Silver-stained gels of polymerase
chain reaction (PCR) products are shown. The
expression of some RAS genes in glomeruli
from few controls and IgAN patients is re-
ported as an example. Controls and IgAN pa-
tients are indicated by their respective enroll-
ment number. RNA levels were very faint in
controls vs. IgAN patient renal biopsies. An-
giotensinogen (Agtg) and angiotensin-convert-
ing enzyme (ACE) genes were not expressed
in controls. Number of amplification cycles (c)
are reported in brackets. Abbreviations are:
G3PDH, glyceraldehyde-3-phosphate dehy-
drogenase; MW, molecular weight; AT1-R,
angiotensin II type 1 receptor; AT2-R, angio-
tensin II type 2 receptor.

nents, a reasonably close relationship between mRNA lated with some of the upstream components of the RAS
(i.e., Agtg and ACE); on the other hand, they are in-levels, on the one hand, and Ang II binding, on the other,

were reported [23, 24]. versely correlated to the AT1 receptor expression. Again
this is a logical expectation since (1) as previously dis-Due to the key role of renin, the rate-limiting step in

the classic RAS cascade [25], it seems logical to observe cussed, the positive correlations between the upstream
RAS components, on one hand, and the negative correla-direct correlations between renin and Agtg, and renin

and ACE in the glomerulus (Fig. 5). These direct rela- tions between these components with the downstream
AT receptors, on the other hand, support the concepttionships suggest that parallel, proportional modifica-

tions occur in the intraglomerular activity of Ang I and of a concord intrarenal activity of Ang II; (2) Ang II is
believed to trigger the synthesis of TGF-b1, and someAng II. The inverse relationships between AT receptors

and upward RAS components (i.e., ACE, renin, and Agtg of their activities are indeed induced through the media-
tion of this cytokine [29].also point to the same conclusion). It has been reported

that a negative feedback exists between Ang II and its While the inverse correlation between AT2 receptor
and ACE confirms previous findings in the knockouttype 1 receptors in glomerular cells [23, 24]. Therefore,

if the upstream-positive correlations suggest a propor- model where the AT2 receptor was shown to inhibit
ACE [30], the inverse relationship between the AT2 re-tional activation of Ang II, it is coherent to expect a

proportional deactivation of the AT receptors (i.e., a ceptor expression and TGF-b1 is puzzling. Indeed, it is
not supported by any literature, which, on the contrary,negative relationship between AT receptors and the up-

stream RAS components). suggests that these receptors do not modulate the TGF-b
release [31] and offers a quite different, antifibrogenicInterestingly, the expression of the two AT receptor

genes is strictly correlated. Indeed, a recent body of data outcome after AT2 receptor stimulation [27, 32]. Most
likely it is a spurious correlation due to the much strongersupports the concept that AT2 receptor counterbalances

the activity and the effects of AT1 receptor, disclosing association between AT1 receptor with TGF-b1, and AT1
receptor with AT2 receptor.opposing features in many aspects of their biologic func-

tion, and particularly with respect to the intrarenal RAS, Findings in the tubulointerstitium substantially con-
firm and support the data observed in glomeruli, with justin cell growth and proliferation [26–28]. This suggests a

tight functional link between the two receptors, a con- one very interesting exception [i.e., the direct correlation
existing between Agtg (and, because of the above consid-cept, which is supported by the positive correlation ob-

served in this study (Table 2, Fig. 5). erations, we infer with Ang II activity) with AT1 recep-
tor]. As a matter of fact, in the rat it was shown thatThe components of the fibrogenic loop (i.e., TGF-b1,

Coll IV, and a-SMA) are all or in part positively corre- Ang II up-regulates AT1 receptors in tubular cells [33],
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Table 2. Correlations between renin-angiotensin system (RAS)
components in glomeruli and tubulointerstitium in
immunoglobulin A nephropathy (IgAN) patients

Glomeruli Tubulointerstitium

r value P value r value P value

ACE/renin �0.61 
0.008
ACE/AT1-R �0.47 
0.05
ACE/AT2-R �0.59 
0.01
ACE/TGF-b1 �0.51 
0.03
ACE/Coll IV �0.59 
0.01
ACE/a-SMA �0.90 
0.001
Renin/AT2-R �0.46 
0.05
Renin/TGF-b1 �0.47 
0.05
Agtg/renin �0.60 
0.009
Agtg/ACE �0.61 
0.008 �0.87 
0.001
Agtg/AT1-R �0.59 
0.01 �0.66 
0.02
Agtg/AT2-R �0.64 
0.005
Agtg/TGF-b1 �0.70 
0.001
Agtg/a-SMA �0.64 
0.03
Agtg/Coll IV �0.71 
0.01
AT1-R/AT2-R �0.68 
0.002 Fig. 5. Regulation of the renin-angiotensin system (RAS) and of the
AT1-R/TGF-b1 �0.52 
0.02 �0.64 
0.03 transforming growth factor-� (TGF-�) loops in glomeruli of immuno-
AT1-R/a-SMA �0.53 
0.03 globulin A nephropathy (IgAN) patients. Molecules whose levels were
AT1-R/Coll IV �0.53 
0.03 not determined are underlined; dotted lines indicate a statistically sig-
AT2-R/TGF-b1 �0.51 
0.03 �0.69 
0.01 nificant negative relationship, while solid lines express positive correla-
TGF-b1/Coll IV �0.85 
0.001 �0.63 
0.03 tions. Empty arrows indicate relationships that were not investigated.
TGF-b1/a-SMA �0.46 
0.05 Abbreviations are: Agtg, angiotensinogen; Ang I, angiotensin I, Ang

II, angiotensin II, ACE, angiotensin-converting enzyme; AT1-R, angio-Abbreviations are: Agtg, angiotensinogen; ACE, angiotensin-converting en-
tensin II type 1 receptor; AT2-R, angiotensin II type 2 receptor; �-SMA,zyme; AT1-R, angiotensin II type 1 receptor; AT2-R, angiotensin II type 2
�-smooth muscle actin.receptor; a-SMA, �-smooth muscle actin; TGF-b, transforming growth factor-�;

Coll IV, collagen IV.

back that translates in the enrollment of inflammatory
cells, and in the overactivation of the fibrogenic cascade.contrarily to what happens in glomerular cells [23, 24].
In glomeruli, the situation can be quite different sinceThere is no data on such a different regulation in the
the fibrogenic balance looks more strictly controlled be-

human kidney. The functional meaning of this opposite
cause of the inverse relationship between Ang II and

control is unknown; it may well deal with an integrated
AT1 receptor levels. Two order of findings in the tubulo-

activity of the RAS between the tubule and the glomeru- interstitial compartment support this view: (1) the ex-
lus rather than to some distinct and autonomous effect pression levels of TGF-b1, Coll IV, and a-SMA genes
in the two compartments. For instance, Cheng et al [33] are all significantly higher than in the glomerulus (Fig. 3);
suggested that the regulation of proximal tubule AT1 (2) a positive relationship between the histopathologic
receptors by Ang II may be important in modulating feature of “interstitial infiltrates” and Agtg, AT1 recep-
sodium reabsorption in the proximal tubule according tor, Coll IV, and TGF-b1 mRNAs can be observed at
to the systemic or intrarenal Ang II levels (i.e., depending odds with the glomerular level. These findings in the
on the status of fluid volumes). In the glomerulus, the tubulointerstitium probably reflect the mechanisms re-
different regulation between Ang II and AT1 receptors sponsible for the unfavorable evolution of renal disease.
could be relevant to the resetting of the tubuloglomeru- Indeed, one of the most robust predictors of poor prog-
lar feedback (i.e., the attenuation in tubuloglomerular nosis in human nephropathies, including IgAN, is inter-
feedback activity that contributes to increased natriuresis stitial fibrosis and inflammation rather than glomerular
and diuresis during expansion of extracellular fluid vol- damage [35].
ume and thus facilitates return of blood volume to the The relationship between TGF-b1 and RAS gene tubu-
initial euvolemic set point [34]). lointerstitial expression, and inflammatory infiltrates in

We speculate that such an opposite regulation in the IgAN patients should not be surprising. Actually Ang
RAS in the tubule versus the glomerulus due to a hierar- II increases monocyte adhesion to the endothelium [36]
chical superior function (control of euvolemia) may have and is chemotactic for neutrophil leukocyte [37] and
some undue consequences in pathologic conditions be- monocyte/macrophage [38, 39] and a role of the RAS in
cause of additional Ang II activities, namely the proin- renal inflammation has been proposed [40]. TGF-�1 is
flammatory and fibrogenic ones. With reference to this also chemotactic for monocytes [41]. Although we can-
point, the positive correlation in the tubulointerstitial not rule out the possibility that this relationship only

reflects the presence in the interstitium of inflammatorycompartment most likely corresponds to a positive feed-
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on whole homogenized renal cortex. However, in a dif-
ferent study by in situ hybridization, in five IgAN pa-
tients, the mesangium and tubules, as in other glomerular
diseases but differently from the normal kidney, were
found to express renin mRNA [45], a finding that is
confirmed by our observation. That particular study,
which used a semiquantitative grading of mRNAs de-
tected by in situ hybridization, disclosed that ACE and
Agtg were also overexpressed in both glomeruli and tu-
bules in respect to normal kidneys [45], again confirming
our data.

More recently, in isolated glomeruli from 22 glomeru-
lonephritic subjects (11 were IgAN patients), Wagner et
al [44], reported a reduced expression of the AT1 recep-

Fig. 6. Regulation of the renin-angiotensin system (RAS) and of the tor gene, corroborating data on whole homogenated cor-
transforming growth factor-� (TGF-�) loops in the tubulointerstitial tex in 37 glomerulonephritic patients (19 of which werecompartment of immunoglobulin A nephropathy (IgAN) patients. Mol-

IgAN). Although not significantly, an interesting trendecules whose levels were not determined are underlined; solid lines
express positive correlations. Empty arrows indicate relationships that toward higher AT1 receptor mRNA levels was observed
were not investigated. Abbreviations are: Agtg, angiotensinogen; Ang I, in the Wagner et al study [44] in patients on ACE inhibi-angiotensin I, Ang II, angiotensin II, ACE, angiotensin-converting

tors, supporting data obtained in experimental modelsenzyme; AT1-R, angiotensin II type 1 receptor; AT2-R, angiotensin II
type 2 receptor; �-SMA, �-smooth muscle actin. [48, 49]. The intrarenal down-regulation of the AT1 re-

ceptor gene possibly mirrors high intrarenal Ang II activ-
ity. The data by Lai et al [45], demonstrating in IgAN
patients, overexpression of glomerular renin and ACE

cells since these cells also express genes of the RAS
genes, and our findings also corroborate this interpreta-

[42, 43], the lack of such a relationship in glomeruli [44], tion.
and the in situ hybridization study by Lai et al [45] that In the normal nonfetal human kidney, AT2 receptors
did not report RAS gene expression in inflammatory have been recognized by in situ hybridization in the
cells in IgAN support the idea that, at least in reference adventitia of interlobular arteries in the renal cortex
to the RAS, interstitial infiltrates could be a phenomenon [50–52]. The localization of AT2 receptors in perivascu-
secondary to RAS activation. Lack of correlation be- lar interstitial structures in the kidney suggests that these
tween interstitial fibrosis and RAS or fibrogenic cascade receptors may play a relevant physiologic role in the
genes is probably explained by the fact that we investi- renal interstitium. In support of this notion, mice car-
gated the early stages of IgAN as demonstrated by the rying a targeted disruption of the AT2 receptor gene
modest severity of renal histopathologic characteristics develop a more extensive and severe interstitial fibrosis
in our patients (Table 1). Thus, we most likely explored after a renal injury than mice with intact AT2 receptors
a stage of the disease in which interstitial inflammation [32]. However, our findings disclose the existence of AT2
precedes fibrosis and sclerosis. This, however, can be receptors also in the glomerulus, a result not previously
foreseen by the positive correlation of interstitial infil- reported, thus suggesting that the functional balance be-
trates with Coll IV gene expression. tween AT1 receptors and AT2 receptors is also working

In control kidneys, both in the glomerular and tubulo- at adult human glomerular level at least in the diseased
interstitial compartments, RAS genes were only faintly kidney of IgAN. Although the AT2 receptor gene was
detectable (Fig. 4), so that it was not possible to perform expressed at a low level since we observed it at a rela-
any regression analysis. What we can say is that this tively high number of amplification cycles and four pa-
pattern of RAS activity is quite different from the one tients out of 20 were negative at the glomerular level
observed in diseased kidneys, namely in IgAN, where it (while all were positive in the tubulointerstitial compart-
appears as an activated system. That RAS is activated ment), it was only very scantly or not expressed at all
in IgAN (i.e., that Ang II peptide levels in the renal tissue in control kidneys (Fig. 4). This suggests that the AT2
are increased) was suggested by previous investigations receptor gene expression is a disease-dependent phe-
[46, 47]. So far, only few studies examined the expression nomenon as observed in the skin, myocardium, and the
of RAS gene components in diseased human kidney and central and peripheral nervous system [53]. However,
namely in IgAN. Wagner et al [14] surprisingly observed further studies (i.e., in situ hybridization studies) will be
low renal renin mRNA levels in seven non-ACE inhibi- necessary to definitely confirm this finding.
tor–treated patients with glomerulonephritis (three of Although it is easily comprehensible that the RAS is

activated in nephropathies with established reduction ofwhom had IgAN). In that study, the assay was performed
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