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Abstract

This paper proves that the maximum order-index of n×n matrices over an arbitrary commutative incline
equals (n − 1)2 + 1. This is an answer to an open problem “Compute the maximum order-index of a member
of Mn(L)”, proposed by Cao, Kim and Roush in a monograph Incline Algebra and Applications, 1984, where
Mn(L) is the set of all n × n matrices over an incline L.
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1. Introduction

Inclines are additively idempotent semirings in which products are less than or equal to either
factor. Boolean algebra, fuzzy algebra and distributive lattice are examples of inclines. Inclines
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and incline matrices have good vistas of applications in diverse areas such as automata theory,
graph theory, medical diagnosis, informational systems, complex systems modelling, decision-
making theory, dynamical programming, control theory, nervous system, clustering and so on.
Incline algebra and incline matrix theory have been extensively studied by many authors [1–17]
(inclines are also called simple semirings, refer to [7] for example).

Cao et al. [3] introduced the notion of the order-index of an element in a partially ordered
semigroup, and proposed an open problem “Compute the maximum order-index of a member of
Mn(L)”, where Mn(L) is the set of all n × n matrices over an incline L (see the first problem of
paragraph 5.5 in [3]).

In this paper, we prove that the maximum order-index of n × n matrices over an arbitrary
commutative incline equals (n − 1)2 + 1. This is an answer to the above open problem.

2. Preliminaries

Definition 2.1 [3]. A nonempty set L with two binary operations + and · is called an incline if it
satisfies the following conditions:

(1) (L, +) is a semilattice,
(2) (L, ·) is a semigroup,
(3) x(y + z) = xy + xz and (y + z)x = yx + zx for all x, y, z ∈ L,
(4) x + xy = x + yx = x for all x, y ∈ L.

In an incline L, define a relation � by x � y ⇔ x + y = y. It is easy to see that � is a
partial order on L and that for any x, y ∈ L, the element x + y is the least upper bound of
{x, y} ⊆ L. It follows that xy � x and yx � x for all x, y ∈ L and that for any x, y, z ∈ L,
y � z implies xy � xz and yx � zx. If an incline L has an additive identity 0, then 0 is called
the zero of L. Then x + 0 = 0 + x = x, 0 � x and 0x = x0 = 0 for all x ∈ L. If an incline L

has a multiplicative identity 1, then 1 is called the identity of L. Then x1 = 1x = x, x � 1 and
1 + x = x + 1 = 1 for all x ∈ L. By an incline with zero and identity we mean an incline L that
has both zero and identity satisfying 0 /= 1. An incline L is said to be commutative if xy = yx

for all x, y ∈ L.
The Boolean algebra ({0, 1}, ∨, ∧) is an incline. In general, every distributive lattice is an

incline. The fuzzy algebra ([0, 1], ∨, T ) is an incline, where T is a t-norm. The tropical algebra
(R+

0 ∪ {∞}, ∧, +) is an incline, where R+
0 is the set of all nonnegative real numbers.

From now on, L always denotes any given commutative incline with zero and identity, n

denotes any given positive integer greater than or equal to 2, n stands for the set {1, 2, . . . , n},
and [n] denotes the least common multiple of integers 1, 2, . . . , n. For a nonnegative integer l, l0

denotes the set of integers 0 through l.
We denote by Mn(L) the set of all n × n matrices over L. Given A = (aij ) ∈ Mn(L) and

B = (bij ) ∈ Mn(L), we define the product A · B ∈ Mn(L) by A · B :=( ∑
v∈n aivbvj

)
. And we

denote A � B when aij � bij for all i, j ∈ n.
Then (Mn(L), �, ·) forms a partially ordered semigroup, i.e. for all A, B, C, D ∈ Mn(L),

(1) (AB)C = A(BC),
(2) A � B and C � D ⇒ AC � BD.
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Definition 2.2 [3]. Let S be a partially ordered semigroup and a ∈ S. If there are some positive
integers k and d satisfying ak+d � ak , then the least such positive integers k and d are called the
order-index of a and the order-period of a, respectively.

In this paper, the order-index of a matrix A ∈ Mn(L) is denoted by oi(A).

3. Reduction of walks

Let V : v0, v1, . . . , vl be a sequence of positive integers such that vi ∈ n for all i ∈ l0. We call
V a walk on n, l(V ) := l the length of V , and vi (i ∈ l0) the terms of V . Below, the walk on n

shall be called the walk briefly. When l � 2, the walk v1, . . . , vl−1 is called the interior of V . We
call V a closed walk if l � 1 and v0 = vl . A closed walk V is called a cycle when vi = vj (i < j)

implies i = 0 and j = l.
If V includes two closed walks T1 : vi, . . . , vj and T2 : vi′ , . . . , vj ′ , and if j � i′ or j ′ � i, then

we say that T1 and T2 are independent in V . If V includes closed walks T1, T2, . . . , Tk (k � 3), and
if Ti and Tj are independent in V for any i /= j , then we say that T1, T2, . . . , Tk are independent
in V .

For any p ∈ n, we put m(V ; p) :=|{i ∈ l0|vi = p}|. When l � 1, for any p, q ∈ n, we put
m(V ; p, q) :=|{i ∈ (l − 1)0 | vi = p, vi+1 = q}|.

Let U : u0, u1, . . . , uh be another walk. U is called a reduction of V if u0 = v0, uh = vl and
m(U ; p, q) � m(V ; p, q) for all p, q ∈ n. U is said to be equivalent to V if U is a reduction of
V and V is a reduction of U simultaneously. All the equivalent walks shall be considered as the
same one. If vl = u0, then we denote by V + U the walk v0, . . . , vl−1, u0, . . . , uh.

Let T : t0, t1, . . . , tr be a closed walk. If vi = tj for some i and j , then we denote by V + T

the walk

v0, . . . , vi, tj+1 mod r , tj+2 mod r , . . . , tj+r mod r , vi+1, . . . , vl .

If V includes a closed walk T : vi, . . . , vj , then V − T denotes the walk v0, . . . , vi, vj+1, . . . , vl .

Lemma 3.1. For two walks V, U and a closed walk T , the following hold when the corresponding
operations are defined:

(1) l(V + U) = l(V ) + l(U),

(2) l(V ± T ) = l(V ) ± l(T ),

(3) m(V + U ; p, q) = m(V ; p, q) + m(U ; p, q) for all p, q ∈ n,

(4) m(V ± T ; p, q) = m(V ; p, q) ± m(T ; p, q) for all p, q ∈ n.

Proof. It follows immediately from the definition of the operations. �

For a walk V and a closed walk T , the results V + T are not necessarily unique, but they are
equivalent to each other. The similar statement holds for V − T as well.

Lemma 3.2. Let S ⊆ n with |S| = s � 1. If a walk V contains an element of S and l(V ) � (n −
1)2 + 1 + s, then there exists a reduction V ′ of V such that l(V ′) < l(V ), l(V ′) ≡ l(V ) (mod s),

and V ′ contains an element of S.
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Proof. Let V : v0, v1, . . . , vm+s and m � (n − 1)2 + 1. Choose a number p ∈ n satisfying
m(V ; p) = max{m(V ; p′) | p′ ∈ n}, and put h :=m(V ; p). Obviously, h � 2. Denote by U the
walk consisting of v0 through the first p, by Ti the closed walk consisting of the ith p through
the (i + 1)th p (1 � i � h − 1), and by W the walk consisting of the last p through vm+s , i.e.

V : v0 , . . . ,︸ ︷︷ ︸
U

p , . . . ,︸ ︷︷ ︸
T1

p, . . . . . . , p , . . . ,︸ ︷︷ ︸
Th−1

p , . . . ,︸ ︷︷ ︸
W

vm+s .

Then V = U + T1 + · · · + Th−1 + W . We divide the proof into three cases.

Case 1: s � n − 2. Then h � m+s+1
n

� (n−1)2+s+2
n

� (s+1)(n−1)+s+2
n

= s + 1 + 1
n

, so h �
s + 2. Since V contains an element of S, there exists a closed walk Ti such that U + Ti + W

contains an element of S. Denote by T ′
1, . . . , T

′
h−2 the closed walks except Ti . Consider h − 2

numbers l(T ′
1), l(T

′
1 + T ′

2), . . . , l(T
′
1 + T ′

2 + · · · + T ′
h−2). Since h − 2 � s, there is a j such that

l(T ′
1 + · · · + T ′

j ) is a multiple of s, or there exist a and b (a < b) such that l(T ′
1 + · · · + T ′

a) ≡
l(T ′

1 + · · · + T ′
b) (mod s). In the first case, we put V ′ :=V − T ′

1 − · · · − T ′
j ; in the second case,

we put V ′ :=V − T ′
a+1 − · · · − T ′

b. In any case, V ′ is a reduction of V to be found.

Case 2: s = n − 1. Then h � (n−1)2+n+1
n

= n − 1 + 2
n

, so h � n. If h � n + 1 = s + 2 or
U + W contains an element of S, then we obtain the conclusion similarly to Case 1. Suppose that
h = n and U + W does not contain any elements of S. Then S = n \ {p}, so V = T1 + T2 + · · · +
Tn−1. Since l(T1) + l(T2) + · · · + l(Tn−1) = l(V ) � (n − 1)2 + n, there exists a closed walk Ti

with l(Ti) � (n−1)2+n
n−1 = n + 1

n−1 , i.e. l(Ti) � n + 1. Since the interior of Ti has at least n terms
and does not contain p, there exists a q ∈ S such that the interior of Ti includes a closed walk
T ′

i : q, . . . , q. Put T ′
j :=Tj (j /= i). Consider n − 1 numbers l(T ′

1), l(T
′

1) + l(T ′
2), . . . , l(T

′
1) +

l(T ′
2) + · · · + l(T ′

n−1). Since n − 1 = s, there is a j such that l(T ′
1) + · · · + l(T ′

j ) is a multiple of s,
or there exist a and b (a < b) such that l(T ′

1) + · · · + l(T ′
a) ≡ l(T ′

1) + · · · + l(T ′
b) (mod s). In the

first case, we put V ′ :=V − T ′
1 − · · · − T ′

j ; in the second case, we put V ′ :=V − T ′
a+1 − · · · − T ′

b.
In any case, V ′ contains q ∈ S, so it is a reduction of V to be found.

Case 3: s = n. Then S = n. Assume that the conclusion does not hold. Then neither the length
of any closed walk in V nor the sum of lengths of any independent closed walks in V is a
multiple of n. Besides, it is easy to see that V does not include n independent closed walks. Since

h � (n−1)2+n+2
n

= n − 1 + 3
n

, we have h � n, so h = n.
We now show that if T ′

1, T
′
2, . . . , T

′
n−2, T and T ′

1, T
′

2, . . . , T
′
n−2, T

′ are two groups of n − 1
independent closed walks in V , then l(T ) ≡ l(T ′) (mod n). In fact, when we divide n − 1 numbers
l(T ′

1), l(T
′
1) + l(T ′

2), . . . , l(T
′
1) + l(T ′

2) + · · · + l(T ′
n−2) + l(T ) by n, the set of their remainders

equals n − 1. The same statement is also true for n − 1 numbers l(T ′
1), l(T

′
1) + l(T ′

2), . . . , l(T
′

1) +
l(T ′

2) + · · · + l(T ′
n−2) + l(T ′). Hence, l(T ′

1) + l(T ′
2) + · · · + l(T ′

n−2) + l(T ) ≡ l(T ′
1) + l(T ′

2) +
· · · + l(T ′

n−2) + l(T ′) (mod n), so l(T ) ≡ l(T ′) (mod n).
Put M :=T1 + T2 + · · · + Tn−1. Then M is a closed walk and V = U + M + W .
We first show that p is the unique common term of U, M and W . In fact, assume that U, M and

W contain another common term r except p. Noticing that the rearrangement of T1, T2, . . . , Tn−1
in M yields a closed walk equivalent to M , we may as well suppose that T1 contains r . Then

V : v0 , . . . , r, . . . ,︸ ︷︷ ︸
U

p , . . . , r, . . . ,︸ ︷︷ ︸
T1

p , . . . ,︸ ︷︷ ︸
T2

p, . . . . . . , p , . . . ,︸ ︷︷ ︸
Tn−1

p , . . . , r, . . . ,︸ ︷︷ ︸
W

vm+n.

Put T ′
1 := (r, . . . , p in U) + (p, . . . , r in T1), i.e.
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V : v0, . . . , r , . . . , p, . . . ,︸ ︷︷ ︸
T ′

1

r, . . . , p , . . . ,︸ ︷︷ ︸
T2

p, . . . . . . , p , . . . ,︸ ︷︷ ︸
Tn−1

p , . . . , r, . . . ,︸ ︷︷ ︸
W

vm+n.

Then T ′
1, T2, . . . , Tn−1 are independent closed walks in V . Since T1, T2, . . . , Tn−1 are also inde-

pendent closed walks in V , we have l(T ′
1) ≡ l(T1) (mod n), so l(r, . . . , p in U) ≡ l(r, . . . , p in T1)

(mod n). By interchanging Tn−1 and T1, we obtain l(p, . . . , r in T1) ≡ l(p, . . . , r in W) (mod n).
We now put M ′ := (r, . . . , p in T1) + T2 + · · · + Tn−1 + (p, . . . , r in W), i.e.

V : v0, . . . , r , . . . , p, . . . ,︸ ︷︷ ︸
T ′

1

r

M ′︷ ︸︸ ︷
, . . . , p , . . . ,︸ ︷︷ ︸

T2

p, . . . . . . , p , . . . ,︸ ︷︷ ︸
Tn−1

p, . . . , r, . . . , vm+n.

Then l(M ′) ≡ l(M) (mod n). Consider n − 1 numbers

l(T ′
1) mod n, l(T ′

1) + l(T2) mod n, . . . , l(T ′
1) + l(T2 + · · · + Tn−1) mod n.

Since T ′
1, T2, . . . , Tn−1 are independent closed walks in V , the set of the above n − 1 numbers

equals n − 1. Meanwhile, l(T ′
1) + l(M) mod n = l(T ′

1) + l(M ′) mod n = l(T ′
1 + M ′) mod n /= 0

since T ′
1 + M ′ is a closed walk in V . Hence, l(T ′

1) + l(M) mod n ∈ n − 1, so l(T ′
1) + l(M) mod n

coincides with a number among the above n − 1 numbers. However, this is impossible because
T1, T2, . . . , Tn−1 are independent closed walks in V . Consequently, U, M and W have no any
common terms except p.

We next show that all Ti (1 � i � n − 1) are cycles. Without the loss of generality, we assume
that T1 is not a cycle. Then T1 includes a closed walk T with maximal length in the interior of T1,
and l(T1) ≡ l(T ) (mod n), so l(T1 − T ) is a nonzero multiple of n. Moreover, T1 − T is a cycle
since T1 cannot include two independent closed walks and T is the closed walk with maximal
length in the interior of T1. Hence, l(T1 − T ) = n, and all of 1, 2, . . . , n are terms of T1 − T . If
T includes a closed walk T ′, then l(T ) ≡ l(T ′) (mod n), so l(T − T ′) is a multiple of n. Since
T1 − T contains all 1, 2, . . . , n as terms, a walk U + (T1 − T + T ′) + T2 + · · · + Tn−1 + W

is defined and a reduction of V . Its length l(V ) − l(T − T ′) is congruent to l(V ) modulo n.
Hence, l(T − T ′) = 0, so T = T ′. Thus T is a cycle and l(T1) = n + l(T ). If V − T1 and T

have the same term, then a walk V − T1 + T is defined and a reduction of V . Its length is
l(V ) − l(T1) + l(T ) = l(V ) − n. This is a contradiction. Hence, V − T1 and T have no common
terms. If there is an i (2 � i � n − 1) such that Ti is a noncyclic closed walk, then Ti also
contains all 1, 2, . . . , n as terms, so T and Ti have a common term. This is a contradiction.
Therefore, for every i(2 � i � n − 1), Ti is a cycle, so l(Ti) � n − l(T ). If U + W includes a
closed walk t, . . . , t , then t /= p, and both U and W contain t . However, T1 contains t , so U, W

and M have the same term t . This is a contradiction. Hence, U + W consists of different terms,
so l(U + W) � n − 1 − l(T ). Thus l(V ) = l(U + W) + l(M) = l(U + W) + l(T1) + l(T2 +
· · · + Tn−1) � (n − 1 − l(T )) + (n + l(T )) + (n − l(T ))(n − 2) � 2n − 1 + (n − 1)(n − 2)=
(n − 1)2 + n. This is a contradiction. Hence, T1 is a cycle. Consequently, all Ti (1 � i � n − 1)

are cycles.
Finally, since V has no n independent closed walks, every element of n is contained in U + W

at most two times. Let b be the number of elements of n which are duplicated in U + W . Then
l(U + W) � n + b − 1. If c ∈ n is duplicated in U + W , then c /= p, and both U and W contain
c. Since U, M and W have no common terms except p, c is not contained in every cycle Ti

(1 � i � n − 1). If b � 1, then l(Ti) � n − b for 1 � i � n − 1. Thus l(V ) � n + b − 1 + (n −
b)(n − 1) � (n − 1)2 + n. This is a contradiction. If b = 0, then l(U + W) � n − 1. And for
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every i(1 � i � n − 1), l(Ti) � n − 1 because l(Ti) /= n. Hence, l(V ) � (n − 1)2 + n − 1. This
is a contradiction. In all, the proof is completed. �

Put k := (n − 1)2 + 1. Denote by tc the total number of possible cycles (i.e. tc = ∑n
i=1 Ai

n).
Let d be any given multiple of [n] satisfying d � nktc.

Lemma 3.3. Every walk with length k + d has a reduction with length k.

Proof. Let V : v0, v1, . . . , vk+d be a walk with length k + d, and put f := d
n

. For every i (1 �
i � f ), we denote by Vi the walk vin−n, vin−n+1, . . . , vin. Then

V : v0 , v1, . . . ,︸ ︷︷ ︸
V1

vn , vn+1, . . . ,︸ ︷︷ ︸
V2

v2n, v2n+1, . . . . . . , vd−n , vd−n+1, . . . ,︸ ︷︷ ︸
Vf

vd, vd+1, . . . , vd+k,

and every Vi necessarily includes a cycle Ti . Consider f cycles T1, T2, . . . , Tf . Obviously, they
are independent in V . If the multiplicity of every cycle Ti among them is less than k, then we
have f < ktc. This is a contradiction. Hence, there is a cycle Ti0 such that the multiplicity of Ti0

among them is at least k. Put T :=Ti0 and s := l(T ). Let S be the set of all terms of T . Then S ⊆ n

and |S| = s � 1. Since d is a multiple of s, using Lemma 3.2 repeatedly, we can see that there
is a reduction U of V such that l(U) � k, l(U) ≡ k (mod s), and U contains an element of S.
Now we put s′ := k−l(U)

s
and W :=U + T + · · · + T , where the multiplicity of T is s′ (s′ � k).

Then l(W) = k. For any p, q ∈ n, we have m(W ; p, q) = m(U ; p, q) + s′m(T ; p, q). Since
T is a cycle, m(T ; p, q) � 1. If m(T ; p, q) = 0, then m(W ; p, q) = m(U ; p, q) � m(V ; p, q).
If m(T ; p, q) = 1, then m(W ; p, q) = m(U ; p, q) + s′ � l(U) + s′ = k

s
+ l(U)

(
1 − 1

s

)
� k =

m(T ; p, q)k � m(V ; p, q). Thus W is a reduction of V with length k. This completes the
proof. �

4. Order-index of incline matrices

Theorem 4.1. If A ∈ Mn(L), then Ak+d � Ak.

Proof. Let A = (
aij

)
. We denote Ak = (

a
(k)
ij

)
and Ak+d = (a

(k+d)
ij ). For every i, j ∈ n, we have

a
(k+d)
ij = ∑

v1,v2,...,vk+d−1∈n aiv1av1v2 · · · avk+d−1j . Consider any summand aiv1av1v2 · · · avk+d−1j

of a
(k+d)
ij . By Lemma 3.3, the walk i, v1, v2, . . . , vk+d−1, j with length k + d has a reduc-

tion i, u1, u2, . . . , uk−1, j with length k. Noticing that L is a commutative incline, we obtain
aiv1av1v2 · · · avk+d−1j � aiu1au1u2 · · · auk−1j � a

(k)
ij . Since this inequality holds for every sum-

mand of a
(k+d)
ij , we have a

(k+d)
ij � a

(k)
ij . This completes the proof. �

There exists a matrix A ∈ Mn(L) with oi(A) = k.

Example 4.1. Consider a matrix A = (aij ) ∈ Mn(L), where

aii+1 = 1, 1 � i � n − 1,

an1 = an2 = 1,

aij = 0, otherwise.
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Then A has the form

A =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 1 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

.

For the power sequence A, A2, . . . , Ak , the multiplicity of 1 among entries of Ax is strictly
increasing with respect to x, and Ak = Jn, where Jn is the n × n entire incline matrix, i.e. its
every entry is 1. Hence, Ak = Ak+1 = Jn. This implies that oi(A) = k.

Theorem 4.2. max{oi(A) | A ∈ Mn(L)} = k.

Proof. It follows from Theorem 4.1 and Example 4.1. �

5. Conclusions

This paper gave the maximum order-index of square matrices over a commutative incline.
The following problem is still open: “Compute the maximum order-index of n × n matrices

over a noncommutative incline”.
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