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Plastid genes are transcribed by two types of RNA polymerase in angiosperms: the bacterial type plastid-encoded
RNA polymerase (PEP) and one (RPOTp in monocots) or two (RPOTp and RPOTmp in dicots) nuclear-encoded
RNA polymerase(s) (NEP). PEP is a bacterial-type multisubunit enzyme composed of core subunits (coded for
by the plastid rpoA, rpoB, rpoC1 and rpoC2 genes) and additional protein factors (sigma factors and polymerase
associated protein, PAPs) encoded in the nuclear genome. Sigma factors are required by PEP for promoter recog-
nition. Six different sigma factors are used by PEP in Arabidopsis plastids. NEP activity is represented by phage-
type RNA polymerases. Only one NEP subunit has been identified, which bears the catalytic activity. NEP and
PEP use different promoters. Many plastid genes have both PEP and NEP promoters. PEP dominates in the tran-
scription of photosynthesis genes. Intriguingly, rpoB belongs to the few genes transcribed exclusively by NEP.
Both NEP and PEP are active in non-green plastids and in chloroplasts at all stages of development. The transcrip-
tional activity of NEP and PEP is affected by endogenous and exogenous factors. This article is part of a Special
Issue entitled: Chloroplast Biogenesis.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Compared to their cyanobacterial ancestors, chloroplasts have very
small genomes. Typically, the plastid genome (plastome) of embryo-
phytes comprises between 120 and 170 kb. Only 90 to 100 genes have
been identified, mostly with functions in photosynthesis or gene ex-
pression [1]. In addition to protein-encoding genes and genes for
rRNAs and tRNAs a large number of non-coding RNAs (including
many antisense RNAs) have recently been detected in plastids [2–9].
Many non-coding plastid RNAs are transcribed from own promoters
[8,10]. If these RNAswould be of functional importance, e.g. for the reg-
ulation of gene activities [7,11–15], the number of chloroplast genes
would increase above 100, but still remainmuch smaller than the num-
ber of genes in any cyanobacterial genome. Nevertheless, the transcrip-
tional apparatus of land plant chloroplasts is more complex than that of
bacteria. Bacteria have only one type of RNApolymerase to transcribe all
of their genes. Chloroplasts in algae and embryophytes possess a homol-
ogous bacterial-type multisubunit enzyme, but angiosperms and possi-
bly the moss Physcomitrella patens require in addition one or more
single-subunit phage-type RNA polymerases for the transcription of
chloroplast genes [16].
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Also RNA processing is more complex in chloroplasts than in bacte-
ria [17]. Several primary transcripts contain group I or group II introns
and require cis- and/or trans-splicing. Additionally, C-to-U (in ferns
and mosses also U-to-C) editing of the nucleotide sequences is needed
for the correct functioning of many chloroplast RNAs in land plants
[18]. Not only rRNAs and tRNAs, but also mRNAs are subjected to trim-
ming of their 5′ and/or 3′ ends, a process that is particularly important
for the maturation of RNAs transcribed from operons. Like in bacteria,
many chloroplast genes are organized in operons and transcribed
from one or more promoter(s) into polycistronic RNAs. Chloroplast op-
erons may contain genes belonging to different functional groups, like
genes for photosynthesis occurring together with genes encoding ribo-
somal proteins [1]. Most chloroplast primary polycistronic transcripts
are processed into smaller, monocistronic or oligocistronic RNAs before
translation [19], facilitating, at the levels of RNA processing, RNA degra-
dation and translation, the control of expression of genes that belong to
one and the same operon [17,20,21]. Part of the 3′ ends is protected
from RNase digestion by stem-loop structures [22]. Many of the mRNA
5′ and 3′ termini are determined by another mechanism: PPR
(pentatricopeptide repeat) proteins bind at specific sites (the later 3′
and 5′ ends) to the freshly transcribed RNAs, thereby protecting them
from degradation during the trimming by exonucleases [23,24]. The
PPRproteins likely protect their binding sites in thenucleotide sequence
since small RNAs representing the PPR protein binding sites are found
enriched in chloroplast or leaf RNA, where they contribute to the large
number of non-coding chloroplast RNAs mentioned above [24,25].

Differential expression of genes belonging to one and the same oper-
on can also be achieved by using additional promoters within the
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operon [e.g. 8,26,27], which may be accompanied by operon-internal
termination of transcription [27]. In Arabidopsis, a monocistronic rbcL
mRNA is generated by termination of transcription between rbcL and
its downstream neighboring gene accD, which is transcribed from
own promoters. Termination depends on the RHON1 protein and
seems to use an ATP-driven mechanism similar to that of the Rho pro-
tein in Escherichia coli. In the absence of functional RHON1, a polycis-
tronic mRNA accumulates, comprising the genetic information of rbcL,
accD, psaI, ycf4, cemA and petA [27]. Otherwise, the process of termina-
tion of transcription in plastids remains obscure. Both transcription
and RNA processing seem to take place in the nucleoids where proteins
involved in these processes are found together with the plastomic DNA
[28,29].

This review focuses on the components of the chloroplast transcrip-
tional machinery and their role during chloroplast biogenesis in angio-
sperms. Several recent reviews provide more details on the evolution
of chloroplast transcription including algae and lower land plants, on
plastid sigma factors, RNA polymerase-associated proteins, and on
later steps of gene expression in plastids like RNA processing and degra-
dation [16,17,20,22,29–41].

2. Chloroplast RNA polymerases

2.1. The bacterial-type multisubunit RNA polymerase PEP

Chloroplasts have inherited a multisubunit RNA polymerase from
their cyanobacterial ancestor. Homologues of the cyanobacterial RNA
polymerase core subunits α, β, β′ and β″ are encoded by the rpoA,
rpoB, rpoC1 and rpoC2 genes in the plastid genome. Consequently, this
enzyme was named plastid-encoded plastid RNA polymerase [PEP;
42]. Like in bacteria, rpoA, which encodes the α subunit of PEP, is
found in most land plants in a gene cluster together with several
genes encoding ribosomal proteins, while rpoB, rpoC1 and rpoC2,
encoding theβ,β′ andβ″ subunits, respectively, form a separate operon.
The rpoC gene coding for the ß′ subunit in other bacteria is split into
rpoC1 and rpoC2 in cyanobacteria and plastids [43–46]. The PEP β and
β′ subunits, but not the α subunit, may functionally substitute the ho-
mologous subunits of the E. coliRNApolymerase [47,48]. PEP is sensitive
to tagetitoxin, an inhibitor of bacterial transcription [49], underpinning
the high degree of conservation between the plastid-encoded and
eubacterial RNA polymerases. Like the bacterial polymerase, the chloro-
plast core enzyme requires a sigma (σ) factor for promoter recognition
and initiation of transcription [50] (Fig. 1). In contrast to the plastome-
encoded core subunits, the chloroplast sigma factors have their genes in
the nuclear genome. Land plants and the red algae, Cyanidium caldarium
and Cyanidioschyzon merolae, possess two or more sigma factor genes
Fig. 1. On the left: PEP is composed of the core subunits α (RpoA), ß (RpoB), ß′ (RpoC1) u
promoter. Typical PEP promoters have conserved sequence elements at positions −10 and
logues, the C-terminal domains of the two alpha subunits may interact with DNA and transc
subunits. On the right: PEP is associated with numerous additional nuclear-encoded protein
chloroplasts. Etioplasts use a less complex PEP, probably similar to the enzyme shown on th
[51–53]. The green alga Chlamydomonas reinhardtii, however, has only
one sigma factor [54]. The plant sigma factors belong to the bacterial
σ70 family [55]. The function of higher plant sigma factors has most in-
tensively been studied in Arabidopsis. Arabidopsishas six different sigma
factors, SIG1–SIG6. Their specific functions in chloroplast transcription
have not been completely elucidated yet. However, analyses of knock-
out mutants have provided first insights (Table 1) for reviews including
also information about sigma factors in plants other than Arabidopsis
[see 38,55–57].

PEP is located in the nucleoids [28–30,39,41], the DNA containing re-
gions of the chloroplasts, and is, independently of its binding to DNA, as-
sociated with membranes [73]. PEP can be isolated from plastids as a
soluble enzyme, which synthesizes RNA only if DNA is added to the
assay [74,75], or as insoluble transcriptionally active chromosome
(TAC) [76–78]. The TAC contains the PEP subunits, DNA (used as endog-
enous template for transcription), RNA, and a large number of other
proteins, called pTACs [79, reviewed in 29,30,39,40]. The proteins asso-
ciatedwith the core subunits of PEP (the PEP-associated proteins, PAPs)
in soluble PEP preparations [80–82] are also identified as components of
the larger TAC complex [79] (Fig. 1). Studies on knockout mutants of
PAP genes in several labs support the view that the PAPs are required
for transcription and its regulation [reviewed in 30,40,41]. Intriguingly,
whatever PAP gene was inactivated, the resulting mutant phenotype
was very similar: white/ivory leaves, missing or low PEP activity, nor-
mal or stimulated transcription of genes transcribed by the nuclear-
gene encoded plastid RNA polymerase, NEP, resembling the phenotype
of mutants lacking PEP due to knock-out mutagenesis of a chloroplast
rpo gene. Therefore, Pfalz and Pfannschmidt [30] suggested that, if any-
one of the PAPs is lacking, either the generation of the transcriptionally
active PEP is interrupted at an early stage of chloroplast development or
the intermediate complex is unstable, leading to the observed PEP defi-
ciency. The TAC complex contains proteins in addition to the PAPs,
which are supposed to function in gene expression or to haveDNA relat-
ed functions like replication and anchoring the DNA to membranes.
Thus, the TACmay be composed of subdomainswith different functions
[29]. Additional factors involved in transcription, RNA processing and
the regulation of gene expression were found in nucleoid preparations
[reviewed in 29,30,39–41,83].

2.2. The phage-type RNA polymerase NEP

As the sigma factors, PAPs and pTACs are nuclear-gene encoded, the
function of PEP is under nuclear control. Angiosperms (and possibly the
moss P. patens, [84]) have established an additional layer of nuclear con-
trol over plastid gene transcription by the evolution of the nuclear-
encoded plastid polymerase, NEP. NEP evolved by duplication(s) of
nd ß″ (RpoC2) and a sigma factor (σ). The sigma factor is required for binding to the
−35 upstream of the site of transcription initiation (arrow). Like their bacterial homo-
ription factors, whereas the N-terminal domains may support the assembly of the core
factors (PAPs). PAPs have no bacterial homologues. They are essential for PEP activity in
e left [75,80,82].



Table 1
Function of Arabidopsis sigma factors.

Factor Function Reference

SIG1 Most abundant sigma factor; accumulates later
during leaf development; binds to promoters of
photosystem I and II genes; acclimation of
photosystem I to changing light qualities; involved in
WRKY3-mediated response to biotic stress

[57–61]

SIG2 Transcription of several tRNAs (including trnE);
transcription of psaJ; transcription of atp operons;
plastid-to-nucleus signaling

[26,62–65]

SIG3 Transcription of psbN and atp genes; transcription of
antisense RNA to psbT

[26,66]

SIG4 Transcription of ndhF [67]
SIG5 Stress (osmolarity, temperature, high light) -induced

transcription; ABA-induced transcription;
transcription of psbD from the blue-light-responsive
promoter (BLRP); circadian regulation; embryo
development

[36,68,69,148,161]

SIG6 [26,65,70–72]
Transcription early during chloroplast biogenesis;
transcription of atp genes; interacts with PPR protein
DG1; plastid-to-nucleus signaling
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the nuclear gene encoding themitochondrial RNA polymerase, which is
not a bacterial-type multisubunit polymerase, but an enzyme related to
the single-subunit phage-type RNA polymerases [85]. NEP is encoded
by the RPOT (RNA polymerase of the phage T3/T7 type) gene(s) [86].
The nuclear-gene encoded plastid RNA polymerase is represented by
one type (RPOTp; in the basal angiosperm Nuphar and in Poacea;
other monocots have not been checked) or two (RPOTp and RPOTmp;
in eudicots) types of phage-type RNA polymerases. RPOTp is exclusively
localized to plastids, whereas RPOTmp is participating in the transcrip-
tion of plastid and mitochondrial genes [85-91].

Both PEP and NEP are essential for chloroplast transcription. Knock-
out mutants of PEP show an albino phenotype, lack photosynthesis and
can only be grown on sugar-containing medium [e.g.,87,88]. Knocking
out the RPOTp or RPOTmp genes in Arabidopsis yields plants with de-
layed chloroplast biogenesis, altered leaf morphogenesis, and retarded
growth (more pronounced in rpotp mutants), while rpotp/rpotmp dou-
ble mutants exhibit a severe phenotype characterized by chlorophyll
deficiency and a complete arrest of growth early in development [see
below; 89–91]. The differences between the phenotypes of the single
mutants vs. the double mutant indicate partially overlapping functions
of RPOTp and RPOTmp in chloroplast gene transcription.

In contrast to the multi-subunit PEP, the phage-type enzymes are
composed of only a single catalytic subunit (Fig. 2). The phage T7
RNA polymerase is a genuine single-subunit enzyme; a single protein
Fig. 2.NEP (RPOTp inmonocots, RPOTp and RPOTmp in eudicots) is a phage-type RNApolymera
supportNEP inpromoter recognition.MostNEP promoters have the conserved YRTAmotif a few
the ß subunit of PEP is one of the few genes that are exclusively transcribed by NEP.
performs the entire process of transcription from promoter recogni-
tion until termination, regardless of whether the DNA template is lin-
ear, circular or supercoiled [92]. Similarly, the Arabidopsis RNA
polymerases RPOTp, RPOTm (the mitochondrial enzyme) and to a
lesser extent RPOTmp are able to correctly recognize promoters, tran-
scribe the gene, and stop at a (bacterial) terminator without addition-
al factors in in vitro assays; however, the DNA template has to be in
the supercoiled conformation [93]. Yet, if the base sequence of the
promoter is altered to prevent base pairing, i.e., if the promoter region
is already in a partially open state, the RPOT polymerases are capable
of correctly initiating transcription in vitro on linear double-stranded
DNA templates (A. Bohne and T. Börner, unpublished data). Most like-
ly, the plant phage-type RNA polymerases need, similar to the related
phage-type RNA polymerases in yeast and human mitochondria
[94–96], additional factors to melt the DNA duplex at promoter re-
gions in organello. Such factors have not been identified in plants
[97]. None of the many proteins associated with PEP has been found
to interact with NEP. Similar to the high-mobility-group protein
TFAM in mammalian mitochondria [96], one or more of the proteins,
that bind nonspecifically to DNA and play a role in packaging of chlo-
roplast or mitochondrial DNA might assist in promoter recognition
and facilitate the opening of the double helix at the site of transcrip-
tion initiation by the RPOT polymerases [98] (Fig. 2).

So far studied, PEP andNEP transcribe plastid genes at the same time
and in the same tissues (see below). Interactions of both types of RNA
polymerases might occur but have not been reported yet. Since plastid
DNA is supposed to be exclusively located in nucleoids, NEP should be
found, like PEP, in the nucleoid. However, RPOTp and RPOTmp have
not been co-purified with PEP and have not been detected in the prote-
ome of plastid nucleoids [28–30,41]most likely because the phage-type
polymerases aremuch less abundant than the PEP subunits. Specific an-
tibodies detect RPOTp and RPOTmp in the stroma and in membrane
fractions of plastids. The share of membrane-bound RPOTp and
RPOTmp increases during leaf development [99,100, J. Sobanski and T.
Börner, unpubl. data]. A RING H2-protein mediates the binding of
RPOTmp to the stromal side of the thylakoid membrane in spinach
[100]. The way RPOTp binds to the membrane is not known yet.

2.3. NEP and PEP promoters

Three types of NEP promoters have been identified: Type-Ia, Type-Ib,
and Type-II (or class Ia, class Ib, class II) [reviewed in 101,107]. Type-Ia
NEP promoters are characterized by a conserved YRTa core motif a few
nucleotides (nt) upstreamof the transcription start site, as found also in
plant mitochondrial promoter regions [85] (Fig. 2). The Type-Ib NEP
promoters have an additional conserved motif, the GAA-box, about 18
se. NEPmaypossibly act as a single-subunit enzyme. It is supposed that protein factors (TF)
nucleotides upstreamof the site of transcription initiation (arrow). The rpoB gene enoding
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to 20 nt upstreamof the YRTamotif. Type IIb promoters have been iden-
tified in the tobacco plastome; only a few potential Type-IIb promoters
have been described inmonocots [101]. Experimental data supporting a
functional role of the GAA motif exist solely in the case of the Type-IIb
promoter of the tobacco atpB gene [reviewed in 107]. The GAA sequence
has not been detected in a regular distance from the YRTa box in a
plastome-wide analysis of transcription in barley plastids suggesting
that this promoter type may not be used by NEP in monocots [8].
Type-II comprises all promoters without the YRTa box; also no other
consensus motif has been identified near the site of transcription initia-
tion [85]. About 30% of the NEP promoters in barley belong to Type-II
[8]. Best investigated are the tobacco clpP Type-II promoter, positioned
−5 to +25 with respect to the transcription initiation site [102], and
the Pc promoter of the rrn operon. In spinach, as well as during the
early developmental stages of Arabidopsis chloroplasts, NEP initiates at
the Pc promoter. A transcription factor, CDF2, is involved in the
development-dependent regulation of Pc activity in spinach [103,104].
The ribosomal protein RPL4 was co-purified with NEP and CDF2 and
suggested to play a role in transcriptional regulation in addition to its
function in the ribosome [105].

Many PEP promoters resemble bacterial σ70 promoters character-
ized by−10 and−35 consensus sequencemotifs [86,106,107]. Howev-
er, a number of PEP promoters lack the−10 or the−35 elements, a few
even both. In barley chloroplasts, the −10 element (TAtaaT) is located
3–9 nt upstream of the transcription start site; the −35 box (ttGact)
is found a further 15–21 nt upstream [8]. Only a few regulatory cis-
elements and trans-factors have been described [reviewed in 107],
among them a 22-bp sequence, AAG box, regulating the blue light-,
stress-, and ABA-responsive promoter of psbD by interaction with
PTF1, a positive regulator [108,109], and with SIG5 [68,110,111,148;
M. Yamburenko et al., unpubl.]. Mainly changing and modifying the
sigma factors might achieve differential transcription of plastid genes
by PEP.

A few tRNAs might be transcribed from gene-internal promoters as
known from tRNA genes in the nuclear genome. However, such internal
promoter elements and the polymerase(s) capable of recognizing them
have not been elucidated yet. For a more detailed description of chloro-
plast promoters and their regulation see [107].

3. The roles of NEP and PEP in different plastid types and during
chloroplast biogenesis

3.1. Division of labor between different plastid RNA polymerases

Analyses of plants lacking PEP activity provided insight into the divi-
sion of labor between PEP and NEP. Hajduckiewicz et al. [42] investigat-
ed plastid transcription in a ΔrpoB mutant of tobacco and classified
plastid genes and operons into those, which are transcribed by PEP
(class I), by NEP and PEP (class II) or only by NEP (class III). They pro-
posed, based on the information available at the time, that only PEP
transcribes photosystem I and II (psa and psb) genes, most other
genes have both NEP and PEP promoters while NEP alone transcribes
a few house-keeping genes (rpoB, accD, ycf2). A recent plastome-wide
study on the promoter usage of plastid genes/operons in barley
(Hordeum vulgare L.) revealed that only rpoB (accD is a nuclear gene in
barley) has exclusively NEP promoters; most other genes were found
to be transcribed by NEP in a mutant lacking PEP, i.e. have PEP and
NEP promoters, including genes for photosystem I and II proteins and
the rbcL gene [8]. An active rbcL NEP promoter was also observed in
Arabidopsis leaves [27]. Most of the NEP promoters detected in white,
PEP-lacking leaves were inactive in green leaves with PEP activity [8].
Thus, PEP is the predominating RNA polymerase in green leaves. It syn-
thesizes most species of mRNA, transcribes most tRNA genes, and plays
amajor role in rRNA synthesis. But NEP remains essential in chloroplasts
for rpoB (forming an operon with rpoC1 and C2), accD (in dicots), and
participates, in some cases more so than PEP, in the transcription of a
number of genes including clpP, atpB, atpI, several genes coding for ribo-
somal proteins and tRNAs, and, in dicots, ycf1 and ycf2 [e.g. 8,42,86,104,
112–115].

There exist only a few data supporting the idea that theremight also
be a division of labor between the two nuclear-gene encoded phage-
type polymerases, RPOTp and RPOTmp. Most likely, RPOTp and
RPOTmp display their major activities in different tissues and develop-
mental stages. In Arabidopsis, the activity of the RPOTmp promoter
(coupled with GUS) was detected mainly in dividing and young, non-
green cells of different organs, whereas the RPOTp promoter activity
was observed in green, photosynthetically active tissues [116]. More-
over, RPOTmp is targeted to both chloroplasts and mitochondria and
the distribution of the enzyme between the two organelles could theo-
retically be changed by a regulatory mechanism: The RPOTmp mRNA
bears two potential start codons for translation. Only the larger protein
is dual-targeted to both organelles whereas the shorter protein would
be targeted exclusively to mitochondria [117]. Start-codon usage
could be controlled via sequences in the 5′ UTR [118], but evidence for
this type of regulation is lacking. In addition to thedeviatingdistribution
of RPOTp and RPOTmp among different tissues and developmental
stages there is some data pointing to different promoter usage by the
two polymerases. So far studied,most of theNEP promoters are, howev-
er, still active in Δrpotp and Δrpotmp plants indicating that both RPOTp
and RpoTmp can recognize most NEP promoters [104,113–115]. Typi-
cally, plastid genes/operons have more than one promoter [e.g. 8,68,
71,104,113]. RPOTmp transcribes the gene cluster for ribosomal RNA
from the so-called Pc promoter (see above) upstream of rrn16 in
Arabidopsis immediately after seed imbibition. Using another promoter,
PEP is also active in rrn16 transcription at this early point of develop-
ment, while at later stages only the PEP promoter becomes responsible
for rrn transcription [9,104]. RPOTp cannot replace RPOTmp at this site,
although it is present in Δrpomtp [104]. Similarly, the strong NEP pro-
moter that drives transcription of the essential ycf1 gene in wild-type
dicot chloroplasts is not used in very young seedlings ofΔrpotp, indicat-
ing that also RPOTp may play a role at this early stage of development
and cannot be substituted by RPOTmp [115].

3.2. NEP and PEP are active during all phases of chloroplast development
and in non-green plastid types

3.2.1. Transcription in non-green plastids
Based mainly on the NEP-dependent transcription of the rpoB oper-

on and other housekeeping genes and on the role of PEP in the tran-
scription of photosynthesis genes, it was previously hypothesized that
NEP would be the principal RNA polymerase activity in non-green tis-
sues and in the early non-green stages of chloroplast development
[86]. According to this scenario, only NEP would be active at the begin-
ning of chloroplast biogenesis and be responsible, by transcription of the
rpo genes and other housekeeping genes, for the appearance of PEP. PEP
in turnwould transcribe the photosynthesis genes, the activity of which
is needed during the greening process and later in the photosynthetical-
ly active chloroplasts [119]. These assumptions have not been verified.
There is evidence for the presence of PEP and NEP (RPOTp in monocots,
RPOTp and RpoTmp in eudicots) at all stages of leaf development and in
non-green tissues in roots, seeds, fruits and tubers, though with chang-
ing activities; gene expression is distinctly lower in non-green plastids
vs. chloroplasts. The activity of both types of RNA polymerases in non-
green tissues is not surprising since not only NEP but also PEP tran-
scribes essential housekeeping genes (e.g., tRNA genes). Even tran-
scripts of photosynthesis genes have been observed in non-green
plastids [e.g. 8,9,112,120–135].

Arabidopsis roots contain low amounts of the PEP-dependent tran-
scripts psaA and psbA (and the encoded proteins) as well as the NEP-
synthesized rpoB mRNA and mRNAs for all sigma factors indicating
PEP and NEP activity in wild-type roots [123]. Overexpression of
GOLDEN2-LIKE transcription factors (GLKs) leads to chloroplast
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development in non-photosynthetic organs. The greening of roots in
GLK overexpressors of Arabidopsis was accompanied by an increase of
many nuclear mRNAs for chloroplast proteins including also the SIG
transcripts as well as of NEP- and PEP-dependent plastid transcripts
[123]. Both NEP and PEP are active in amyloplasts of potato tubers
(that never have passed a phase of photosynthetic activity), although
the transcriptional activity of all tested genes (proposed to be tran-
scribed by PEP, NEP or both polymerases) is much lower than in chloro-
plasts [124, also for references for further studies on amyloplasts]. Also
red tomato fruits use NEP and PEP to transcribe chromoplast genes,
respectively, as deduced from promoter usage [125]. PEP activity
might be somewhat more downregulated than NEP activity in red fruits
relative to leaves; however, the evidence for this conclusion is weak
[125].

3.2.2. Chloroplast biogenesis during seed development and germination
Already dry seeds contain many RNAs transcribed from plastid

genes and from nuclear genes encoding chloroplast proteins including
several that are involved in photosynthesis [120,127–131]. The levels
of several nuclear transcripts for plastid proteins rise quickly after imbi-
bition [129–131], possibly preceding the increase of plastid transcript
levels [128]. During seed formation, the embryo of several dicot plants
including Arabidopsis develops chloroplasts with a specific type of pho-
tosynthesis in cotyledons [126], a developmental process accompanied
by the expression of most or all chloroplast genes and proposed to be
dependent onNEPand PEP activity [132]. These chloroplasts dedifferen-
tiate at the end of seed maturation into the smaller non-green plastids
seen in the embryonic tissues of dry seeds. Allorent et al. [127] have
studied plastid RNAs and proteins in the different phases of Arabidopsis
seed formation including dry seeds. Plastid-gene encoded photosynthe-
sis proteins and their mRNAs (presumably PEP-transcribed) were most
abundant in the green photosynthetically active chloroplasts and had
very low levels in dry seeds, whereas the steady-state levels of (most
likely NEP-transcribed) rpomRNAs remainedmore or less stable during
seed development. The (nuclear) transcripts for RPOTp, RPOTmp, SIG2
and SIG4 showed even higher levels in dry seeds than in the preceding
steps of seed development. Specific antibodies could also detect compa-
rable amounts of RPOB, RPOTp and RPOTmp in green stages and dry
seeds of Arabidopsis [120,127], a precondition for the start of transcrip-
tion in plastids shortly after the start of seed imbibition. Indeed, NEP and
PEP polymerases were reported to be not only present but also active
during imbibition of the seeds deduced from increasing steady-state
levels of plastid RNAs and effects of tagetitoxin, an inhibitor of PEP but
not NEP [9,120]. Furthermore, the analysis of promoter usage indicated
a much stronger transcription of rrn16 by PEP compared to NEP (most
likely RPOTmp) right from the start of germination [9,104]. Plastid tran-
scripts of many house-keeping genes including rpoA, rpoB, rpoC1 and
rpoC2, and transcripts of several nuclear SIG and the RPOTp, RPOTmp
genes showed enhanced levels already after the 72 h stratification peri-
od (4 °C, darkness) [9,120]. At this point of development, PEP and NEP
may contribute more or less equally to the transcriptional activity of
the plastids. Mustard etioplasts contain a form of soluble PEP (PEP-B),
which is built up mainly from the core subunits. After illumination, ac-
cessory proteins, the PAPs/pTACs, are added to form the more complex
PEP (PEP-A) of chloroplasts [75,80,82] (Fig. 1). PEP-B or a similar form
may be active in seeds during stratification. The levels of mRNAs for
photosynthesis proteins started to rise shortly after transfer of the
seeds to higher temperature and light [9,109]. This should be the
phase of chloroplast biogenesis (still in non-green plastids) when PEP
becomes the predominating transcriptase in plastids, perhaps accompa-
nied by a transformation of PEP from form B to formA. However, formA
could already be present in dry Arabidopsis seeds since embryogenesis
includes a period with photosynthetically active chloroplasts and ex-
pression of several genes encoding pTACs [132].

Clearly, PEP activity increases during chloroplast biogenesis. NEP ac-
tivitymay only shortly increase: early during germination of Arabidopsis
and rice seeds, a peak of RPOTp expression was observed [127,133]
paralleled by higher transcript levels of NEP dependent genes followed
by a decrease in NEP activity [127,133,134]. There is, however, no indi-
cation for a complete switch from NEP to PEP in plastid gene transcrip-
tion during the greening process or later in leaf development. NEP
remains active, transcribes rpoB, accD and participates in the transcrip-
tion of further genes until senescence [122]. It has been found that plas-
tid tRNAGlu binds to and inhibits the activity of RPOTp in vitro [134]. This
tRNA is not only involved in translation but plays an additional role in
the synthesis of 5-aminolevulinic acid, a chlorophyll and heme precur-
sor. It is massively synthesized by PEP during the greening process.
The observed inhibition of NEP by this tRNA in in vitro assays was pro-
posed to reflect a regulatory mechanism, which causes a switch from
NEP to PEP transcription during chloroplast biogenesis [134]. Yet, the
decreased NEP activity observed at early steps of chloroplast biogenesis
seems to be caused by a reduced amount of RPOTp protein [127]. More-
over, the reported inhibition of NEP by tRNAGlu is not specific; also other
tRNAs inhibit RPOTp, RPOTmp and even the mitochondrial RNA poly-
merase RPOTm. If this tRNA effect on phage-type enzymes plays any
regulatory role then it might be the inhibition of transcription under
conditions of blocked translation with an abundance of tRNAs, but not
the suppression of NEP activity during chloroplast biogenesis or leaf de-
velopment [136].

As described above, the cotyledons of Arabidopsis and several other
dicots undergo a phase of chloroplast development followed by chloro-
plast dedifferentiation to small non-green plastids during embryogene-
sis. The presence of NEP and PEP in dry seeds and at the start of
germination is probably not a special case caused by the preceding
phase of photosynthetic activity as indicated by the following observa-
tion. During the development of true leaves, the biogenesis of chloro-
plasts starts from proplastids that have never before passed a phase of
photosynthetic activity. The existence of NEP or PEP in these proplastids
has not been directly shown yet, but NEP and PEP transcripts and the
nuclear RPOTp mRNA could be detected in the youngest leaf cells of
rice and barley bearing only non-green plastids [133,135].

A massive replication of plastid DNA is observed during chloroplast
biogenesis [e.g. 137–139], whichmost likely is a precondition for the in-
crease in gene expression [140–142]: DNA amount, transcriptional
activity, transcript levels and protein synthesis increase during chloro-
plast biogenesis.

3.2.3. Transcription during leaf development
After germination, the plastid transcriptome profile (analyzed by

macroarrays) of Arabidopsis seedlings changed during greening of the
cotyledons, but remained then relatively stable even if compared with
the chloroplast transcriptome of rosette leaves of 3-week-old plants
[9]. This is in agreement with the results of a study on transcript levels
and transcriptional activities in Arabidopsis chloroplasts from cotyle-
dons, young and old leaves [122]. Both PEP and NEP promoters were
used at those developmental stages; all investigated genes were more
active in young compared to old leaves [122].

A drop in transcription byNEP and PEP after the establishment of the
photosynthetic apparatus in chloroplasts is observed in both monocots
and dicots and seems to be part of the developmental program [e.g. 122,
139,143,144]. It has recently been proposed that the mutagenic action
of reactive oxygen species may damage chloroplast DNA during leaf
development to an extent that the genes become non-functional. The
transcriptional activity observed at later stages of leaf development
would not reflect the synthesis of RNA for gene expression but generate
non-coding RNAs involved in posttranscriptional processes and/or
transcription-coupled DNA repair [145]. At first glance, this hypothesis
is in accord with the observed decrease in transcription during leaf de-
velopment. However, several facts contradict the assumed presence of
non-functional genes and non-functional RNAs in mature chloroplasts.
Sequencing analyses of the plastome or the chloroplast transcriptome
have never reported a conspicuous accumulation of mutated genes
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and transcripts. Chloroplast RNAs show generally sharp bands of identi-
cal size in RNA blot hybridizations, regardless of their origin, young or
old, dark- or light-grown leaves, which is not expected under the condi-
tion of progressing damage of their genes. Moreover, there is still sub-
stantial transcriptional activity in old leaves. The transcriptional
activity of several chloroplast genes was even higher in one-month-
old rosette leaves of 50-day-old Arabidopsis plants than in cotyledons
of 10-day-old seedlings [122]. Further, it is unlikely that the psbD gene
encoding the D2 protein of the photosystem II reaction center could
somehow escape the proposed mutagenic destruction. This protein
has to be continuously synthesized for repair of light-caused damage.
This is certainly the reason why psbD transcription increases in spite
of the decrease in transcription of most other chloroplast genes during
leaf development [e.g., 146–148]. Thus, there is evidence for a continu-
ous correct transcription of the chloroplast genes during thewhole time
span of leaf development.

Also the DNA content remains stable in mature chloroplasts until
senescence in Arabidopsis and most other investigated plants [122,
139,149,150]. The transcriptional activity, however, may change,
under the influence of internal and external factors, though not nec-
essarily accompanied by corresponding changes of RNA and protein
levels [discussed in 38,85,151,152]. It has been known since the early
studies on gene expression in chloroplasts, that DNA content, tran-
scription, transcript levels and the use of transcripts in translation
may be up- and/or downregulated independently of each other
[151,152]. Chloroplast transcription is under control of the circadian
clock [36,153] and responds to changes in mitochondrial respiration
[154]. In particular light effects on plastid transcription have been
studied extensively; they play a role in chloroplast biogenesis and
during further stages of chloroplast development [reviewed in 85,
119,151,155]. Light, cytokinin and growth at higher temperature
stimulate, several stress conditions and the hormones methyl
jasmonate (JA), abscisic acid, gibberellic acid and auxin inhibit the
transcription of many chloroplast genes in cotyledons and leaves
[147,148,156–159] (Fig. 3). The different factors affect chloroplast
transcription not independently from each other. For example, abi-
otic and the (in the context of chloroplast transcription not yet stud-
ied) biotic stresses may act via altered hormone levels; light
interferes with the action of ABA and cytokinin; hormone effects de-
pend on the age and developmental state of leaves [147,148,159]. It
remains to be studied, to which extent these factors control chloro-
plast biogenesis via transcription of plastid genes and what are the
links of the involved signal transduction chains. In part, plastid tran-
scription is controlled via changing amounts of RNA polymerases, i.e.
via synthesis and degradation of the enzymes. But stimulation and
inhibition of PEP and NEP activities is also involved. Phosphorylation
Fig. 3. Endogenous and exogenous factors known to affect transcription in plastids. Al
of components of the PEP-dependent transcription machinery has
been reported, mainly in the context of effects of a changing redox
state [57,58,85,107,155]. Moreover, ppGpp, known as ‘alarmone’ in
bacteria, is active in the stress-induced inhibition of PEP activity [156,
158]. However, nothing is known about the way in which NEP activ-
ity is regulated.

4. Concluding remarks

Transcription in plastids is controlled by the nucleus. Although
plastids possess genes for the core subunits of a bacterial-type RNA
polymerase (PEP), this enzyme can only correctly initiate transcrip-
tion together with one out of several nuclear-encoded sigma factors.
At least in photosynthetically active chloroplasts, PEP is associated
with a number of further nuclear-encoded proteins that are also es-
sential for full transcriptional activity and chloroplast biogenesis. In
addition, plastid transcription in angiosperms needs a second, fully
nuclear-encoded RNA polymerase related to the transcriptases of bac-
teriophages (NEP). Since NEP transcribes the genes of the PEP core
subunits, existence and activity of PEP depend on nuclear genes.
Thus, the transcription of plastid genes during chloroplast biogenesis
follows a nucleus-controlled developmental program. Two enzymes,
RPOTp and RPOTmp, represent NEP activity in eudicots. There is
only little information about the division of labor between RPOTp
and RPOTmp. NEP and PEP seem to be present and active during all
steps of chloroplast biogenesis and in green and non-green tissues.
Both PEP and NEP show highest activity during the formation of the
photosynthetic machinery. PEP activity increases drastically during
the greening process and is the predominating transcriptase in ma-
ture chloroplasts. Both PEP and NEP remain active during the entire
development of leaves.

Many major questions concerning chloroplast transcription remain
unanswered; a few of them are:

Chloroplasts of lower plants including algaewith the possible excep-
tion of Physcomitrella transcribe their genes only by PEP. What ad-
vantages do angiosperms have from using a second type of plastid
RNA polymerase and eudicots from using even two phage-type
enzymes?
What is the role of the many protein factors associated with PEP
(“PAPs”, “pTACs”)?
Which factors help NEP to recognize their promoters? How are pro-
moters recognized that lack detectable consensus sequences?
How are PEP and NEP activated and deactivated?
How can plastid RNA polymerases terminate transcription?
l factors stimulate (↑) and/or inhibit (T) both PEP and NEP (modified from [85]).
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If plastid gene expression is disturbed at early stages of chloroplast
biogenesis, the defect is signaled to the nucleus and interrupts chloro-
plast development by changing the expression pattern of hundreds or
even thousands of nuclear genes coding for chloroplast and non-
chloroplast proteins [32,65,160]. How does this plastid-to-nucleus sig-
naling operate and how is the complex change in nuclear transcription
achieved?

The technical means to answer these questions are available.
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