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Abstract

This paper proves that the maximum order-index of n xn matrices over an arbitrary commutative incline
equals (n — 1)% + 1. This is an answer to an open problem “Compute the maximum order-index of a member
of M, (L)”, proposed by Cao, Kim and Roush in a monograph Incline Algebra and Applications, 1984, where
M, (L) is the set of all n x n matrices over an incline L.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Inclines are additively idempotent semirings in which products are less than or equal to either
factor. Boolean algebra, fuzzy algebra and distributive lattice are examples of inclines. Inclines

* Supported by National Natural Science Foundation of China (60474023), Research Fund for Doctoral Program of
Higher Education (20020027013), Science and Technology Key Project Fund of Ministry of Education (03184), Major
State Basic Research Development Program of China (2002CB312200) and China Postdoctoral Science Foundation.

* Corresponding author. Fax: +86 10 58807482.

E-mail address: Thxqx@bnu.edu.cn (H.-X. Li).

0024-3795/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.1aa.2006.02.044


https://core.ac.uk/display/81130642?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.elsevier.com/locate/laa
mailto:lhxqx@bnu.edu.cn

S.-C. Han, H.-X. Li / Linear Algebra and its Applications 420 (2007) 228-234 229

and incline matrices have good vistas of applications in diverse areas such as automata theory,
graph theory, medical diagnosis, informational systems, complex systems modelling, decision-
making theory, dynamical programming, control theory, nervous system, clustering and so on.
Incline algebra and incline matrix theory have been extensively studied by many authors [1-17]
(inclines are also called simple semirings, refer to [7] for example).

Cao et al. [3] introduced the notion of the order-index of an element in a partially ordered
semigroup, and proposed an open problem “Compute the maximum order-index of a member of
M, (L)”, where M,,(L) is the set of all n x n matrices over an incline L (see the first problem of
paragraph 5.5 in [3]).

In this paper, we prove that the maximum order-index of n X n matrices over an arbitrary
commutative incline equals (n — 1)> + 1. This is an answer to the above open problem.

2. Preliminaries

Definition 2.1 [3]. A nonempty set L with two binary operations + and - is called an incline if it
satisfies the following conditions:

(1) (L, +) is a semilattice,

(2) (L, -) is a semigroup,

B)x(y+z)=xy+xzand (y+z2)x =yx +zxforallx,y,z € L,
@ x+xy=x+yx=xforallx,y e L.

In an incline L, define a relation < by x <y & x4+ y =y. It is easy to see that < is a
partial order on L and that for any x, y € L, the element x + y is the least upper bound of
{x,y} € L. It follows that xy < x and yx < x for all x, y € L and that for any x,y,z € L,
y < z implies xy < xz and yx < zx. If an incline L has an additive identity 0, then O is called
the zeroof L. Then x +0=0+4+x =x, 0 < x and Ox = x0 = 0 for all x € L. If an incline L
has a multiplicative identity 1, then 1 is called the identity of L. Then x1 = 1x = x, x < 1 and
l4+x=x+1=1forall x € L. By an incline with zero and identity we mean an incline L that
has both zero and identity satisfying 0 # 1. An incline L is said to be commutative if xy = yx
forall x,y € L.

The Boolean algebra ({0, 1}, v, A) is an incline. In general, every distributive lattice is an
incline. The fuzzy algebra ([0, 1], v, T) is an incline, where T is a #-norm. The tropical algebra
(R$ U {00}, A, +) is an incline, where Ry is the set of all nonnegative real numbers.

From now on, L always denotes any given commutative incline with zero and identity, n
denotes any given positive integer greater than or equal to 2, n stands for the set {1, 2, ..., n},
and [n] denotes the least common multiple of integers 1, 2, .. ., n. For a nonnegative integer I, [°
denotes the set of integers O through /.

We denote by M, (L) the set of all n x n matrices over L. Given A = (a;;) € M,(L) and
B = (bij) € M, (L), we define the product A - B € M, (L) by A - B:=(Y_,, aivby;). And we
denote A < B when a;; < b;j foralli, j € n.

Then (M,,(L), <, -) forms a partially ordered semigroup, i.e. forall A, B, C, D € M, (L),

(1) (AB)C = A(BC),
(2) A< BandC < D = AC < BD.
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Definition 2.2 [3]. Let S be a partially ordered semigroup and a € S. If there are some positive
integers k and d satisfying a**¢ < a*, then the least such positive integers k and d are called the
order-index of a and the order-period of a, respectively.

In this paper, the order-index of a matrix A € M, (L) is denoted by 0i (A).
3. Reduction of walks

Let V : vg, vy, ..., v; be a sequence of positive integers such that v; € n forall i € [°. We call
V awalk on n, [(V):=I the length of V, and v; (i € lo) the terms of V. Below, the walk on n
shall be called the walk briefly. When ! > 2, the walk vy, ..., vj_1 is called the interior of V. We
call V aclosed walkif | > 1 and vo = v;. A closed walk V is called a cycle whenv; = v; (i < j)
impliesi =0and j = 1.

If V includes two closed walks 7' : v;, ..., vjand T : vy, ..., vy, andif j <i’or j" < i,then
we say that 77 and 7 are independent in V. If V includes closed walks 71, 15, .. ., Ty (k > 3),and
if T; and T; are independent in V for any i # j, then we say that 71, T, ..., Tj are independent
inV.

For any p € n, we put m(V; p):=|{i € [°|v; = p}|. When [ > 1, for any p, ¢ € n, we put
m(V; p,q):=I{i € (= 1" | v; = p,viy1 =g}l.

Let U : ug, uy, ..., u, be another walk. U is called a reduction of V if ug = vg, up = v; and
m(U; p,q) <m(V; p,q)forall p,q € n. U is said to be equivalent to V if U is a reduction of
V and V is a reduction of U simultaneously. All the equivalent walks shall be considered as the

same one. If v; = ug, then we denote by V 4 U the walk vy, ..., vj—1, ug, ..., Up.
LetT : 19,11, ..., beaclosed walk. If v; = ¢; for some i and j, then we denote by V + T
the walk
VO, -« Vis Ljyl modrs Lj+2 modrs - -« > Ljr modrs Vid1s -+, Ul
If V includes aclosed walk T" : v;, ..., vj, then V — T denotes the walk vo, ..., v;, vjt1, ..., V.

Lemma 3.1. Fortwowalks V, U and a closed walk T, the following hold when the corresponding
operations are defined:

(D IV +U)=1(V)+ 1),
Q) I(VET)=1(V)xIT),
@B)ym(V+U;p,q) =m(V;p,q)+m(U,; p,q) forall p,q € n,
@ mV+ET;p,q)=mV;p,q) xm(T; p,q)forall p,q € n.

Proof. It follows immediately from the definition of the operations. [

For a walk V and a closed walk T, the results V + T are not necessarily unique, but they are
equivalent to each other. The similar statement holds for V. — T as well.

Lemma 3.2. Let S C nwith |S| = s > 1. Ifawalk V contains an element of S and (V) > (n —
1)2 4 1+ s, then there exists a reduction V' of V such that (V') < [(V), (V') = (V) (mod ),
and V' contains an element of S.
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Proof. Let V :vg,v1, ..., 0pys and m = (n — 1)2 + 1. Choose a number p € n satisfying
m(V; p) = max{m(V; p') | p’ € n}, and put h:=m(V; p). Obviously, & > 2. Denote by U the
walk consisting of vy through the first p, by T; the closed walk consisting of the ith p through
the (i + 1)th p (1 <i < h — 1), and by W the walk consisting of the last p through vy, s, i.e.

Vivg,.ooo Dy s Pyeennnn s PseeesDyeves Unts-
—— S S—— S~
U T Th— w

ThenV =U + T + --- + Tp—1 + W. We divide the proof into three cases.

Case 1: s <n—2. Then h > ’”J”H > = 1) H542 5 GHD@=DAs+2 o 4 + ~.s0h >
s + 2. Since V contains an element of S, there ex1sts a closed Walk T; such that U + T+ W
contains an element of S. Denote by 77, ..., T _, the closed walks except 7;. Consider /& — 2
numbers I[(T\), [(T{ + T,), ... . I(T{ + T, +--- 4+ T, _,). Since h —2 > s, there is a j such that
T +---+ T/f) is a multiple of s, or there exist @ and b (a < b) such that [(T{ +--- 4+ T) =

I(T{ + --- 4+ T;) (mods). In the first case, we put V':=V — T| — - - — T]f; in the second case,
weput V:=V — T,  —-.-—T;. Inany case, V' is a reduction of V to be found.

Case2:s=n—1.Thenh>("_l)i$+l 1+— soh>2n.Ifh>n+1=s+2or
U + W contains an element of S, then we obtain the conclus1on similarly to Case 1. Suppose that
h =nand U 4+ W doesnot contain any elementsof S. Then S =n \ {p},soV =T1+Tr +--- +

To—1.Since [(T) +I(To) + -+ I(T—1)) =1(V) > (n — 1)2 + n, there exists a closed walk T;
with [(T;) > w =n+ n]Tl’ i.e. [(T;) = n + 1. Since the interior of 7; has at least n terms
and does not contaln p, there exists a ¢ € S such that the interior of 7; includes a closed walk
T/:q,...,q. Put ij:: Tj(j # i). Consider n — 1 numbers I(T}), I(T{) + I(T,), ..., I(T]) +
I(Ty) +---+I(T,_,).Sincen — 1 = s, thereisa j such that/(T}) + - - - + l(T]f) isamultiple of s,
or there exista and b (a < b) such that [(T) + --- + I(T}) = I(T|) + - -- + [(T)) (mod s). In the
firstcase,weput V:=V — T/ — ... — T;;inthe second case, we put V/ VvV — T;H ce =T
In any case, V’ contains ¢ € S, so it is a reduction of V to be found.

Case 3: s = n. Then § = n. Assume that the conclusion does not hold. Then neither the length
of any closed walk in V nor the sum of lengths of any independent closed walks in V is a
multiple of n. Besides, it is easy to see that V does not include n independent closed walks. Since

2
112(”_1)n¢+2 l—i—ﬁ,wehaveh n,soh = n.
We now show that if 7, 7),....T, ,,Tand T{,T;,..., T, _,, T are two groups of n — 1

independent closed walks in V, then [(T') = [(T') (mod n). In fact, when we divide n — 1 numbers
(T, (T)) + (Ty), ..., I(T)) + (T}) + - - - + I(T,, _,) + [(T) by n, the set of their remainders
equals n — 1. The same statement is also true forn — 1 numbers [(T), [(T)) + I(T3), ..., I(T{) +
WT)+---+ (T, _,) + 1(T"). Hence, [(T)) + (T})) +--- + (T, _,) + I(T) = (T]) + I(T;)) +
4+ U(T,_,) +I(T") (modn),so(T) =I(T") (modn).

PuM:=T1+T)+---+T,_1.Then Misaclosedwalkand V =U + M + W.

We first show that p is the unique common term of U, M and W. In fact, assume that U, M and
W contain another common term r except p. Noticing that the rearrangement of T, 72, ..., T,—1
in M yields a closed walk equivalent to M, we may as well suppose that 77 contains . Then

Vivg, ..oy oo ou Dyeeislyei iy Dyeeay Pyeeenn s PseeesDyeneslsees, Ungn-
~——— —— —
U T T Th-1 w

Put7/:=(,...,pinU)+ (p,...,rinTy),ie.
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Vive, oo osl ooy Pyee iy yee ey Dy y Pyeeeees s PseeesDyuneslseesy Ungn-
S—— ~—— — S——
TI/ 3 Ty w
Then Tl’ , Tr, ..., T,_1 are independent closed walks in V. Since Ty, T», ..., T,,—1 are also inde-

pendent closed walks in V,Wehavel(Tl/) = [(T1) (modn),sol(r,..., pinU) =I(r,..., pinTy)
(mod n). By interchanging 7,,_| and T7, we obtain/(p, ..., rinTy) = Il(p, ..., rin W) (mod n).
Wenowput M :=(r,...,pinT)+To+---+T—1 +(p,...,rin W), ie.
M/
Vivg, oo sV oo s Pyee s Ty Dy ey Dyeeeee s DseeesDyeeeslsyeeey Untn.
— N ——

7] ) Th-1

Then [(M’) = [(M) (mod n). Consider n — 1 numbers
I(T{) mod n, I(T{) + I(T2) mod n, ..., I(T{) + (T, + - - + T,—1) mod n.

Since Tl’ , Tr, ..., T,_1 are independent closed walks in V, the set of the above n — 1 numbers
equals n — 1. Meanwhile, /(T]) + (M) modn = I(T|) + (M) modn = I[(T{ + M) mod n # 0
since T + M’ is aclosed walk in V. Hence, [(T}) + [(M) modn € n — 1,s0l(T]) + (M) mod n
coincides with a number among the above n — 1 numbers. However, this is impossible because
Ti, T, ..., T,_1 are independent closed walks in V. Consequently, U, M and W have no any
common terms except p.

We next show thatall 7; (1 < i < n — 1) are cycles. Without the loss of generality, we assume
that 77 is not a cycle. Then 77 includes a closed walk 7" with maximal length in the interior of 77,
and [(T1) = I(T) (mod n), so I[(Ty — T) is a nonzero multiple of n. Moreover, 71 — T is a cycle
since 7 cannot include two independent closed walks and T is the closed walk with maximal
length in the interior of 77. Hence, [(T1 — T) =n,and all of 1,2, ..., n are terms of 71 — T'. If
T includes a closed walk T’, then [(T) = [(T’) (mod n), so [(T — T') is a multiple of n. Since
Ty — T contains all 1,2,...,n asterms, awalk U +(T) — T+ T+ T+ - +Tp_ 1 + W
is defined and a reduction of V. Its length [(V) — (T — T’) is congruent to (V) modulo 7.
Hence, (T —T')=0,s0 T =T'. Thus T is a cycle and I(T}) =n+I(T). If V—Ty and T
have the same term, then a walk V — 77 + T is defined and a reduction of V. Its length is
(V) —I(Ty) + I(T) = I(V) — n. This is a contradiction. Hence, V — T and T have no common
terms. If there is an i (2 <i < n — 1) such that 7; is a noncyclic closed walk, then 7; also

contains all 1,2,...,n as terms, so T and 7; have a common term. This is a contradiction.
Therefore, for every i(2 < i <n—1), T; is acycle, so [(T;) < n —I(T). If U + W includes a
closed walk 7, ..., t, then t # p, and both U and W contain ¢. However, 77 contains ¢, so U, W

and M have the same term ¢. This is a contradiction. Hence, U + W consists of different terms,
so l(U+W)<n—1-KT). Thus I(V) =IU+W)+IM)=IU+W)+I(T)+ (T +
ot L) S —1=-IM))+m+HITN+ 0 —-ITHr-=2)<2n—-1+ 0 -Dr-2)=
(n — 1)2 + n. This is a contradiction. Hence, T} is a cycle. Consequently, all 7; (1 <i <n—1)
are cycles.

Finally, since V has no n independent closed walks, every element of n is contained in U + W
at most two times. Let b be the number of elements of n which are duplicated in U + W. Then
I(U+W)<n+b—1.1f c € nisduplicated in U + W, then ¢ # p, and both U and W contain
c. Since U, M and W have no common terms except p, ¢ is not contained in every cycle T;
A<i<n—0D.1Ifb>1,thenl(T;) <n—bforl <i<n—1.Thusl(V)<n+b—14+n—
b)(n — 1) < (n — 1)® 4 n. This is a contradiction. If b = 0, then /(U + W) < n — 1. And for



S.-C. Han, H.-X. Li / Linear Algebra and its Applications 420 (2007) 228-234 233

everyi(l <i <n—1),I[(T;) <n— 1becausel(T;) # n.Hence, (V) < (n — D2 +n — 1. This
is a contradiction. In all, the proof is completed. [

Put k:=(n — 1)? + 1. Denote by . the total number of possible cycles (i.e. . = Y 1, Al).
Let d be any given multiple of [r] satisfying d > nkt,.

Lemma 3.3. Every walk with length k 4+ d has a reduction with length k.

Proof. Let V : vg, vy, ..., vr+q be a walk with length k 4 d, and put f:= % For every i (1 <
i < f), we denote by V; the walk vj;,—», Vin—n+1, - - ., Vin. Then
Vv, v, oo, Uy Ul ooy V20, Vngls ov e > Vd—n » Vd—n+15 - -+ > Vd, Vd+15 - - -5 Vd+k,
D e — N e’ N — e’
Vi V2 Vy

and every V; necessarily includes a cycle 7;. Consider f cycles T1, T2, ..., Ty. Obviously, they
are independent in V. If the multiplicity of every cycle T; among them is less than &, then we
have f < kt.. Thisis a contradlctlon Hence, there is a cycle T;, such that the multiplicity of T;,
among them is at least k. Put T :=T;, and s :=I(T'). Let S be the setof all terms of 7. Then S C n
and |S| = s > 1. Since d is a multiple of s, using Lemma 3.2 repeatedly, we can see that there
is a reduction U of V such that [(U) < k, [ (U ) =k (mods), and U contains an element of S.
Now we put s":= =k l( band W:=U + T + - -- + T, where the multiplicity of T is s’ (s’ < k).
Then (W) = k For any p,q € n, we have m(W p.q) =mU; p,q)+s'm(T; p, q). Since
Tisacycle,m(T; p,q) < 1.Ifm(T; p,q) =0,then m(W; p,q) = m(U p,q) <m(V;p,q).
Ifm(T; p,q) = 1,thenm(W; p,q) =m(U,; p,q) +s' <IU)+s =% +l(U)(1 - —) <k=
m(T; p,q)k < m(V; p,q). Thus W is a reduction of V with length k. This completes the
proof. [

4. Order-index of incline matrices

Theorem 4.1. If A € M, (L), then A¥*? < Ak,

Proof. Let A = (aij). We denote A¥ = ( (]k)) and AFT4 = (a (k+d)) Forevery i, j € n, we have
(k+d) __
a;; = Zv]’vz ,,,,, Va1 €n GiviQuivy * Ay gy Consider any summand a;y, Gy v, * ** Qo y_1 j

of a(k+d) By Lemma 3.3, the walk 7, v1, v, ..., Vgk+q4—1, j With length k + d has a reduc-
tion 1 uiy,uz, ..., ug—1, j with length k. Noticing that L is a commutative incline, we obtain
Qjv Qoyvy " Qugg_yj < Qi Ququy Gy j < a-(]?). Since this inequality holds for every sum-

(k+d) (k+d)

mand of a;; ", we have a, ij < (k) . This completes the proof. [

There exists a matrix A € M,,(L) with 0i(A) = k.

Example 4.1. Consider a matrix A = (a;;) € M, (L), where

aiji+1 =1, 1<i<n-—1,
ap) =apy =1,
ajj =0, otherwise.
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Then A has the form

601 0 --- 0
oo 1 - 0
A= o
00 0 - 1
110 - 0

For the power sequence A, A2, ..., AF, the multiplicity of 1 among entries of A* is strictly
increasing with respect to x, and Ak = Jn, where J, is the n x n entire incline matrix, i.e. its
every entry is 1. Hence, AK = Akt = J, This implies that 0i (A) = k.

Theorem 4.2. max{oi(A) | A € M,,(L)} = k.

Proof. It follows from Theorem 4.1 and Example 4.1. [

5. Conclusions

This paper gave the maximum order-index of square matrices over a commutative incline.
The following problem is still open: “Compute the maximum order-index of n x n matrices
over a noncommutative incline”.
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