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SUMMARY

Classical genetic approaches to examine the re-
quirements of genes for T cell differentiation during
infection are time consuming. Here we developed a
pooled approach to screen 30–100+ genes individu-
ally in separate antigen-specific T cells during infec-
tion using short hairpin RNAs in a microRNA context
(shRNAmir). Independent screens using T cell recep-
tor (TCR)-transgenic CD4+ and CD8+ T cells respond-
ing to lymphocytic choriomeningitis virus (LCMV)
identified multiple genes that regulated development
of follicular helper (Tfh) and T helper 1 (Th1) cells,
and short-lived effector and memory precursor cyto-
toxic T lymphocytes (CTLs). Both screens revealed
roles for the positive transcription elongation factor
(P-TEFb) component Cyclin T1 (Ccnt1). Inhibiting
expression of Cyclin T1, or its catalytic partner
Cdk9, impaired development of Th1 cells and protec-
tive short-lived effector CTL and enhanced Tfh cell
and memory precursor CTL formation in vivo. This
pooled shRNA screening approach should have util-
ity in numerous immunological studies.

INTRODUCTION

The differentiation of T cells into effector and memory cells is

central to adaptive immunity. Transcription factors (TFs) are cen-

tral regulators of these differentiation processes. Although most

current models of T cell differentiation incorporate relatively few

regulatory players and rely heavily on the ‘‘master regulator’’

concept, it is abundantly clear that TFs do not act in isolation

and that transcription programs that underlie cell differentiation

require the concerted actions of multiple factors, including

important inducers or repressors of T cell differentiation path-

ways (Crotty, 2012; Kaech and Cui, 2012; O’Shea and Paul,

2010; Oestreich and Weinmann, 2012; Pipkin and Rao, 2009;

Walsh et al., 2002). One large-scale study of the regulation of
gene expression in different cell types and tissues found that a

given murine cell type could be distinguished from other cell

types by a network of approximately six TF:TF interactions and

that these TF networkswere conserved in human cell types (Rav-

asi et al., 2010). Thus, the intersecting expression and actions of

multiple TFs appear to determine cell fate and function. Recent

work on T helper 17 (Th17) cell differentiation suggests that

this model also applies to T cells (Ciofani et al., 2012).

The differentiation of naive CD8+ T cells into CTLs is a key pro-

cess in immunity to viral infections. The differential development

of short-lived effector CTLs and precursors to long-livedmemory

CTLs are considered alternative cellular ‘‘fates’’ (Chang et al.,

2007; Joshi et al., 2007), and understanding this process is crit-

ical for prevention and treatment of acute and chronic infections

(Doering et al., 2012; Haining and Wherry, 2010; Kaech and Cui,

2012). Activated CD4+ T cells can differentiate into a range of

different functional subsets, including Th1, Th2, Th17, peripheral

Treg (pTreg), and follicular helper (Tfh) cells, which each have

potent capacities to regulate immune responses and eliminate

pathogens. Among CD4+ T cells, follicular T helper cells (Tfh)

are the specialized providers of help to B cells (Crotty, 2011).

T-cell-dependent antibody responses are important for protec-

tion against a wide range of pathogens. Our understanding of

Tfh cells is still in the early stages, and there is much to be

learned about the pathways that control Tfh cell differentiation.

A number of excellent studies have characterized the mRNA

expression profiles of CD8+ and CD4+ T cells isolated ex vivo

during the course of antigen-specific responses (Best et al.,

2013; Doering et al., 2012; Kaech and Cui, 2012; Kalia et al.,

2010; Choi et al., 2013). However, differential mRNA expression

studies are likely to overlook a large number of relevant factors

responsible for T cell differentiation. For example, of nearly

2,000 predicted conventional DNA-binding transcription factors

in the murine genome (Gray et al., 2004), fewer than 15 have vali-

dated roles in effector CD8+ T cell differentiation (Kaech and Cui,

2012; Pipkin and Rao, 2009). The same limitations probably hold

for Tfh cell differentiation and other CD4+ T cell differentiation

pathways (Crotty, 2012; Oestreich and Weinmann, 2012; Vahedi

et al., 2013). Thus, a functional genetic approach in which inhibi-

tion of a large number of genes individually, in separate cells in

parallel, during T cell differentiation has the potential to rapidly
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identify factors comprising the genetic networks underlying

T cell function.

To pursue this objective, we have devised an experimental

approach that uses retroviral shRNAmir libraries to diminish

the expression of selected gene products one at a time in anti-

gen-specific T cells. Gene function in antiviral responses is

then interrogated in pooled screens in mice. We have demon-

strated the utility of this approach in two T cell differentiation

processes in vivo: CD8+ T cell differentiation into cytotoxic

T lymphocytes (CTLs) and CD4+ T cell differentiation into Tfh

and Th1 cells. Here we showed proof of principle that the roles

of multiple genes can be interrogated in parallel in T cells during

infection and identified previously unappreciated factors that

were involved in these differentiation processes. This approach

holds promise to substantially accelerate the understanding of

T cell differentiation in vivo.

RESULTS

An Optimized Retroviral Vector to Express shRNAmirs
In Vivo
Transduction of activated T cells with murine stem cell virus

(MSCV)-based retroviral expression vectors (RVs) has previously

been used to drive transgene expression or to deplete expres-

sion of endogenous genes by triggering RNA interference

(RNAi) using shRNAs upon adoptive transfer in vivo (Araki

et al., 2009; Johnston et al., 2009; Joshi et al., 2007; Kao et al.,

2011). However, we found that transduction of SMARTA TCR

transgenic CD4 T cells (LCMV-specific, gp66-77 IAb restricted)

with an MSCV-based (pLMP-derived) RV designed to express

shRNAs in the context of miRNA-30 sequences (shRNAmir) re-

sulted in depletion of the transduced cells after an acute LCMV

infection (Figure S1A, left, available online). This most likely

was due to immune rejection of antigens expressed from

pLMP (Figure S1B), because deletion of the puromycin resis-

tance gene from pLMP (LMPd) eliminated this effect (Figure S1A,

right). We replaced GFP in LMPd with the violet-excitable, yel-

low-fluorescing GFP variant Ametrine1.1 (LMP-Amt) to expand

its utility in FACS (Figures S1B and S1C) and confirmed its

functionality for RNAi in vivo by targeting Bcl6 transcripts. Trans-

ferred SMARTA CD4+ T cells transduced with Bcl6-specific

shRNAs (LMP-Amt shBcl6-RV, referred to hereafter as shBcl6-

RV) displayed a reduced fraction of CXCR5+Bcl6+ cells upon

LCMV infection, consistent with a requirement for Bcl6 for differ-

entiation of follicular T helper cells (Tfh) (Figure S1D).

A Pooled Screening System using shRNAs in CD8+ T
Cells during LCMV Infection
We parallelized the shRNAmir-RV approach in order to inter-

rogate the functions of numerous genes simultaneously. The

experimental strategy was to introduce a pool of TCR transgenic

T cells carrying individual shRNAs into hostmice and assay alter-

ations in the composition of shRNAs carried by the responding

T cells during a viral infection (Figure 1A). In effect, each T cell

is barcoded by the integrated shRNA-RV, and the fate of individ-

ual cells carrying each shRNA can be monitored in T cell popu-

lations of interest by deep sequencing DNA libraries derived

from the integrated provirus (Figures 1B and 1C; Beronja et al.,

2013; Zuber et al., 2011). We optimized conditions in 96-well
326 Immunity 41, 325–338, August 21, 2014 ª2014 Elsevier Inc.
format to produce arrays of high-titer RV supernatants without

concentration, sufficient to transduce R70% of LCMV-specific

P14 TCR transgenic CD8+ T cells 18 hr after TCR stimulation

(Figures 1B, S2A, and S2B). The day after transduction, cells

from each well were pooled (Figure 1B, day 0) and immediately

transferred to recipient mice without cell sorting (sorting reduced

P14 accumulation in vivo; Figure S2C), and the recipients were

infected with LCMV 1 hr later. In addition, an aliquot of Ame-

trine-high cells was FACS purified and saved as the ‘‘input.’’

Genomic DNA was prepared from the input and samples of

P14 cells isolated by flow cytometry on day 7 after LCMV infec-

tion. Deep sequencing was used to quantify shRNA representa-

tion (Figures 1A and S2D–S2H) in libraries generated from a

single-step PCR of the shRNAmir sequences in genomic DNA

template (Figures 1B and 1C). Multiple PCR conditions were

interrogated (Figures S2D–S2G). Independent libraries gener-

ated from different DNA template amounts at low PCR cycles

(22 or 26 cycles; Figures S2F and S2G) exhibited high correla-

tions in shRNA representation, with both 314 (medium-density)

and 318 (high-density) PGM sequencing chips (Figure S2H).

Thus, the sequencing approach was robust.

To establish conditions for screening pools of shRNAmir-RV+

P14 CD8+ T cells in the context of infection, numerous factors

were optimized and standardized (Figure S3). Naive Thy1.1+

Blimp1-YFP transgenic P14 cells were activated in vitro and

transferred to B6 hosts subjected to LCMV infection and the

P14 cells were examined as a function of (1) cell transfer number

(Figure S3A), (2) the timing of the infection relative to cell transfer

(data not shown), (3) LCMV dose (Figure S3B), and (4) LCMV

strain (Figure S3C). Transfer of 500,000 activated P14 cells

followed by intraperitoneal (i.p.) infection with 1.5 3 105 PFU of

LCMV-clone 13 (LCMV-cl13) resulted in a robust infection that

induced accumulation of �106 P14 cells in the spleen by day

7, �50-fold more than in uninfected recipients (Figures 1D and

S3D). Under these conditions virus replication was strongly

inhibited (see below), and the responding P14 cells exhibited

CD8+ T cell phenotypes typical of acute infection, based on inter-

leukin-2 receptor a (IL-2Ra) (CD25), KLRG-1, IL-7Ra (CD127),

and Blimp1-YFP reporter expression (Figures 1E, 1F, and S4A).

LCMV-cl13 is more virulent than LCMV Armstrong (Wherry

et al., 2003) but was controlled due to the P14 cell transfers. In

addition, we confirmed that short-lived effector (KLRG-1hiIL-

7Ralo) and memory precursor (KLRG-1loIL-7Rahi) P14 popula-

tions exhibited different potentials for memory cell formation

and ‘‘recall’’ capacity (Figures S4B–S5E). Altogether, these

results demonstrate robust conditions with which to screen

effector and memory CTL development.

The number of distinct shRNAmirs that could be tested in par-

allel was constrained by the number of adoptively transferred

T cells. In order to ensure library complexity, we aimed to repre-

sent each shRNA with �500 cells per mouse upon engraftment.

This depth of representation is similar to or exceeds recent in vivo

shRNA-based screens (Beronja et al., 2013; Zhou et al., 2014;

Zuber et al., 2011). Based on data from adoptively transferred

naive CD8+ T cells (Badovinac et al., 2007) and activated CD8+

T cells (Pipkin et al., 2010), we assumed that �10% of trans-

ferred cells would engraft. Thus, we initially analyzed a pool of

500,000 cells representing �100 unique shRNAs in a single

experiment. We also considered the recovery of effector and
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Figure 1. Optimization of Conditions for a Pooled Screening Approach using shRNAmirs in CD8+ T Cells In Vivo to Identify Genes that
Regulate CTL Differentiation during Infection

(A) A conceptual representation depicting the principle of the pooled screening strategy.

(B) Scheme for the shRNAmir screen using P14 cells and LCMV infection.

(C) Scheme for quantifying shRNAmirs. DNA libraries generated by PCR of the integrated shRNAmir provirus are analyzed by deep sequencing to quantify shRNA

representation in the cell subsets.

(D) Total P14 cell numbers recovered in the spleen in the presence or absence of LCMV infection. Error bars indicate standard deviations.

(E) Blimp1-YFPhi, CD25hi, KLRG-1hi, and IL-7Rahi cell frequencies at the indicated time points after infection. Symbols represent values from individual mice. Red

indicates LCMV-infected mice; black indicates uninfected mice.

(F) Representative flow cytometry plots of KLRG-1 and IL-7Ra staining on P14 cells under conditions used for screening.
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Figure 2. A Pooled RNAi Screen in CD8+ T Cells In Vivo Identifies Potential Regulators of Effector and Memory Precursor CTL Formation

(A) Relative enrichment of shRNAs in memory precursor and short-lived effector P14 cell populations is reported as Z-scores for each shRNA in the library. Each

bar represents a single shRNA. Negative control shRNAs are colored yellow.

(B) Scatter plot shows the log2 ratio of normalized reads of all shRNAs in each sorted CD8+ T cell subset versus the input sample. Each dot represents a unique

shRNA and is color coded as in (A).

(C) Tbx21 mRNA expression in shTbx21+ P14 CD8+ T cells, after 6 days of culture (10 U/ml IL-2). Abbreviation is as follows: shCon, control shRNAmir.

(D) Intracellular IFN-g staining in P14 CD8+ T cells, gated on shTbx21+ cells. Cells were cultured for 6 days (10 U/ml IL-2) and restimulated with PMA and ion-

omycin for 4 hr before staining.

(E) T-bet expression in shTbx21+ P14 CD8+ T cells from spleens 8 days after LCMV infection (normalized geometric MFI). T-bet staining is shown for repre-

sentative mice (right).

(F) Contour plots show KLRG-1 and IL-7Ra staining on shTbx21+ P14 CD8+ T cells from representative mice 8 days after LCMV infection.

(legend continued on next page)
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memory precursor populations. Based on P14 accumulation

data at day 7 postinfection (Figure 1D), we expected to recover

�300,000 KLRG-1hiIL-7Ralo and �30,000 KLRG-1loIL-7Rahi

cells per mouse. To assure that cell numbers would not limit

library complexity at the end of the experiment and to reduce

potential founder effects from variation in individual mice (Zuber

et al., 2011), sorted cells were pooled from five or more infected

mice in each experiment.

Identification of Genes Underlying CTL Differentiation
by an shRNA Screen In Vivo
We selected 34 genes to screen to test the approach. These

included genes differentially expressed in Tfh cells and CTLs

(Choi et al., 2013), broadly expressed chromatin and tran-

scriptional regulators with unknown roles in effector T cells,

and multiple positive and negative control genes. Each gene

was targeted by 1–5 shRNAmirs, depending on availability in

the original library (see Experimental Procedures and Table

S1). The use of multiple shRNAs per gene is important, to control

for off-target effects, and not all shRNAs are functional. A total of

110 unique shRNAs that target these genes were subcloned as a

pool into pLMPd-Amt (Table S1 and Figures S5A and S5B). Indi-

vidual colonies from this transformation were picked, sequence

verified, and rearrayed into 96-well plates.

Retroviral supernatants prepared from cells transfected with

the array of 110 shRNAmir DNAs were used to transduce P14

cells. Transduction of each construct was confirmed by Ame-

trine fluorescence, and P14 cells were pooled. An aliquot was

removed for the input sample, and 500,000 cells were trans-

ferred into multiple recipient mice that were then infected with

LCMV. On day 7 postinfection, short-lived effector (KLRG-

1hiIL-7Ralo) and memory precursor (KLRG-1loIL-7Rahi) P14 cells

were sorted, genomic DNA was extracted from each popula-

tion, and shRNAmir sequencing libraries were prepared. After

sequencing and alignment to the reference shRNA sequences,

642,718 (input), 233,902 (effector), and 487,865 (memory) map-

ped reads were retained for each cell susbset. All intended

shRNAs introduced during T cell transduction were recovered

from input samples; only two were not detected in either the

effector or memory precursor cell populations. The memory

precursor:short-lived effector cell ratio for each shRNA was

calculated. Values from negative control shRNAs targeting

genes not expressed in CD8+ T cells (Cd4, Cd14, Cd19,

Ms4a1 [CD20]) based on RNA-seq analysis (M.E.P., unpub-

lished data) were used to calculate Z-scores for each shRNA

(Figure 2A and Table S1) and the ratios of shRNAs in effector

and memory precursor subsets relative to the input cells was

plotted (Figure 2B). Several shRNAs were substantially reduced
(G–I) Quantitation of CD8+ T cell subsets resulting from shTbx21+ P14 cells in viv

(G) Short-lived effector cells (KLRG-1hiIL-7Ralo).

(H) Memory precursor cells (KLRG-1loIL-7Rahi).

(I) Ratio of memory precursor to short-lived effector phenotype P14 cells, per mo

(J) Prdm1mRNA expression was determined by qRT-PCR in transduced P14 CD8

expression was determined by immunoblot analysis after 4 days of culture with

(K) Map of Prdm1 with shRNA-targeted regions indicated.

(L) Contour plots of KLRG-1 and IL-7Ra staining on shPrdm1+ P14 CD8+ T cells

(M) Ratios of memory precursor to effector P14 CD8+ T cells. Each symbol repre

Data are pooled from three (H, I) and two (J, L) independent experiments. *p < 0
in both short-lived effector and memory precursor P14 cell sub-

sets relative to input, suggesting that genes they affected were

required for the accumulation of P14 T cells during infection

(Figure 2B).

To focus on factors with differential effects on short-lived

effector versus memory precursor CD8+ T cell subsets, we iden-

tified genes for which two or more cognate shRNAs were

enriched with Z-score values of Rj3.0j and classified these as

hits. None of the negative control genes exhibited this pattern

(Figure 2A and Table S1). Genes that met these criteria were

identified in both effector and memory precursor subsets (Fig-

ure 2A and Table S1). As expected from studies with gene-defi-

cient mice (Cannarile et al., 2006; Intlekofer et al., 2005; Joshi

et al., 2007; Yang et al., 2011), Tbx21 (T-bet)- and Id2-specific

shRNAs were enriched in memory precursor cells, because

these genes are necessary for effector CTL generation (Figure 2A

and Table S1). Conversely, all three Id3-specific shRNAs were

enriched in effector CTLs (Figure 2A and Table S1), but just

below the criteria to be designated a hit, consistent with a mild

early defect in memory precursor formation in Id3-deficient

mice (Ji et al., 2011; Yang et al., 2011).

Tbx21 and Prdm1 shRNAs Impair Effector CTL
Development during LCMV Infection
We validated results of the screen by examining the impact of

shRNAs individually. Both shTbx21.2 and shTbx21.3, but not

shTbx21.1, strongly depleted Tbx21 mRNA and T-bet protein

(Figures 2C and 2E), inhibited interferon-g (IFN-g) expression

(Figure 2D), and limited development of short-lived effector cells

in vivo (p < 0.01, Figures 2F–2I). These results correlated directly

with the enrichment of these shRNAs in the screen (Figure 2A

and Table S1) and confirmed the role of T-bet in the generation

of effector CD8+ T cells.

Prdm1 (encoding Blimp-1) has known roles in effector CD8+

and CD4+ T cell differentiation (Rutishauser et al., 2009; Shin

et al., 2009; Johnston et al., 2009). Consistent with this, Prdm1

shRNAs were preferentially enriched in memory precursor

CD8+ T cells, but the magnitude of their effects differed in repli-

cates of the in vivo screen (Figure S5C and Table S1). Analysis

of each Prdm1 shRNA individually showed that three of four

shRNAs impaired expression of both Blimp-1 mRNA and protein

(Figure 2J). The fourth shRNA impaired Blimp-1 protein expres-

sion but did not reduce its mRNA (Figure 2J), perhaps because

it targeted the Prdm1 30 UTR (Figure 2K). Individually, all four

Prdm1 shRNAs impaired effector CD8+ T cell frequencies and

increased the ratio of memory precursor cells to short-lived

effector cells in vivo (p < 0.01–0.05, Figures 2L and 2M). These

data indicate that shRNAs can have variable effects but
o.

use.
+ T cells after sorting from spleens 7 days after LCMV infection. Blimp1 protein

IL-12 (5 ng/ml) and IL-2 (100 U/ml).

from representative mice at 7 days after LCMV infection.

sents T cells from an individual mouse.

.05, **p < 0.01, ****p < 0.0001. Error bars represent standard deviations.

Immunity 41, 325–338, August 21, 2014 ª2014 Elsevier Inc. 329



Immunity

RNA Interference CD8+ and CD4+ T Cell Screens
confirmed that Prdm1 expression is required for short-lived

effector CD8+ T cell differentiation.

Identification of Genes Underlying Tfh Cell
Differentiation via an shRNA Screen In Vivo
In parallel, we developed a pooled screen in CD4+ T cells to

discover genes important for Tfh and Th1 cell differentiation

in vivo (Figure 3A). A total of 5 3 105 shRNAmir+Amthi SMARTA

cells were transferred into B6 hosts, and mice were infected

3–4 days later with LCMV Armstrong (Figure 3A). DNA was

also isolated from an aliquot of cells before the transfer (input).

At 6 days after LCMV infection, virus-specific Tfh cells (CXCR5+

SLAMlo) and Th1 cells (CXCR5�SLAMhi) (Choi et al., 2013; John-

ston et al., 2009) were isolated by flow cytometry and deep

sequenced for differential representation of the shRNAs. The

Tfh:Th1 ratios for each shRNA were calculated and their

Z-scores were plotted (Figures 3B and 3C). A total of 14 control

shRNAs expected not to affect Tfh or Th1 cell differentiation (not

known to be expressed in CD4+ T cells: Cd14, Cd19, Cd22,

Ms4a1, Cd8, Smarca1) were equally distributed in both popula-

tions (Figure 3B), and their effects on cell accumulation were also

assessed (Figure 3C). Based on a Z-score cutoff of Rj3.0j for
each shRNA, factors encoded by Prdm1, Chd4, Id2, and Ccnt1

were identified as candidate positive regulators of Th1 cells or in-

hibitors of Tfh cell differentiation (Figures 3B and 3C, Table S1).

Prdm1 is a positive control, as it encodes an inhibitor of Tfh cell

differentiation (Johnston et al., 2009), and is discussed further

below. Genes Fosb, Plagl1, Mta3, and Runx3 were identified

as potential positive regulators of Tfh cells or inhibitors of Th1

cell differentiation (Table S1). Plagl1 is highly expressed in Tfh

cells (Hale et al., 2013; Yusuf et al., 2010), and MTA3 (encoded

by Mta3) is known to interact with Bcl6 in B cells (Fujita et al.,

2004). Itch is a known positive regulator of Tfh cell differentiation,

based on a profound loss of Tfh cells in Itchfl/flCd4-cre+ mice

(Xiao et al., 2014). Notably, all four Itch shRNAs were severely

depleted from Tfh cells and highly enriched in the Th1 cell pop-

ulation (Figures 3B and 3C). In a second replicate of the CD4+

T cell screen, the validated Bcl6 shRNA (shBcl6.2, Figure S1D)

was depleted from the Tfh cell population, as expected (Fig-

ure 3D). Comparisons of the two independent screens indicated

that the in vivo screens generated reproducible results

(Figure 3E) and also showed that shRNA representation was

similar even when the libraries were sequenced with increased

coverage using the higher-density PGM 318 chip (Figure 3E).

These results suggest that the CD4+ T cell shRNAmir-RV

screening approach in vivo was also robust.

To confirm results from the primary screen (Figure 3B), the

effects of Prdm1 shRNAs were examined individually. SMARTA

CD4+ T cells transduced with shPrdm1.1-RV exhibited the stron-

gest Tfh cell bias in vivo (p < 0.001, Figures 3F and 3G), consis-

tent with results from the screen. Amodest but significant Tfh cell

bias was observed in shPrdm1.3+ and shPrdm1.4+ SMARTA

CD4+ T cells when compared to untransduced CD4+ T cells

(p < 0.01, Figures 3F and 3G). shPrdm1.2 had no effect on Tfh

cell differentiation (Figures 3F and 3G), consistent with it having

the weakest effect on Prdm1 mRNA expression in CD4+ T cells

(data not shown). These results correlated with the observed

distribution of the four shRNAs in the primary screen in CD4+

T cells (Figure 3B) and also indicate that the activity of individual
330 Immunity 41, 325–338, August 21, 2014 ª2014 Elsevier Inc.
shRNAs might depend on the specific cellular context (e.g.,

CD4+ versus CD8+ T cells; Figures 3B and 2G). Thus, results

of the pooled shRNA screen were consistent with experiments

using individual constructs.

Ccnt1 Is Required for Both Th1 Cell and Effector CD8+

T Cell Differentiation In Vivo
We compared the full data sets from the CD8+ and CD4+ T cells

screens and found that inhibition of several different genes

affected differentiation of both effector CD8+ and CD4+ T cells

(Figures 4A and 4B). Ccnt1 encodes Cyclin T1, a noncanonical

cyclin that is a regulatory subunit of the RNA polymerase

II-positive transcription elongation factor (P-TEFb). All four

Ccnt1-specific shRNAs were depleted from KLRG-1hiIL-7Ralo

effector CD8+ T cells and from Th1 cells in the screens (Fig-

ure 4A). Based on the notion that functional parallels might exist

between differentiation of CD4+ andCD8+ T cells during infection

(Choi et al., 2013; Yang et al., 2011), we further explored the roles

of Cyclin T1 in both subsets.

In CD4+ T cells, all four Ccnt1-shRNAs inhibited Cyclin T1 pro-

tein expression to varying degrees; three of four caused robust

inhibition (Figures4CandS6A). EachCcnt1 shRNAwasexamined

individually in SMARTA CD4+ T cells 6 days after LCMV infection

(Figures 4D–4G). Neither CD4+ T cell proliferation (Figures S6B

and S6C) nor CD4 or CD44 expression was affected by Ccnt1

shRNAs (data not shown). Ccnt1 shRNAs both increased Tfh

cell development (CXCR5+SLAMlo) anddecreasedTh1cell forma-

tion (p<0.0001–0.05; Figures4Dand4E).Germinal centerTfh (GC

Tfh) cells are a fully polarized subset of Tfh cells (CXCR5+PSGL1lo;

Crotty, 2011; Poholek et al., 2010) and their frequencies were

increased byCcnt1 shRNAs (p < 0.001–0.05; Figures 4F and 4G).

We also examined T cell differentiation at earlier times points

and found that Ccnt1 shRNAs substantially increased the pro-

portion of early CXCR5+Bcl6+ Tfh cells (p < 0.01; Figures 4H

and 4I, and p < 0.01–0.05; Figure S6D). The increased Tfh cell

differentiation of shCcnt1+CD4+ T cells after LCMV infection

could be a reflection of a decreased potential of these cells to

differentiate into Th1 cells. Consistent with this hypothesis,

Ccnt1 shRNAs resulted in decreased expression of T-bet in vivo

(p < 0.001–0.05; Figure 4J). Reciprocally, the expression of

CD40L, an essential component of T cell help to B cells, was

also increased in shCcnt1+ cells (p < 0.001–0.05; Figure 4K).

These results suggest that Cyclin T1 promotes Th1 cell differen-

tiation at the expense of Tfh cell differentiation in vivo.

To test the requirement for Cyclin T1 in T cell differentiation

in vitro, we cultured shCon+ and shCcnt1+ CD4+ T cells in Th1-

cell-biasing conditions. Ccnt1 shRNAs impaired T-bet expres-

sion under these conditions (p < 0.0001; Figure 5A), resulting in

a substantial loss of IFN-g production upon restimulation (p <

0.0001–0.001; Figures 5B and 5C). The defect was cell intrinsic,

because no defect in IFN-g production was observed in untrans-

duced CD4+ T cells in the same wells (Figure S6E). These results

support a model in which reduced Cyclin T1 expression impairs

Th1 cell development and favors Tfh cell development.

The P-TEFb Subunit Cdk9 Is Necessary for Th1 Cell
Differentiation
Conventional P-TEFb comprises Cdk9 (catalytic subunit) and a

regulatory subunit (e.g., Cyclin T1 or T2). To test whether Cyclin
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(A) Scheme for the shRNAmir screening approach using SMARTA CD4+ T cells.

(B) Relative enrichment of shRNAs in the Tfh or Th1 cell populations in vivo, reported as Z-score values for each shRNA in the library. Z-scores of j3j and j2j are
indicated by a dotted line and a tick, respectively.

(C) Scatter plot shows the log2 of normalized reads of all shRNA in Tfh and Th1 cell populations versus the input sample. This reveals effects on cell survival or

proliferation. shRNA are color coded as in (B).

(D) Z-scores are shown for the shRNAs most depleted from the Tfh cell population in the Ion 318 Chip experiment. shBcl6 is highlighted in orange.

(E) Z-scores of shRNAs depleted from Tfh cells in two independent deep sequencing reactions: Ion 314 Chip (black bars) and Ion 318 Chip (red bars). The dotted

line is a Z-score of �3.

(F) SMARTA CD4+ T cells were transduced with the indicated shRNAs, transferred into B6 mice, and analyzed 6 days after LCMV infection. shCon indicates a

control shRNAmir. Representative flow cytometry plots are shown of shRNA+ SMARTA CD4+ T cells with Tfh cell (CXCR5+SLAMlo) gate drawn.

(G) The differences in percentages of Tfh (%Tfh of Amt+ �%Tfh of Amt�) for each shRNAmir in SMARTA CD4+ T cells are shown. **p < 0.01, ***p < 0.001. Error

bars represent standard deviations.
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T1 was likely acting via P-TEFb, we examined two Cdk9

shRNAs in SMARTA CD4+ T cells for their effects on Tfh versus

Th1 cell differentiation. Both shRNAs inhibited Cdk9 expression
in vitro (Figure 5D). CD4+ T cells transduced with Cdk9 shRNAs

and cultured under Th1-cell-biasing conditions showed

impaired production of IFN-g, similar to the effect of Ccnt1
Immunity 41, 325–338, August 21, 2014 ª2014 Elsevier Inc. 331
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Figure 4. Ccnt1 Depletion Promotes Development of Tfh Cells during Viral Infection

(A) Comparison of shRNAmir screening results in both CD4+ and CD8+ T cells. Tfh and Th1 CD4+ T cells differentiation results, plotted against memory precursor

and effector CD8+ T cell differentiation results. Z-score values are shown. Common negative control shRNAs are shown in yellow, and those targeting Ccnt1 are

highlighted (red).

(B) Table of top hits for genes required for memory precursor CD8+ T cell or Tfh CD4+ T cell differentiation (blue) and short-lived effector CD8+ T cell or Th1 CD4+

T cell differentiation (red).

(C) Cyclin T1 protein expression in MCC T cells after transduction with the indicated shRNAs and 4 days of culture. The ratios of Cyclin T1 to TBP relative to the

control shRNA are indicated.

(D and E) Flow cytometry plots (D) and quantitation (normalized) (E) of Tfh cell differentiation (CXCR5+SLAMlo) by shCcnt1+ SMARTA CD4+ T cells at 6 days after

LCMV infection.

(F and G) Flow cytometry plots (F) and quantitation (normalized) (G) of GC Tfh cell differentiation (CXCR5+PSGL1lo) by shCcnt1+ SMARTA CD4+ T cells at 6 days

after LCMV infection.

(H and I) Flow cytometry plots (H) and quantitation (I) of CXCR5 and Bcl6 expression by shCcnt1+ SMARTA CD4+ T cells at 4 days after LCMV infection.

(J) T-bet expression in shCcnt1+ SMARTA CD4+ T cells in vivo, 3 days after LCMV infection. T-bet geometric MFIs are graphed (right).

(K) CD40L expression by shCcnt1+ SMARTA CD4+ T cells at 4 days after LCMV infection, after 2 hr restimulation with GP61-80 peptide. The percentages of

CD40Lhi cells are indicated. Each symbol represents T cells from an individual mouse.

Data are pooled from three (F, G) or representative of two (K) or three (H–J) independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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shRNAs (p < 0.001–0.01; Figures 5E and 5F), suggesting that

both Cyclin T1 and Cdk9 promote Th1 cell differentiation

in vitro.
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Cdk9 depletion in vivo favored Tfh (CXCR5+SLAMlo) cell devel-

opment while reducing Th1 cell differentiation (shCdk9.1, p <

0.0001; Figures 5G and 5H), without impairing T cell expansion
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(Figure S7A) or normal expression of CD4 and CD44. Further-

more, Cdk9 depletion increased the frequency of GC Tfh cells,

measured as CXCR5+PSGL1lo cells (shCdk9.1, p < 0.001; Fig-

ures 5I and 5J) or CXCR5+Bcl6hi cells (Figures S7B and S7C).

Additionally, based on CXCR5 and Bcl6 expression, early Tfh

cell differentiation in shCdk9+CD4+ T cells was enhanced

4 days after LCMV infection (p < 0.01–0.05; Figures 5K and

5L), with normal cell expansion (Figure S7D). Intriguingly, similar

to what was observed in the absence of Cyclin T1, inhibition of

Cdk9 expression also increased CD40L expression by CD4+

T cells (p < 0.001–0.01; Figure 5M). Altogether, these data reca-

pitulated those obtained with shCcnt1+CD4+ T cells and suggest

that P-TEFb might preferentially promote Th1 cell differentiation

of activated CD4+ T cells.

Ccnt1 and Cdk9 Are Required for Development of
Protective Effector CTLs In Vivo
Next, we explored the requirements ofCcnt1 expression in CD8+

T cells. Three of the four Ccnt1-specific shRNAs resulted in near

complete inhibition of Cyclin T1 protein expression in cultured

CD8+ T cells; one shRNA exhibited strong but incomplete

inhibition (Figure 6A). The accumulation of P14 CD8+ T cells

transduced with Ccnt1 shRNAs was not impaired during culture

(Figure 6B) or in vivo (Figure 6C). However, Ccnt1 shRNAs

strongly impaired generation of short-lived effector P14 T cells

(Figures 6D and 6E). There was a concomitant increase in the

fraction of memory precursor phenotype P14 cells (Figures 6D

and 6F), which increased the ratio of memory precursor to

short-lived effector P14 cells (Figure 6G).

To examine whether the effects of Ccnt1 shRNAs in CD8+

T cells were related to Cyclin T1 function as a subunit of

P-TEFb, we examined the effects of Cdk9-specific shRNAs (Fig-

ure 6H). Similar to shCcnt1, shCdk9+ P14 cells exhibited reduced

short-lived effector cell and increased memory precursor cell

formation in vivo (Figures 6I–6K). This correlated with decreased

T-bet expression in vivo (Figure 6L). Notably, T-bet expression in

shCcnt1+ or shCdk9+ P14 cells was impaired in KLRG-1loIL-

7Ralo cells (data not shown), a stage that presumably precedes

development of either short-lived effector or memory precursor

CD8+ T cells. These data show that wild-type amounts of Cyclin

T1 and Cdk9 are necessary for efficient development of short-

lived effector CTLs and that they normally limit generation of

memory precursor CD8+ T cells.

The defect in shCcnt1+ and shCdk9+ short-lived effector

CD8+ T cell formation brought into question whether these cells

were effective at viral control. Thus, we examined LCMV burden

on day 8 of infection. LCMV titers in the spleen of host mice

with shCcnt1+ or shCdk9+ P14 cells were at least 2- to 5-fold

higher than controls (Figure 7A). Correlating with this finding,

shCcnt1+ or shCdk9+ P14 cells from infected mice expressed

less granzyme B (Figure 7B). Finally, we examined shCcnt1+

or shCdk9+ P14 cells under culture conditions that strongly

induce CTL differentiation (Pipkin et al., 2010). Under these

conditions, all shRNAs targeting either Ccnt1 or Cdk9 also spe-

cifically inhibited perforin protein expression (Figure 7C). Thus,

normal amounts of Cyclin T1 and Cdk9 appear to be required

for the upregulation of genes encoding cytotoxic effector

functions and for effective CTL-mediated protection from viral

infection.
DISCUSSION

We have demonstrated the applicability of a pooled approach

using shRNAmirs in T cells to screen for factors that regulate

CD4+ andCD8+ T cell differentiation in response to viral infection.

Using an improved shRNAmir vector that enhances suitability of

shRNA-mediated RNAi in studies that depend upon cell trans-

fers, more than 100 unique shRNAs were screened simulta-

neously in vivo. In separate proof-of-principle screens during

LCMV infection using virus-specific TCR transgenic SMARTA

CD4+ T cells or P14 CD8+ T cells, we identified multiple candi-

date genes with potential roles in the development of Th1 and

Tfh CD4+ T cells as well as short-lived effector and memory pre-

cursor CD8+ T cells. Detailed follow-up analyses of one factor

identified in both screens revealed specific roles for Cyclin T1

and Cdk9, components of P-TEFb, for promoting Th1 cell devel-

opment of CD4+ T cells and protective effector CTL development

of CD8+ T cells during infection, while limiting differentiation of

Tfh cells and memory precursor CD8+ T cells. These data sug-

gest that regulation of transcription elongation by P-TEFb might

be an important mechanism underpinning differentiation of

T cells during immune responses.

Several important aspects distinguish the screen presented

here from other recently reported pooled in vivo shRNA-screens

(Beronja et al., 2013; Zhou et al., 2014; Zuber et al., 2011). The

screening approach here used an array strategy to ensure inde-

pendent transductions and equal representation of shRNAmirs

in the input pools. In addition, in contrast to other screens based

on shRNA-dependent cell accumulation or depletion as themain

readout to identify primary hits (Beronja et al., 2013; Zhou et al.,

2014; Zuber et al., 2011), the approach presented here was a

phenotypic screen of cell differentiation during an infection. As

such, it was complicated by the nature of T cell responses during

infection, which are constrained by factors such as the fre-

quencies of antigen-specific T cells (Badovinac et al., 2007;

Obar et al., 2008), and thus, is distinct from a T cell adoptive

immunotherapy setting, which affords transferring much larger

T cell numbers (Zhou et al., 2014).

The ability to conduct large-scale pooled screens using

shRNAs has advanced, although interpreting the results of

shRNA-based assays remains complicated. As our data on the

Prdm1, Tbx21, andCcnt1 genes emphasize, interrogating the ef-

fects of multiple shRNAs targeting the same gene in several as-

says tends to clarify the role of each gene, because each shRNA

can result in nonidentical phenotypes attributable to differential

effects on particular target RNA isoforms, unintended off-target

effects, or partial attenuation of target-specific gene expression.

In our experience, �60% of shRNA sequences derived from the

GIPZ library (the source of most shRNAs for this study) impaired

target gene expression or caused a measurable biological

phenotype (data not shown). However, newer algorithms trained

on functional data have improved predicting shRNAmirs that

trigger RNAi more potently and specifically than previous de-

signs (Fellmann et al., 2011). Our study employed some of these

designs and they are likely to enhance the fidelity of future large-

scale screens in vivo.

Using a conservative approach, we showed that more than

100 unique shRNAmirs represented by 500,000 adoptively trans-

ferred P14 cells could be assayed in fewer than 10 mice in
Immunity 41, 325–338, August 21, 2014 ª2014 Elsevier Inc. 333
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Figure 5. Cyclin T1 and Cdk9 Depletion Impairs Th1 Cell Differentiation In Vitro and In Vivo

(A–C, E, and F) CD4+ T cells were transduced with Ccnt1 shRNAs and cultured under Th1-cell-biasing conditions for 4 days before restimulation with PMA and

ionomycin for 1 (E and F) or 4 (A–C) hr.

(A) T-bet expression by shCcnt1+ CD4+ T cells. Quantitation and an example histogram are shown.

(B) Flow cytometry plots of IFN-g expression by shCcnt1+ CD4+ T cells upon restimulation.

(C) Quantitation of (B), for all samples.

(D) Cdk9 protein expression in shCdk9+ MCC T cells.

(E) Flow cytometry plots of IFN-g expression by shCdk9+CD4+ T cells upon restimulation.

(F) Quantitation of (E), for all samples.

(G and H) Flow cytometry plots (G) and quantitation (H) of Tfh cell differentiation (CXCR5+SLAMlo) by shCdk9+ SMARTA CD4+ T cells at 6 days after LCMV

infection.

(I and J) Flow cytometry plots (I) and quantitation (J) of GC Tfh cell differentiation (CXCR5+PSGL1lo) by shCdk9+ SMARTA CD4+ T cells at 6 days after LCMV

infection.

(legend continued on next page)
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approximately 1 week. Under these conditions, we estimated

that each shRNA was represented �500 times per mouse after

T cell engraftment, which is �10-fold higher representation of

each shRNA than a recent pooled screen that examined skin

cell development in vivo (Beronja et al., 2013; Zuber et al.,

2011) and involved transferring 10-fold fewer T cells than a

recent immunotherapy screen in T cells (Zhou et al., 2014).

Taking these studies into account with our results, we anticipate

that by using our system and applying deeper sequencing, it is

likely to be feasible to perform phenotypic screens on pools of

1,000 or more shRNAs in parallel in T cells during infection.

The screen discovered unanticipated roles for Cyclin T1 and

Cdk9 in the regulation of T cell differentiation during antiviral

immune responses and emphasizes the specificity that ubiqui-

tously expressed factors can have. Cyclin T1 and Cdk9 are

two widely expressed components of P-TEFb (Oven et al.,

2007; Peterlin and Price, 2006), which stimulates the transition

of paused RNA polymerase II complexes into productive elonga-

tion (Peterlin and Price, 2006). The regulation of transcription

elongation might govern a substantial fraction of differential

expression of transcriptionally active genes (Min et al., 2011;

Peterlin and Price, 2006; Rahl et al., 2010), and it is notable

that this process is also critical in the regulation of HIV transcrip-

tion in CD4+ T cells. The fact that depletion of Cyclin T1 or Cdk9

in activated T cells results in specific alterations in their differen-

tiation in vitro and in vivo indicates that these factors are utilized

in context-specific regulation of gene expression in T cells,

despite their ubiquitous expression. Indeed, ChIP-seq analysis

showed that Cyclin T1 is specifically recruited to subsets of

genes, including Tbx21, Prf1, Ifng, and Il2ra, that are activated

in response to TCR-like stimulation of CD8+ T cells (M.E.P.,

unpublished data).

Given the known functions of Cyclin T1 and Cdk9 in P-TEFb,

one interpretation of our results is that T cell differentiation is

regulated via transcriptional elongation by P-TEFb. However,

the phenotypes upon Cyclin T1 and Cdk9 depletion were not

identical, although they were similar. One simple explanation of

this outcome is that shRNA-mediated depletion of Cdk9 was

less efficient than for Cyclin T1, resulting in different amounts

of functional P-TEFb in each case. Another interpretation is alter-

native factors that ‘‘compensate’’ for reductions in wild-type

Cyclin T1 or Cdk9 amounts, andwhich possess distinct activities

or targeting, caused the observed phenotypes. Indeed, other

Cyclins and Cyclin-dependent kinases can phosphorylate the

C-terminal domain of RNA Pol II at serine 2 and regulate tran-

scription, and could be cell type specific (Blazek et al., 2011).

Finally, Cyclin T1 and Cdk9 could have roles in T cells apart

from their established roles in P-TEFb. Future studies to eluci-

date the specific roles of Cyclin T1 and Cdk9 and how they

integrate with the external signals that govern CD4+ and CD8+

T cell differentiation are likely to open previously unappreciated

insights into T cell function. In summary, the functional genetic

approach described here is likely to facilitate the identification

of many previously unknown players.
(K and L) Flow cytometry plots (K) and quantitation (L) of CXCR5 and Bcl6 expre

(M) Histograms of CD40L expression on shCdk9+ SMARTA CD4+ T cells, after iso

peptide for 4 hr. The percentages of CD40Lhi SMARTA are shown and summariz

Data are representative of two independent experiments. *p < 0.05, **p < 0.01, *
EXPERIMENTAL PROCEDURES

Animals and Viruses

C57BL/6 (B6) mice were purchased from the Jackson Laboratory. CD45.1+

SMARTA (SM; lymphocytic choriomeningitis virus [LCMV] gp66-77-IAb spe-

cific) (Oxenius et al., 1998) and Blimp1-YFP mice were bred in-house.

LCMV gp33-41-specific P14 Thy1.1+ mice used for in vivo analysis were

a gift from R. Ahmed (Emory University); P14 Tcra�/� mice were used for

in vitro studies (Taconic). All mice were maintained in specific-pathogen-

free facilities and used according to protocols approved by the animal care

and use committees of the LIAI and TSRI-FL. Virus stocks were made as

described (Johnston et al., 2009), and LCMV titers in tissues were assessed

by plaque assay.

Pooled Screening Approaches

Please refer to Supplemental Experimental Procedures.

Flow Cytometry

Single-cell suspensions of spleens were prepared by mechanical disruption.

Surface staining for flow cytometry was performed by standard techniques

(Johnston et al., 2009) and the following clones: CD4 (RM4-5), CD45.1 (A20),

CD44 (IM7), and CD62L (MEL-14) (eBiosciences); CD8 (53-6.7) and B220

(RA3-6B2) (BD Biosciences); as well as CD8 (53-6.7), CD127 (A7R34),

KLRG-1 (2F1), CD90.1 (OX-7), and SLAM (TC15-12F12.2) (BioLegend).

CXCR5 staining was performed as described (Choi et al., 2013). Intracellular

staining after surface stains was performed using the ‘‘Foxp3 staining buffer’’

set (eBiosciences), using anti-Bcl6 monoclonal antibody (K112-91, BD Biosci-

ences), anti-Tbet (4B10), or anti-Granzyme B (GB11) (Biolegend).

Adoptive Transfer Analysis of Individual shRNAmirs in CD8+ or CD4+

T Cells

For in vivo confirmation of ‘‘hits,’’ SMARTA CD4+ or P14 CD8+ T cells were

transduced with viral supernatants generated from individual shRNAmir-RV

constructs (Supplemental Experimental Procedures). A total of 5 3 105 P14

cells were transferred into 6-week-old B6 mice 1 or 2 days after activation

and analyzed on day 7 or 8 after infection. Note, transfer of P14 cells on day

1 rather than day 2 after activation was found to recapitulate differentiation

more physiologically (data not shown). For CD4+ T cell experiments, 25,000

SMARTA cells were transferred.

RNA and Protein Analysis

Total RNAwas isolated from transduced (Ametrine+) CD4+ or CD8+ T cells and

used for cDNA synthesis as previously described (Johnston et al., 2009). qPCR

reactions were performed in triplicate using the SYBR Select Master Mix

(Life Technologies) on a Roche Lightcycler 480, using primers specific

to Prdm1 (F-50-TTCTCTTGGAAAAACGTGTGGG-30; R-50-GGAGCCGGAG

CTAGACTTG-30) and Tbx21 (F-50-ACCAACAACAAGGGGGCTTC-30; R-50-
CTCTGGCTCTCCATCATTCACC-30). For immunoblot analysis, whole-cell

lysates were obtained from CD8+ T cells on day 6 after activation, from

CD4+ T cells 5 days after activation, or fromMCC-T cells by sorting transduced

(Ametrine+) cells and lysis in 150 mM NaCl, 25 mM Tris (pH 7.5), 1% Triton

X-100, 0.1% SDS, 0.5% Deoxycholate, and complete protease inhibitors

(Roche). 25 mg of protein was resolved by 8% SDS-PAGE, transferred to nitro-

cellulose membranes, and probed with anti-Cyclin T1 (sc-10750), anti-Blimp1

(sc-47732), anti-Cdk9 (sc-484) (Santa Cruz Biotechnology), anti-Perforin

(ab16074), and anti-beta Actin (Abcam ab8227).

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures, one table, and Supple-

mental Experimental Procedures and can be found with this article online at

http://dx.doi.org/10.1016/j.immuni.2014.08.002.
ssion by shCdk9+ SMARTA CD4+ T cells, 4 days after LCMV infection.

lation from spleens 4 days after LCMV infection and restimulation with GP61-80

ed (right).

**p < 0.001, ****p < 0.0001.
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Figure 6. Cyclin T1 and Cdk9 Depletion Impairs Generation of Effector CD8+ T Cells during LCMV Infection

(A) Immunoblot analysis of Cyclin T1 in FACS-sorted shCcnt1+ P14 CD8+ T cells. Cells were cultured 6 days in low IL-2 (10 U/ml).

(B) Expansion of FACS-sorted shCcnt1+ P14 CD8+ T cells in culture. Low IL-2 (10 U/ml), high IL-2 (100 U/ml).

(C–L) Adoptively transferred P14 CD8+ T cells transduced with the indicated shRNAs were analyzed on day 7 (C–G) or day 8 (H–L) after LCMV infection.

(C) The numbers and percentages of shCcnt1+ P14 cells in the spleen.

(D) Contour plots show KLRG-1 and IL-7Ra staining on shCcnt1+ P14 CD8+ T cells from representative mice 7 days after LCMV infection.

(E–G) Quantitation of CD8+ T cell subsets from shCcnt1+ P14 cells in vivo.

(E) Short-lived effector cells (KLRG-1hiIL-7Ralo).

(F) Memory precursor cells (KLRG-1loIL-7Rahi).

(G) Ratio of memory precursor to short-lived effector phenotype P14 cells, per mouse.

(H) Contour plots show KLRG-1 and IL-7Ra staining by shCdk9+ P14 CD8+ T cells from representative mice 8 days after LCMV infection.

(I–L) Quantitation of CD8+ T cell subsets from shCdk9+ P14 cells in vivo.

(I) Short-lived effector cells (KLRG-1hiIL-7Ralo).

(J) Memory precursor cells (KLRG-1loIL-7Rahi).

(K) Ratio of memory precursor to short-lived effector phenotype P14 cells, per mouse.

(L) Summarized T-bet expression based on intracellular staining and flow cytometry.

Each symbol represents T cells from separate mice. Data are pooled from two independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Error

bars represent standard deviations.
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Figure 7. CyclinT1andCdk9AreRequired forAntiviralCTLFunctions

(A) LCMV titers in spleen were determined 8 days after LCMV infection.

(B) Granzyme B expression in P14 cells at day 8 postinfection. Histogram (left)

and quantitation (geometric MFI; right).

(C) Immunoblot analysis of Cyclin T1, Cdk9, Perforin, and b-actin expression in

whole-cell lysates from flow cytometry-sorted shCcnt1+ and shCdk9+ P14

CD8+ T cells after 6 days in culture (100 U/ml).
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